1
|
Bao F, Ni F, Zhai Q, Sun Z, Song X, Lin Y. A Flexible Sensing Material with High Force and Thermal Sensitivity Based on GaInSn in Capillary Embedded in PDMS. Polymers (Basel) 2024; 16:3426. [PMID: 39684171 DOI: 10.3390/polym16233426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/30/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
Flexible sensing materials have become a hot topic due to their sensitive electrical response to external force or temperature and their promising applications in flexible wear and human-machine interaction. In this study, a PDMS/capillary GaInSn flexible sensing material with high force and thermal sensitivity was prepared utilizing liquid metal (LM, GaInSn), flexible silicone capillary, and polydimethylsiloxane (PDMS). The resistance (R) of the flexible sensing materials under the action of different forces and temperatures was recorded in real-time. The electrical performance results confirmed that the R of the sensing material was responsive to temperature changes and increased with the increasing temperature, indicating its ability to transmit temperature signals into electrical signals. The R was also sensitive to the external force, such as cyclic stretching, cyclic compression, cyclic bending, impact and rolling. The ΔR/R0 changed periodically and stably with the cyclic stretching, cyclic compression and cyclic bending when the conductive pathway diameter was 0.5-1.0 mm, the cyclic tensile strain ≤ 20%, the cyclic tensile rate ≤ 2.0 mm/min, the compression ratio ≤ 0.5, and the relative bending curvature ≤ 0.16. Moreover, the material exhibited sensitivity in detecting biological signals, such as the joint movements of the finger, wrist, elbow and the stand up-crouch motion. In conclusion, this work provides a method for preparing a sensing material with the capillary structure, which was confirmed to be sensitive to force and heat, and it produced different types of R signals under different deformations and different temperatures.
Collapse
Affiliation(s)
- Fandou Bao
- School of Physics and Electronic Engineering, Jining University, Qufu 273155, China
| | - Fengyao Ni
- Shandong Donghong Pipe Industry Co., Ltd., Qufu 273155, China
| | - Qianqian Zhai
- School of Physics and Electronic Engineering, Jining University, Qufu 273155, China
| | - Zhizhuang Sun
- Shandong Donghong Pipe Industry Co., Ltd., Qufu 273155, China
| | - Xiaolin Song
- School of Physics and Electronic Engineering, Jining University, Qufu 273155, China
| | - Yu Lin
- School of Physics and Electronic Engineering, Jining University, Qufu 273155, China
| |
Collapse
|
2
|
Ma J, Sa Z, Zhang H, Feng J, Wen J, Wang S, Tian Y. Microconfined Assembly of High-Resolution and Mechanically Robust EGaIn Liquid Metal Stretchable Electrodes for Wearable Electronic Systems. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402818. [PMID: 38898769 PMCID: PMC11425843 DOI: 10.1002/advs.202402818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/24/2024] [Indexed: 06/21/2024]
Abstract
Stretchable electrodes based on liquid metals (LM) are widely used in human-machine interfacing, wearable bioelectronics, and other emerging technologies. However, realizing the high-precision patterning and mechanical stability remains challenging due to the poor wettability of LM. Herein, a method is reported to fabricate LM-based multilayer solid-liquid electrodes (m-SLE) utilizing electrohydrodynamic (EHD) printed confinement template. In these electrodes, LM self-assembled onto these high-resolution templates, assisted by selective wetting on the electrodeposited Cu layer. This study shows that a m-SLE composed of PDMS/Ag/Cu/EGaIn exhibits line width of ≈20 µm, stretchability of ≈100%, mechanical stability ≈10 000 times (stretch/relaxation cycles), and recyclability. The multi-layer structure of m-SLE enables the adjustability of strain sensing, in which the strain-sensitive Ag part can be used for non-distributed detection in human health monitoring and the strain-insensitive EGaIn part can be used as interconnects. In addition, this study demonstrates that near field communication (NFC) devices and multilayer displays integrated by m-SLEs exhibit stable wireless signal transmission capability and stretchability, suggesting its applicability in creating highly-integrated, large-scale commercial, and recyclable wearable electronics.
Collapse
Affiliation(s)
- Jingxuan Ma
- National Key Laboratory of Precision Welding & Joining of Materials and Structures, Harbin Institute of Technology, Harbin, 150001, China
| | - Zicheng Sa
- National Key Laboratory of Precision Welding & Joining of Materials and Structures, Harbin Institute of Technology, Harbin, 150001, China
| | - He Zhang
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, 999077, China
- Advanced Biomedical Instrumentation Centre Limited, Hong Kong, 999077, China
| | - Jiayun Feng
- National Key Laboratory of Precision Welding & Joining of Materials and Structures, Harbin Institute of Technology, Harbin, 150001, China
| | - Jiayue Wen
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou, 450041, China
| | - Shang Wang
- National Key Laboratory of Precision Welding & Joining of Materials and Structures, Harbin Institute of Technology, Harbin, 150001, China
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou, 450041, China
| | - Yanhong Tian
- National Key Laboratory of Precision Welding & Joining of Materials and Structures, Harbin Institute of Technology, Harbin, 150001, China
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou, 450041, China
| |
Collapse
|
3
|
Duan L, Zhou T, Zhao X, Mu W, Khampheng B, Yang P, Chi S, Yang H, Liu Q. Directly Printable Flexible Optoelectronics through Surface Atomic Modification of Liquid Metals at Room Temperature. ACS APPLIED MATERIALS & INTERFACES 2024; 16:42851-42861. [PMID: 39143704 DOI: 10.1021/acsami.4c06998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Flexible optoelectronics have fully demonstrated their transformative roles in various fields, but their fabrication and application have been limited by complex processes. Liquid metals (LMs) are promising to be ideal raw materials for making flexible optoelectronics due to their extraordinary fluidity and printability. Herein, we propose a painting-modifying strategy based on solution processability for directly printing out fluorescent flexible optoelectronics from LMs via surface modification. The LMs of eGaIn, which were obtained by the mixing of gallium with indium metal spheres, were used as ink to paint high-finesse patterns on flexible substrates. Through introducing surface modification of LMs, the gallium atom on the surface of the LMs was directly transformed into the composite fluorescent functional layers of GaO(OH) and GaN after being modified with an ammonia aqueous solution. Owing to painting, this strategy is not limited by any curved surfaces, shapes, or facilities and has excellent adaptability. Particularly, the fluorescent layers were obtained through a spontaneous, instantaneous, and solution-processable process that is environmentally friendly, easy to administrate, recyclable, and adjustable. The present finding breaks through the limitations of LMs in making flexible optoelectronics and provides strategies for addressing severe challenges facing existing materials and flexible optoelectronics. This method is expected to be very useful for fabricating flexible lights, transformable displays, intelligent anticounterfeiting devices, skin-inspired optoelectronics, and chameleon-biomimetic soft robots in the coming time.
Collapse
Affiliation(s)
- Liangfei Duan
- Faculty of Chemistry and Chemical Engineering, Key Laboratory of Advanced Technique & Preparation for Renewable Energy Materials, Ministry of Education, Yunnan Normal University, Kunming 650500, China
| | - Tong Zhou
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, Institute of International Rivers and Eco-security, School of Materials and Energy, Yunnan University, Kunming 650091, China
| | - Xue Zhao
- Faculty of Chemistry and Chemical Engineering, Key Laboratory of Advanced Technique & Preparation for Renewable Energy Materials, Ministry of Education, Yunnan Normal University, Kunming 650500, China
| | - Weihua Mu
- Faculty of Chemistry and Chemical Engineering, Key Laboratory of Advanced Technique & Preparation for Renewable Energy Materials, Ministry of Education, Yunnan Normal University, Kunming 650500, China
| | - Boudmyxay Khampheng
- Research and Academic Services Division, Faculty of Education, National University of Laos, Vientiane 7322, Laos
| | - Peizhi Yang
- Faculty of Chemistry and Chemical Engineering, Key Laboratory of Advanced Technique & Preparation for Renewable Energy Materials, Ministry of Education, Yunnan Normal University, Kunming 650500, China
| | - Shaoming Chi
- Faculty of Chemistry and Chemical Engineering, Key Laboratory of Advanced Technique & Preparation for Renewable Energy Materials, Ministry of Education, Yunnan Normal University, Kunming 650500, China
| | - Huiqin Yang
- Faculty of Chemistry and Chemical Engineering, Key Laboratory of Advanced Technique & Preparation for Renewable Energy Materials, Ministry of Education, Yunnan Normal University, Kunming 650500, China
| | - Qingju Liu
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, Institute of International Rivers and Eco-security, School of Materials and Energy, Yunnan University, Kunming 650091, China
| |
Collapse
|
4
|
Zhao D, Wang L, Fang K, Luo J, Zhou X, Jiang K. Fabrication of lignocellulose/liquid metal-based conductive eutectic hydrogel composite for strain sensors. Int J Biol Macromol 2024; 273:133013. [PMID: 38852728 DOI: 10.1016/j.ijbiomac.2024.133013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024]
Abstract
High conductive and freeze-resistant hydrogels with adhesion function are ideal candidates for soft electronic devices. However, it remains a challenge to design appropriate conductive nanofillers to endow hydrogels with all these characteristics. Liquid metal (LM) exhibits exceptional electrical conductivity and convenient processability, rendering it a highly promising contender. Cellulose nanofibrils (CNFs) were employed as the interfacial stabilizer in synthesizing stable CNFs encapsulated LM solutions. Then the lignin was further coated on the surface of CNFs-LM (LCL) to prepare lignin-coated hybrid hydrogels. The obtained LCL displayed outstanding water-dispersible stability and were promising conductive nanofillers for hydrogels. During the fabrication of poly N-(hydroxymethyl) acrylamide (PHA) hydrogels, the LM was dispersed into LM particles with smaller sizes, leading to highly conductive LCL-PHA hydrogels (0.38 S·m-1). The prepared LCL-PHA hydrogels exhibited exceptional mechanical properties, including a strain at a break of 134.6 %, stress at a break of 22.7 Kpa, and a toughness of 16.3 KJ·m-3. Additionally, the LCL-PHA hydrogels demonstrated favorable electrical conductivity and adhesion. Notably, even after being subjected to freezing at -20 °C for 24 h, they remained suitable for effective real-time monitoring of all types of human activities, demonstrating superior environmental stability.
Collapse
Affiliation(s)
- Dongping Zhao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Lei Wang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Kaili Fang
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou 310053, People's Republic of China
| | - Jing Luo
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China.
| | - Xin Zhou
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China.
| | - Kankan Jiang
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou 310053, People's Republic of China.
| |
Collapse
|
5
|
Lin Z, Qiu X, Cai Z, Li J, Zhao Y, Lin X, Zhang J, Hu X, Bai H. High internal phase emulsions gel ink for direct-ink-writing 3D printing of liquid metal. Nat Commun 2024; 15:4806. [PMID: 38839743 PMCID: PMC11153652 DOI: 10.1038/s41467-024-48906-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 05/17/2024] [Indexed: 06/07/2024] Open
Abstract
3D printing of liquid metal remains a big challenge due to its low viscosity and large surface tension. In this study, we use Carbopol hydrogel and liquid gallium-indium alloy to prepare a liquid metal high internal phase emulsion gel ink, which can be used for direct-ink-writing 3D printing. The high volume fraction (up to 82.5%) of the liquid metal dispersed phase gives the ink excellent elastic properties, while the Carbopol hydrogel, as the continuous phase, provides lubrication for the liquid metal droplets, ensuring smooth flow of the ink during shear extrusion. These enable high-resolution and shape-stable 3D printing of three-dimensional structures. Moreover, the liquid metal droplets exhibit an electrocapillary phenomenon in the Carbopol hydrogel, which allows for demulsification by an electric field and enables electrical connectivity between droplets. We have also achieved the printing of ink on flexible, non-planar structures, and demonstrated the potential for alternating printing with various materials.
Collapse
Affiliation(s)
- Zewen Lin
- College of Materials, Xiamen University, Xiamen, 361005, PR China
| | - Xiaowen Qiu
- College of Materials, Xiamen University, Xiamen, 361005, PR China
| | - Zhouqishuo Cai
- College of Materials, Xiamen University, Xiamen, 361005, PR China
| | - Jialiang Li
- College of Materials, Xiamen University, Xiamen, 361005, PR China
| | - Yanan Zhao
- College of Materials, Xiamen University, Xiamen, 361005, PR China
| | - Xinping Lin
- College of Materials, Xiamen University, Xiamen, 361005, PR China
| | - Jinmeng Zhang
- College of Materials, Xiamen University, Xiamen, 361005, PR China
| | - Xiaolan Hu
- College of Materials, Xiamen University, Xiamen, 361005, PR China.
| | - Hua Bai
- College of Materials, Xiamen University, Xiamen, 361005, PR China.
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, China.
| |
Collapse
|
6
|
Xu X, Shen Y, Xing R, Kong J, Su R, Huang R, Qi W. Galvanic Replacement Synthesis of VO x@EGaIn-PEG Core-Shell Nanohybrids for Peroxidase Mimics. ACS APPLIED MATERIALS & INTERFACES 2024; 16:21975-21986. [PMID: 38626357 DOI: 10.1021/acsami.4c02213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
The development of high-performance biosensors is a key focus in the nanozyme field, but the current limitations in biocompatibility and recyclability hinder their broader applications. Herein, we address these challenges by constructing core-shell nanohybrids with biocompatible poly(ethylene glycol) (PEG) modification using a galvanic replacement reaction between orthovanadate ions and liquid metal (LM) (VOx@EGaIn-PEG). By leveraging the excellent charge transfer properties and the low band gap of the LM surface oxide, the VOx@EGaIn-PEG heterojunction can effectively convert hydrogen peroxide into hydroxyl radicals, demonstrating excellent peroxidase-like activity and stability (Km = 490 μM, vmax = 1.206 μM/s). The unique self-healing characteristics of LM further enable the recovery and regeneration of VOx@EGaIn-PEG nanozymes, thereby significantly reducing the cost of biological detection. Building upon this, we developed a nanozyme colorimetric sensor suitable for biological systems and integrated it with a smartphone to create an efficient quantitative detection platform. This platform allows for the convenient and sensitive detection of glucose in serum samples, exhibiting a good linear relationship in the range of 10-500 μM and a detection limit of 2.35 μM. The remarkable catalytic potential of LM, combined with its biocompatibility and regenerative properties, offers valuable insights for applications in catalysis and biomedical fields.
Collapse
Affiliation(s)
- Xiaojian Xu
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Yuhe Shen
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Ruizhe Xing
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Jie Kong
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Rongxin Su
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Tianjin Key Laboratory for Marine Environmental Research and Service, School of Marine Science and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Renliang Huang
- Tianjin Key Laboratory for Marine Environmental Research and Service, School of Marine Science and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Wei Qi
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| |
Collapse
|
7
|
Zhu J, Li J, Tong Y, Hu T, Chen Z, Xiao Y, Zhang S, Yang H, Gao M, Pan T, Cheng H, Lin Y. Recent progress in multifunctional, reconfigurable, integrated liquid metal-based stretchable sensors and standalone systems. PROGRESS IN MATERIALS SCIENCE 2024; 142:101228. [PMID: 38745676 PMCID: PMC11090487 DOI: 10.1016/j.pmatsci.2023.101228] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Possessing a unique combination of properties that are traditionally contradictory in other natural or synthetical materials, Ga-based liquid metals (LMs) exhibit low mechanical stiffness and flowability like a liquid, with good electrical and thermal conductivity like metal, as well as good biocompatibility and room-temperature phase transformation. These remarkable properties have paved the way for the development of novel reconfigurable or stretchable electronics and devices. Despite these outstanding properties, the easy oxidation, high surface tension, and low rheological viscosity of LMs have presented formidable challenges in high-resolution patterning. To address this challenge, various surface modifications or additives have been employed to tailor the oxidation state, viscosity, and patterning capability of LMs. One effective approach for LM patterning is breaking down LMs into microparticles known as liquid metal particles (LMPs). This facilitates LM patterning using conventional techniques such as stencil, screening, or inkjet printing. Judiciously formulated photo-curable LMP inks or the introduction of an adhesive seed layer combined with a modified lift-off process further provide the micrometer-level LM patterns. Incorporating porous and adhesive substrates in LM-based electronics allows direct interfacing with the skin for robust and long-term monitoring of physiological signals. Combined with self-healing polymers in the form of substrates or composites, LM-based electronics can provide mechanical-robust devices to heal after damage for working in harsh environments. This review provides the latest advances in LM-based composites, fabrication methods, and their novel and unique applications in stretchable or reconfigurable sensors and resulting integrated systems. It is believed that the advancements in LM-based material preparation and high-resolution techniques have opened up opportunities for customized designs of LM-based stretchable sensors, as well as multifunctional, reconfigurable, highly integrated, and even standalone systems.
Collapse
Affiliation(s)
- Jia Zhu
- School of Material and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Jiaying Li
- School of Material and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Yao Tong
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou 215011, PR China
| | - Taiqi Hu
- School of Electrical Engineering and Automation, Jiangxi University of Science and Technology, Ganzhou 341000, P. R. China
| | - Ziqi Chen
- School of Physical Sciences, University of Science and Technology of China, Hefei 230026, PR China
| | - Yang Xiao
- School of Material and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Senhao Zhang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou 215011, PR China
| | - Hongbo Yang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou 215011, PR China
| | - Min Gao
- School of Material and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Taisong Pan
- School of Material and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Huanyu Cheng
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Yuan Lin
- School of Material and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
- Medico-Engineering Cooperation on Applied Medicine Research Center, University of Electronics Science and Technology of China, Chengdu 610054, China
| |
Collapse
|
8
|
Yang Y, Liu J, Chen G, Gao A, Wang J, Wang J. Stretchable Fibers with Highly Conductive Surfaces and Robust Electromechanical Performances for Electronic Textiles. ACS APPLIED MATERIALS & INTERFACES 2024; 16:6122-6132. [PMID: 38272468 DOI: 10.1021/acsami.3c16819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
One-dimensional conductive fibers that can simultaneously accommodate multiple deformations are crucial materials to enable next-generation electronic textile technologies for applications in the fields of healthcare, energy harvesting, human-machine interactions, etc. Stretchable conductive fibers (SCFs) with high conductivity on their external structure are important for their direct integration with other electronic components. However, the dilemma to achieve high conductivity and concurrently large stretchability is still quite challenging to resolve among conductive fibers with a conductive surface. Here, a three-layer coaxial conductive fiber, which can provide robust electrical performance under various deformations, is reported. A dual conducting structure with a semisolid metallic layer and a stretchable composite layer was designed in the fibers, providing exceptional conductivity and mechanical stability under mechanical strains. The conductive fiber achieved an initial conductivity of 2291.83 S cm-1 on the entire fiber and could be stretched up to 600% strains. With the excellent electromechanical properties of the SCF, we were able to demonstrate different electronic textile applications including physiological monitoring, neuromuscular electrical stimulation, and energy harvesting.
Collapse
Affiliation(s)
- Yan Yang
- School of Mechanical Engineering, Sichuan University, Chengdu 610065, China
| | - Jiawei Liu
- School of Mechanical Engineering, Sichuan University, Chengdu 610065, China
| | - Guangchuan Chen
- School of Mechanical Engineering, Sichuan University, Chengdu 610065, China
| | - Ang Gao
- School of Mechanical Engineering, Sichuan University, Chengdu 610065, China
| | - Jinhui Wang
- School of Mechanical Engineering, Sichuan University, Chengdu 610065, China
| | - Jiangxin Wang
- School of Mechanical Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
9
|
Orzari LO, Silva LRGE, de Freitas RC, Brazaca LC, Janegitz BC. Lab-made disposable screen-printed electrochemical sensors and immunosensors modified with Pd nanoparticles for Parkinson's disease diagnostics. Mikrochim Acta 2024; 191:76. [PMID: 38172448 DOI: 10.1007/s00604-023-06158-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/15/2023] [Indexed: 01/05/2024]
Abstract
A new conductive ink based on the addition of carbon black to a poly(vinyl alcohol) matrix is developed and investigated for electrochemical sensing and biosensing applications. The produced devices were characterized using morphological and electrochemical techniques and modified with Pd nanoparticles to enhance electrical conductivity and reaction kinetics. With the aid of chemometrics, the parameters for metal deposition were investigated and the sensor was applied to the determination of Parkinson's disease biomarkers, specifically epinephrine and α-synuclein. A linear behavior was obtained in the range 0.75 to 100 μmol L-1 of the neurotransmitter, and the device displayed a limit of detection (LOD) of 0.051 μmol L-1. The three-electrode system was then tested using samples of synthetic cerebrospinal fluid. Afterward, the device was modified with specific antibodies to quantify α-synuclein using electrochemical impedance spectroscopy. In phosphate buffer, a linear range was obtained for α-synuclein concentrations from 1.5 to 15 μg mL-1, with a calculated LOD of 0.13 μg mL-1. The proposed immunosensor was also applied to blood serum samples, and, in this case, the linear range was observed from 6.0 to 100.5 μg mL-1 of α-synuclein, with a LOD = 1.3 µg mL-1. Both linear curves attend the range for the real diagnosis, demonstrating its potential application to complex matrices.
Collapse
Affiliation(s)
- Luiz Otávio Orzari
- Department of Nature Sciences, Mathematics and Education, Federal University of São Carlos, Araras, SP, 13600-970, Brazil
- Department of Physics, Chemistry and Mathematics, Federal University of São Carlos, Sorocaba, SP, 18052-780, Brazil
| | - Luiz Ricardo Guterres E Silva
- Department of Nature Sciences, Mathematics and Education, Federal University of São Carlos, Araras, SP, 13600-970, Brazil
- Department of Physics, Chemistry and Mathematics, Federal University of São Carlos, Sorocaba, SP, 18052-780, Brazil
| | - Rafaela Cristina de Freitas
- Department of Nature Sciences, Mathematics and Education, Federal University of São Carlos, Araras, SP, 13600-970, Brazil
- Department of Physics, Chemistry and Mathematics, Federal University of São Carlos, Sorocaba, SP, 18052-780, Brazil
| | - Laís Canniatti Brazaca
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, SP, 13566-590, Brazil
| | - Bruno Campos Janegitz
- Department of Nature Sciences, Mathematics and Education, Federal University of São Carlos, Araras, SP, 13600-970, Brazil.
| |
Collapse
|
10
|
Liang S, Yang J, Li F, Xie S, Song N, Hu L. Recent progress in liquid metal printing and its applications. RSC Adv 2023; 13:26650-26662. [PMID: 37681047 PMCID: PMC10481125 DOI: 10.1039/d3ra04356h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/31/2023] [Indexed: 09/09/2023] Open
Abstract
This paper focuses on the latest research printing technology and broad application for flexible liquid metal (LM) materials. Through the newest template printing method, centrifugal force assisted method, pen lithography technology, and laser method, the precision of liquid metal printing on the devices was improved to 10 nm. The development of novel liquid metal inks, such as PVA-LM ink and ethanol/PDMS/LM double emulsion ink, have further enhanced the recovery, rapid printing, high conductivity, and strain resistance. At the same time, liquid metals also show promise in the application of biochemical sensors, photocatalysts, composite materials, driving machines, and electrode materials. Liquid metals have been applied to biomedical, pressure/gas, and electrochemical sensors. The sensitivity, biostability, and electrochemical performance of these LM sensors were improved rapidly. They could continue to be used in healthy respiratory, heartbeat monitoring, and dopamine detection. Meanwhile, the applications of liquid metal droplets in catalytic-assisted MoS2 deposition, catalytic growth of two-dimensional (2D) lamellar, catalytic free radical polymerization, catalytic hydrogen absorption/dehydrogenation, photo/electrocatalysis, and other fields were also summarized. Through improving liquid metal composites, magnetic, thermal, electrical, and tensile enhancement alloys, and shape memory alloys with excellent properties could also be prepared. Finally, the applications of liquid metal in micro-motors, intelligent robot feet, nanorobots, self-actuation, and electrode materials were also summarized. This paper comprehensively summarizes the practical application of liquid metals in different fields, which helps understand LMs development trends, and lays a foundation for subsequent research.
Collapse
Affiliation(s)
- Shuting Liang
- College of Chemical and Environmental Engineering, Chongqing Key Laboratory of Environmental Materials & Remediation Technologies, Chongqing University of Arts and Sciences Chongqing 402160 PR China
- Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province Hangzhou 310018 China
| | - Jie Yang
- College of Chemical and Environmental Engineering, Chongqing Key Laboratory of Environmental Materials & Remediation Technologies, Chongqing University of Arts and Sciences Chongqing 402160 PR China
| | - Fengjiao Li
- Shenzhen Automotive Research Institute, Beijing Institute of Technology Shenzhen 518118 PR China
| | - Shunbi Xie
- College of Chemical and Environmental Engineering, Chongqing Key Laboratory of Environmental Materials & Remediation Technologies, Chongqing University of Arts and Sciences Chongqing 402160 PR China
| | - Na Song
- Department of Oncology, Chongqing Municipal Chinese Medicine Hospital Chongqing 400021 China
| | - Liang Hu
- Key Laboratory of Biomechanics and Mechanobiology, School of Biological Science and Medical Engineering, Beihang University Beijing 100083 PR China
| |
Collapse
|
11
|
Liu Y, Zhang C, Chen Y, Yin R, He P, Zhao W. Rational Design of Conductive Pathways in Flexible Tactile Sensors via Indirect 3D-Printing of Liquid Metal for High-Precision Monitoring and Recognition. ACS APPLIED MATERIALS & INTERFACES 2023; 15:38572-38580. [PMID: 37526636 DOI: 10.1021/acsami.3c07237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Highly sensitive and conformal sensors are essential for the implementation of human-machine interfaces, health monitoring, and rehabilitation prostheses. The proper adjustment of conductive pathways in the sensing materials is essential for their sensitive transduction of mechanical stimuli into electrical signals. However, the rational, precise, and wide-range control of electrical networks within traditional conductive composites is difficult due to the randomly distributed fillers. Herein, we adopt an indirect 3D-printing method to fabricate pressure sensors with various microchannels for liquid metal (LM) to form consistent and tunable conductive pathways. LM is highly conductive, fluidic, and incompressible at ambient conditions, which guarantees the reliable regulation and function of our pressure sensor. Additive manufacturing provides a facile way to construct complicated microchannels with different lengths, different orientations, cross-sectional sizes, depth-width ratios, and shapes, which can effectively modulate the sensitivity and the sensing range. Under the optimized structural configurations, our sensor achieves a high sensitivity of 1.139 kPa-1, a detection range of 0-68 kPa (loading process), and stability of over 5000 cycles, whose sensing performance is better than most microchannel-filled LM sensors. It can achieve high-accuracy monitoring of pulse, speaking and gestures, and exhibit a full recognition of objects under the assistance of machine learning. This work can provide new ideas on the design of conductive pathways in flexible electronics and expand the application of recyclable LM in human-machine interfaces.
Collapse
Affiliation(s)
- Yaming Liu
- Sauvage Laboratory for Smart Materials, The School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, People's Republic of China
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, People's Republic of China
- State Key Laboratory of Advanced Welding & Joining, Harbin Institute of Technology, Harbin 150001, People's Republic of China
| | - Chen Zhang
- Sauvage Laboratory for Smart Materials, The School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, People's Republic of China
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, People's Republic of China
| | - Youyou Chen
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, People's Republic of China
- State Key Laboratory of Advanced Welding & Joining, Harbin Institute of Technology, Harbin 150001, People's Republic of China
- Laboratory for Smart Materials, The School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, People's Republic of China
| | - Rui Yin
- Sauvage Laboratory for Smart Materials, The School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, People's Republic of China
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, People's Republic of China
| | - Peng He
- State Key Laboratory of Advanced Welding & Joining, Harbin Institute of Technology, Harbin 150001, People's Republic of China
| | - Weiwei Zhao
- Sauvage Laboratory for Smart Materials, The School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, People's Republic of China
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, People's Republic of China
- State Key Laboratory of Advanced Welding & Joining, Harbin Institute of Technology, Harbin 150001, People's Republic of China
| |
Collapse
|
12
|
Liu S, Xu Z, Li G, Li Z, Ye Z, Xu Z, Chen W, Jin D, Ma X. Ultrasonic-Enabled Nondestructive and Substrate-Independent Liquid Metal Ink Sintering. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301292. [PMID: 37316967 PMCID: PMC10427386 DOI: 10.1002/advs.202301292] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 05/19/2023] [Indexed: 06/16/2023]
Abstract
Printing or patterning particle-based liquid metal (LM) ink is a good strategy to overcome poor wettability of LM for its circuits' preparation in flexible and printed electronics. Subsequently, a crucial step is to recover conductivity of LM circuits consisting of insulating LM micro/nano-particles. However, most widely used mechanical sintering methods based on hard contact such as pressing, may not be able to contact the LM patterns' whole surface conformally, leading to insufficient sintering in some areas. Hard contact may also break delicate shapes of the printed patterns. Hereby, an ultrasonic-assisted sintering strategy that can not only preserve original morphology of the LM circuits but also sinter circuits on various substrates of complex surface topography is proposed. The influencing factors of the ultrasonic sintering are investigated empirically and interpreted with theoretical understanding by simulation. LM circuits encapsulated inside soft elastomer are successfully sintered, proving feasibility in constructing stretchable or flexible electronics. By using water as energy transmission medium, remote sintering without any direct contact with substrate is achieved, which greatly protect LM circuits from mechanical damage. In virtue of such remote and non-contact manipulation manner, the ultrasonic sintering strategy would greatly advance the fabrication and application scenarios of LM electronics.
Collapse
Affiliation(s)
- Sanhu Liu
- State Key Laboratory of Advanced Welding and JoiningHarbin Institute of TechnologyHarbin150001China
- School of Materials Science and EngineeringHarbin Institute of TechnologyHarbin150001China
| | - Zhiwu Xu
- State Key Laboratory of Advanced Welding and JoiningHarbin Institute of TechnologyHarbin150001China
- School of Materials Science and EngineeringHarbin Institute of TechnologyHarbin150001China
| | - Guoqiang Li
- Sauvage Laboratory for Smart MaterialsSchool of Materials Science and EngineeringHarbin Institute of Technology (Shenzhen)ShenzhenGuangdong518055China
| | - Zhengwei Li
- State Key Laboratory of Advanced Welding and JoiningHarbin Institute of TechnologyHarbin150001China
- School of Materials Science and EngineeringHarbin Institute of TechnologyHarbin150001China
| | - Zihan Ye
- Sauvage Laboratory for Smart MaterialsSchool of Materials Science and EngineeringHarbin Institute of Technology (Shenzhen)ShenzhenGuangdong518055China
| | - Zirong Xu
- State Key Laboratory of Advanced Welding and JoiningHarbin Institute of TechnologyHarbin150001China
- School of Materials Science and EngineeringHarbin Institute of TechnologyHarbin150001China
| | - Wenjun Chen
- Sauvage Laboratory for Smart MaterialsSchool of Materials Science and EngineeringHarbin Institute of Technology (Shenzhen)ShenzhenGuangdong518055China
| | - Dongdong Jin
- Sauvage Laboratory for Smart MaterialsSchool of Materials Science and EngineeringHarbin Institute of Technology (Shenzhen)ShenzhenGuangdong518055China
| | - Xing Ma
- State Key Laboratory of Advanced Welding and JoiningHarbin Institute of TechnologyHarbin150001China
- Sauvage Laboratory for Smart MaterialsSchool of Materials Science and EngineeringHarbin Institute of Technology (Shenzhen)ShenzhenGuangdong518055China
| |
Collapse
|
13
|
Zheng K, Gu F, Wei H, Zhang L, Chen X, Jin H, Pan S, Chen Y, Wang S. Flexible, Permeable, and Recyclable Liquid-Metal-Based Transient Circuit Enables Contact/Noncontact Sensing for Wearable Human-Machine Interaction. SMALL METHODS 2023; 7:e2201534. [PMID: 36813751 DOI: 10.1002/smtd.202201534] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/15/2023] [Indexed: 06/18/2023]
Abstract
The past several years have witnessed a rapid development of intelligent wearable devices. However, despite the splendid advances, the creation of flexible human-machine interfaces that synchronously possess multiple sensing capabilities, wearability, accurate responsivity, sensitive detectivity, and fast recyclability remains a substantial challenge. Herein, a convenient yet robust strategy is reported to craft flexible transient circuits via stencil printing liquid metal conductor on the water-soluble electrospun film for human-machine interaction. Due to the inherent liquid conductor within porous substrate, the circuits feature high-resolution, customized patterning viability, attractive permeability, excellent electroconductivity, and superior mechanical stability. More importantly, such circuits display appealing noncontact proximity capabilities while maintaining compelling tactile sensing performance, which is unattainable by traditional systems with compromised contact sensing. As such, the flexible circuit is utilized as wearable sensors with practical multifunctionality, including information transfer, smart identification, and trajectory monitoring. Furthermore, an intelligent human-machine interface composed of the flexible sensors is fabricated to realize specific goals such as wireless object control and overload alarm. The transient circuits are quickly and efficiently recycled toward high economic and environmental values. This work opens vast possibilities of generating high-quality flexible and transient electronics for advanced applications in soft and intelligent systems.
Collapse
Affiliation(s)
- Kai Zheng
- Wenzhou Key Lab of Advanced Energy Storage and Conversion, Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| | - Fan Gu
- Wenzhou Key Lab of Advanced Energy Storage and Conversion, Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| | - Hongjin Wei
- Wenzhou Key Lab of Advanced Energy Storage and Conversion, Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| | - Lijie Zhang
- Wenzhou Key Lab of Advanced Energy Storage and Conversion, Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, China
- Zhejiang Engineering Research Center for Electrochemical Energy Materials and Devices, Institute of New Materials and Industrial Technologies, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| | - Xi'an Chen
- Wenzhou Key Lab of Advanced Energy Storage and Conversion, Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, China
- Zhejiang Engineering Research Center for Electrochemical Energy Materials and Devices, Institute of New Materials and Industrial Technologies, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| | - Huile Jin
- Wenzhou Key Lab of Advanced Energy Storage and Conversion, Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, China
- Zhejiang Engineering Research Center for Electrochemical Energy Materials and Devices, Institute of New Materials and Industrial Technologies, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| | - Shuang Pan
- Wenzhou Key Lab of Advanced Energy Storage and Conversion, Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, China
- Zhejiang Engineering Research Center for Electrochemical Energy Materials and Devices, Institute of New Materials and Industrial Technologies, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| | - Yihuang Chen
- Wenzhou Key Lab of Advanced Energy Storage and Conversion, Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, China
- Zhejiang Engineering Research Center for Electrochemical Energy Materials and Devices, Institute of New Materials and Industrial Technologies, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| | - Shun Wang
- Wenzhou Key Lab of Advanced Energy Storage and Conversion, Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, China
- Zhejiang Engineering Research Center for Electrochemical Energy Materials and Devices, Institute of New Materials and Industrial Technologies, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| |
Collapse
|
14
|
Feng X, Wang C, Shang S, Liu H, Huang X, Jiang J, Song Z, Zhang H. Self-healing, EMI shielding, and antibacterial properties of recyclable cellulose liquid metal hydrogel sensor. Carbohydr Polym 2023; 311:120786. [PMID: 37028884 DOI: 10.1016/j.carbpol.2023.120786] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/16/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023]
Abstract
Flexible hydrogels are promising materials for the preparation of artificial intelligence electronics and wearable devices. Introducing a rigid conductive material into the hydrogels can improve their electrical conductivities. However, it may have poor interfacial compatibility with the flexible hydrogel matrix. Therefore, we prepared a hydrogel containing flexible and highly ductile liquid metal (LM). The hydrogel can be used as a strain sensor to monitor human motion. The hydrogel showed many properties (i.e., recyclability, EMI shielding properties (33.14 dB), antibacterial (100 %), strain sensitivity (gauge factor = 2.92), and self-healing) that cannot be achieved simultaneously by a single hydrogel. Furthermore, the recycling of LM and their application to hydrogel-based EMI shielding materials have not been investigated previously. Due to its excellent properties, the prepared flexible hydrogel has great potential for applications in artificial intelligence, personal healthcare, and wearable devices.
Collapse
|
15
|
Kim M, Lim H, Ko SH. Liquid Metal Patterning and Unique Properties for Next-Generation Soft Electronics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205795. [PMID: 36642850 PMCID: PMC9951389 DOI: 10.1002/advs.202205795] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/27/2022] [Indexed: 05/28/2023]
Abstract
Room-temperature liquid metal (LM)-based electronics is expected to bring advancements in future soft electronics owing to its conductivity, conformability, stretchability, and biocompatibility. However, various difficulties arise when patterning LM because of its rheological features such as fluidity and surface tension. Numerous attempts are made to overcome these difficulties, resulting in various LM-patterning methods. An appropriate choice of patterning method based on comprehensive understanding is necessary to fully utilize the unique properties. Therefore, the authors aim to provide thorough knowledge about patterning methods and unique properties for LM-based future soft electronics. First, essential considerations for LM-patterning are investigated. Then, LM-patterning methods-serial-patterning, parallel-patterning, intermetallic bond-assisted patterning, and molding/microfluidic injection-are categorized and investigated. Finally, perspectives on LM-based soft electronics with unique properties are provided. They include outstanding features of LM such as conformability, biocompatibility, permeability, restorability, and recyclability. Also, they include perspectives on future LM-based soft electronics in various areas such as radio frequency electronics, soft robots, and heterogeneous catalyst. LM-based soft devices are expected to permeate the daily lives if patterning methods and the aforementioned features are analyzed and utilized.
Collapse
Affiliation(s)
- Minwoo Kim
- Applied Nano and Thermal Science LabDepartment of Mechanical EngineeringSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826South Korea
| | - Hyungjun Lim
- Applied Nano and Thermal Science LabDepartment of Mechanical EngineeringSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826South Korea
- Department of Mechanical EngineeringPohang University of Science and Technology77 Chungam‐ro, Nam‐guPohang37673South Korea
| | - Seung Hwan Ko
- Applied Nano and Thermal Science LabDepartment of Mechanical EngineeringSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826South Korea
- Institute of Advanced Machinery and Design/Institute of Engineering ResearchSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826South Korea
| |
Collapse
|
16
|
Tao Y, Shi C, Han F, Yang R, Xue R, Ge Z, Guo W, Liu W, Ren Y. Liquid metal droplet motion transferred from an alkaline solution by a robot arm. LAB ON A CHIP 2022; 22:4621-4631. [PMID: 36326042 DOI: 10.1039/d2lc00712f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The excellent motion performance of gallium-based liquid metals (LMs) upon the application of a modest electric field has provided a new opportunity for the development of autonomous soft robots. However, the locomotion of LMs often appears in an alkaline solution, which hampers the application under other different conditions. In this work, a novel robot arm is designed to transfer the motion of the LM from an alkaline solution in a synchronous drive mode. The liquid metal droplet (LMD) at the bottom of the robot arm is actuated using a DC voltage to provide the driving force for the system. By introducing an end effector at the center of the robot arm, the synchronous motion of the system is replicated and can be applied to different situations. The theoretical understanding of continuous electrowetting (CEW) at the LM interface is explained, and then the motion performance of the robot arm against the function of the applied voltage and driving direction is investigated. Moreover, several applications using this robot arm, such as pattern drawing, cargo transportation, and drug concentration detection, are demonstrated. The presented robot arm has the potential to observably expand the application fields of the LM.
Collapse
Affiliation(s)
- Ye Tao
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, West Da-zhi Street 92, Harbin, Heilongjiang 150001, People's Republic of China.
| | - Changrui Shi
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, West Da-zhi Street 92, Harbin, Heilongjiang 150001, People's Republic of China.
| | - Feiyang Han
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, West Da-zhi Street 92, Harbin, Heilongjiang 150001, People's Republic of China.
| | - Ruizhe Yang
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, West Da-zhi Street 92, Harbin, Heilongjiang 150001, People's Republic of China.
| | - Rui Xue
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, West Da-zhi Street 92, Harbin, Heilongjiang 150001, People's Republic of China.
| | - Zhenyou Ge
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, West Da-zhi Street 92, Harbin, Heilongjiang 150001, People's Republic of China.
| | - Wenshang Guo
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, West Da-zhi Street 92, Harbin, Heilongjiang 150001, People's Republic of China.
| | - Weiyu Liu
- Chang'an University, Middle-Section of Nan'er Huan Road, Xi'an 710000, China
| | - Yukun Ren
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, West Da-zhi Street 92, Harbin, Heilongjiang 150001, People's Republic of China.
| |
Collapse
|
17
|
Wang L, Lai R, Zhang L, Zeng M, Fu L. Emerging Liquid Metal Biomaterials: From Design to Application. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201956. [PMID: 35545821 DOI: 10.1002/adma.202201956] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/08/2022] [Indexed: 06/15/2023]
Abstract
Liquid metals (LMs) as emerging biomaterials possess unique advantages including their favorable biosafety, high fluidity, and excellent electrical and thermal conductivities, thus providing a unique platform for a wide range of biomedical applications ranging from drug delivery, tumor therapy, and bioimaging to biosensors. The structural design and functionalization of LMs endow them with enhanced functions such as enhanced targeting ability and stimuli responsiveness, enabling them to achieve better and even multifunctional synergistic therapeutic effects. Herein, the advantages of LMs in biomedicine are presented. The design of LM-based biomaterials with different scales ranging from micro-/nanoscale to macroscale and various components is explored in-depth to promote the understanding of structure-property relationships, guiding their performance optimization and applications. Furthermore, the related advanced progress in the development of LM-based biomaterials in biomedicine is summarized. Current challenges and prospects of LMs in the biomedical field are also discussed.
Collapse
Affiliation(s)
- Luyang Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Runze Lai
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Lichen Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Mengqi Zeng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Lei Fu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
- Renmin Hospital of Wuhan University, Wuhan, 410013, China
| |
Collapse
|
18
|
Wang M, Wang K, Ma C, Uzabakiriho PC, Chen X, Zhao G. Mechanical Gradients Enable Highly Stretchable Electronics Based on Nanofiber Substrates. ACS APPLIED MATERIALS & INTERFACES 2022; 14:35997-36006. [PMID: 35894160 DOI: 10.1021/acsami.2c10245] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Stretchable electronics play a pivotal role in the age of information and intelligence. Integrated circuit components are an integral part of high-performance and multifunctional stretchable electronic devices. Therefore, it is an ideal design concept for stretchable electronic devices to not only ensure the reliability of the connection between rigid inorganic electronic components and stretchable circuits but also maintain the stretchability of the device. In this work, we constructed a mechanical gradient strategy to fabricate high-performance stretchable electronic devices. Briefly, polyvinyl alcohol glue is used to fix integrated circuits on stretchable circuits, which are fabricated by printing liquid metal on a thermoplastic polyurethane nanofiber membrane. The strategy of integrated circuits (rigid)-polyvinyl alcohol glue (high elastic modulus)-thermoplastic polyurethane nanofiber membrane (low elastic modulus)-liquid metal (liquid) realizes the strain gradient during the stretching process of the device, thus ensuring the stability and reliability. Moreover, we explored the mechanism through experiments and finite element analysis. The flexible electronic devices fabricated by this scheme are not only ultra-stretchable (900%) but also have good stability and comfort. As proof, the application in stretchable sensors, human-computer interaction devices, and displays was realized.
Collapse
Affiliation(s)
- Meng Wang
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei 230027, China
| | - Kai Wang
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei 230027, China
| | - Chao Ma
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei 230027, China
| | - Pierre Claver Uzabakiriho
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei 230027, China
| | - Xi Chen
- College of Mathematics, Physics and Information Science and Engineering, Zhejiang Normal University, Jinhua 321004, China
| | - Gang Zhao
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei 230027, China
| |
Collapse
|
19
|
Karimzadeh Z, Mahmoudpour M, Rahimpour E, Jouyban A. Nanomaterial based PVA nanocomposite hydrogels for biomedical sensing: Advances toward designing the ideal flexible/wearable nanoprobes. Adv Colloid Interface Sci 2022; 305:102705. [PMID: 35640315 DOI: 10.1016/j.cis.2022.102705] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/20/2022] [Accepted: 05/13/2022] [Indexed: 12/28/2022]
Abstract
In today's world, the progress of wearable tools has gained increasing momentum. Notably, the demand for stretchable strain sensors has considerably increased owing to various potential and emerging applications like human motion monitoring, soft robotics, prosthetics, and electronic skin. Hydrogels possess excellent biocompatibility, flexibility, and stretchability that render them ideal candidates for flexible/wearable substrates. Among them, enormous efforts were focused on the progress of polyvinyl alcohol (PVA) hydrogels to realize multifunctional wearable sensing through using additives/nanofillers/functional groups to modify the hydrogel network. Herein, this review offers an up-to-date and comprehensive summary of the research progress of PVA hydrogel-based wearable sensors in view of their properties, strain sensory efficiency, and potential applications, followed by specifically highlighting their probes using metallic/non-metallic, liquid metal (LM), 2D materials, bio-nanomaterials, and polymer nanofillers. Indeed, flexible electrodes and strain/pressure sensing performance of designed PVA hydrogels for their effective sensing are described. The representative cases are carefully selected and discussed regarding the construction, merits and demerits, respectively. Finally, the necessity and requirements for future advances of conductive and stretchable hydrogels engaged in the wearable strain sensors are also presented, followed by opportunities and challenges.
Collapse
Affiliation(s)
- Zahra Karimzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mansour Mahmoudpour
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elaheh Rahimpour
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Abolghasem Jouyban
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Faculty of Pharmacy, Near East University, PO BOX: 99138 Nicosia, North Cyprus, Mersin 10, Turkey
| |
Collapse
|
20
|
Effect of Spray Parameters on Electrical Characteristics of Printed Layer by Morphological Study. Processes (Basel) 2022. [DOI: 10.3390/pr10050999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Products are manufactured as printed electronics through electro-conductive ink having properties suitable for flexible substrates. As printing process conditions affect the quality of the electronic properties of the final devices, it is essential to understand how the parameters of each process affect print quality. Spray printing, one of several printing processes, suits flexible large-area substrates and continuous processes with a uniform layer for electro-conductive aqueous ink. This study adopted the spray printing process for cellulose nanofiber (CNF)/carbon nanotube (CNT) composite conductive printing. Five spray parameters (nozzle diameter, spray speed, amount of sprayed ink, distance of nozzle to substrate, and nozzle pressure) were chosen to investigate the effects between process parameters and electrical properties relating to the morphology of the printing products. This study observed the controlling morphology through parameter adjustment and confirmed how it affects the final electrical conductivity. It means that the quality of the electronic properties can be modified by adjusting several spray process parameters.
Collapse
|
21
|
Lee GH, Lee YR, Kim H, Kwon DA, Kim H, Yang C, Choi SQ, Park S, Jeong JW, Park S. Rapid meniscus-guided printing of stable semi-solid-state liquid metal microgranular-particle for soft electronics. Nat Commun 2022; 13:2643. [PMID: 35551193 PMCID: PMC9098628 DOI: 10.1038/s41467-022-30427-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 04/28/2022] [Indexed: 12/14/2022] Open
Abstract
Liquid metal is being regarded as a promising material for soft electronics owing to its distinct combination of high electrical conductivity comparable to that of metals and exceptional deformability derived from its liquid state. However, the applicability of liquid metal is still limited due to the difficulty in simultaneously achieving its mechanical stability and initial conductivity. Furthermore, reliable and rapid patterning of stable liquid metal directly on various soft substrates at high-resolution remains a formidable challenge. In this work, meniscus-guided printing of ink containing polyelectrolyte-attached liquid metal microgranular-particle in an aqueous solvent to generate semi-solid-state liquid metal is presented. Liquid metal microgranular-particle printed in the evaporative regime is mechanically stable, initially conductive, and patternable down to 50 μm on various substrates. Demonstrations of the ultrastretchable (~500% strain) electrical circuit, customized e-skin, and zero-waste ECG sensor validate the simplicity, versatility, and reliability of this manufacturing strategy, enabling broad utility in the development of advanced soft electronics. In this article, meniscus-guided printing of polyelectrolyte-attached liquid metal particles to simultaneously achieve mechanical stability and initial electrical conductivity at high resolution is introduced.
Collapse
Affiliation(s)
- Gun-Hee Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.,School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Ye Rim Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Hanul Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Do A Kwon
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Hyeonji Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Congqi Yang
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Siyoung Q Choi
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.,KAIST Institute for the NanoCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Seongjun Park
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.,KAIST Institute for Health Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jae-Woong Jeong
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea. .,KAIST Institute for Health Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| | - Steve Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea. .,KAIST Institute for Health Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
22
|
Wu P, Fu J, Xu Y, He Y. Liquid Metal Microgels for Three-Dimensional Printing of Smart Electronic Clothes. ACS APPLIED MATERIALS & INTERFACES 2022; 14:13458-13467. [PMID: 35258916 DOI: 10.1021/acsami.1c22975] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Gallium-based liquid metals (LMs), with the combination of liquid fluidity and metallic conductivity, are considered ideal conductive components for flexible electronics. However, huge surface tension and poor wettability seriously hinder the patterning of LMs and their wider applications. Herein, a recyclable liquid-metal-microgel (LMM) ink composed of LM droplets encapsulated into alginate microgel shells is proposed. During the mechanical stirring process, the released Ga3+ can cross-link with sodium alginate to form microgels covering the surface of LM droplets, which exhibits shear-thinning performance due to the formation and rupture of hydrogen bonds under different stress conditions, making the LMM ink possess excellent printability and superior adhesion to various substrates. Although patterns printed with the LMM ink are not initially conductive, they can be activated to recover conductivity by microstrain (<5%), pressing, and freezing. Additionally, the activated LMM circuit exhibits superior Joule heating behaviors and electrical performance in further investigation, including excellent conductivity, significant resistance response to strain with small hysteresis, great durability to nonplanar forces, and so forth. Furthermore, smart electronic clothes were fabricated and investigated by directly printing functional circuits on commercial clothes with the LMM ink, which integrate multiple functions, including tactile sensing, motion monitoring, human-computer interaction, and thermal management.
Collapse
Affiliation(s)
- Pengcheng Wu
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jianzhong Fu
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yuetong Xu
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yong He
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058 China
- Key Laboratory of Materials Processing and Mold, Zhengzhou University, Zhengzhou 450002, China
| |
Collapse
|
23
|
He X, Wu J, Xuan S, Sun S, Gong X. Stretchable and Recyclable Liquid Metal Droplets Embedded Elastomer Composite with High Mechanically Sensitive Conductivity. ACS APPLIED MATERIALS & INTERFACES 2022; 14:9597-9607. [PMID: 35138080 DOI: 10.1021/acsami.1c23658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Liquid metal (LM)-based elastomers have received growing interest for a wide range of applications such as soft robotics and flexible electronics. This work reports a stretchable and bendable liquid metal droplets embedded elastomer (LMDE) composite, which consists of liquid metal droplets (LMDs) filler and carbonyl iron particles (CIPs)/polydimethylsiloxane (PDMS) hybrid matrix. The reversible switching of the composite from an insulator to a conductor can be realized through the contact and noncontact process between the LMDs. The mechanism of constructing the controllable conductive path between the droplets under external deformations has been systematically studied, and this result also provides a basis model for analyzing the conductive networks in traditional LM-based flexible composites. The composites exhibit stable mechanical and electrical performance under different tensile strains and bending angles. Moreover, the fluidic nature of LM endows the composite with good electrically healing capability. The valuable LM can be easily recycled at a high recovery rate of 98%. Finally, the composite can be developed as a sensor for the detection of both compressive force and magnetic field, demonstrating a broad promising in flexible electronics, actuators, and wearable devices.
Collapse
Affiliation(s)
- Xiaokang He
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027, China
| | - Jianpeng Wu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027, China
| | - Shouhu Xuan
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027, China
| | - Shuaishuai Sun
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Instrumentation, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Xinglong Gong
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027, China
| |
Collapse
|
24
|
Xie SM, Zhao X, Peng LM, Yu P, Zha XJ, Ke K, Bao RY, Yang MB, Yang W. In situ interfacial engineering enabled mechanically adaptive and highly stretchable liquid metal conductor. POLYMER 2022. [DOI: 10.1016/j.polymer.2021.124482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
25
|
Guymon GG, Malakooti MH. Multifunctional liquid metal polymer composites. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20210867] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Gregory G. Guymon
- Department of Mechanical Engineering University of Washington Seattle Washington USA
- Institute for Nano‐Engineered Systems University of Washington Seattle Washington USA
| | - Mohammad H. Malakooti
- Department of Mechanical Engineering University of Washington Seattle Washington USA
- Institute for Nano‐Engineered Systems University of Washington Seattle Washington USA
| |
Collapse
|
26
|
Li Z, Guo Y, Zong Y, Li K, Wang S, Cao H, Teng C. Ga Based Particles, Alloys and Composites: Fabrication and Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2246. [PMID: 34578561 PMCID: PMC8471900 DOI: 10.3390/nano11092246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 11/16/2022]
Abstract
Liquid metal (LM) materials, including pure gallium (Ga) LM, eutectic alloys and their composites with organic polymers and inorganic nanoparticles, are cutting-edge functional materials owing to their outstanding electrical conductivity, thermal conductivity, extraordinary mechanical compliance, deformability and excellent biocompatibility. The unique properties of LM-based materials at room temperatures can overcome the drawbacks of the conventional electronic devices, particularly high thermal, electrical conductivities and their fluidic property, which would open tremendous opportunities for the fundamental research and practical applications of stretchable and wearable electronic devices. Therefore, research interest has been increasingly devoted to the fabrication methodologies of LM nanoparticles and their functional composites. In this review, we intend to present an overview of the state-of-art protocols for the synthesis of Ga-based materials, to introduce their potential applications in the fields ranging from wearable electronics, energy storage batteries and energy harvesting devices to bio-applications, and to discuss challenges and opportunities in future studies.
Collapse
Affiliation(s)
- Zhi Li
- Institute of Marine Biomedicine, Shenzhen Polytechnic, Shenzhen 518055, China; (Z.L.); (K.L.); (S.W.)
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
| | - Yiming Guo
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China; (Y.G.); (Y.Z.)
| | - Yufen Zong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China; (Y.G.); (Y.Z.)
| | - Kai Li
- Institute of Marine Biomedicine, Shenzhen Polytechnic, Shenzhen 518055, China; (Z.L.); (K.L.); (S.W.)
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
| | - Shuang Wang
- Institute of Marine Biomedicine, Shenzhen Polytechnic, Shenzhen 518055, China; (Z.L.); (K.L.); (S.W.)
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
| | - Hai Cao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China; (Y.G.); (Y.Z.)
| | - Chao Teng
- Institute of Marine Biomedicine, Shenzhen Polytechnic, Shenzhen 518055, China; (Z.L.); (K.L.); (S.W.)
| |
Collapse
|
27
|
Li Z, Chang S, Khuje S, Ren S. Recent Advancement of Emerging Nano Copper-Based Printable Flexible Hybrid Electronics. ACS NANO 2021; 15:6211-6232. [PMID: 33834763 DOI: 10.1021/acsnano.1c02209] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Printed copper materials have been attracting significant attention prominently due to their electric, mechanical, and thermal properties. The emerging copper-based flexible electronics and energy-critical applications rely on the control of electric conductivity, current-carrying capacity, and reliability of copper nanostructures and their printable ink materials. In this review, we describe the growth of copper nanostructures as the building blocks for printable ink materials on which a variety of conductive features can be additively manufactured to achieve high electric conductivity and stability. Accordingly, the copper-based flexible hybrid electronics and energy-critical devices printed by different printing techniques are reviewed for emerging applications.
Collapse
Affiliation(s)
- Zheng Li
- Department of Mechanical and Aerospace Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
- College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu 210016, China
| | - Shuquan Chang
- College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu 210016, China
| | - Saurabh Khuje
- Department of Mechanical and Aerospace Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Shenqiang Ren
- Department of Mechanical and Aerospace Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
- Research and Education in Energy Environment & Water Institute, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| |
Collapse
|