1
|
Ye T, Zhong Z, Cappellesso F, Deswarte K, Chen Y, Lauwers H, De Lombaerde E, Gontsarik M, Lienenklaus S, Van Lysebetten D, Sanders NN, Lambrecht BN, De Koker S, Laoui D, De Geest BG. CO-DELIVERY of glutamic acid-extended peptide antigen and imidazoquinoline TLR7/8 agonist via ionizable lipid nanoparticles induces protective anti-tumor immunity. Biomaterials 2024; 311:122693. [PMID: 38996672 DOI: 10.1016/j.biomaterials.2024.122693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/30/2024] [Accepted: 06/26/2024] [Indexed: 07/14/2024]
Abstract
Cancer vaccines aim at generating cytotoxic CD8+ T cells that kill cancer cells and confer durable tumor regression. Hereto, CD8+ peptide epitopes should be presented by antigen presenting cells to CD8+ T cells in lymphoid tissue. Unfortunately, in unformulated soluble form, peptide antigens are poorly taken up by antigen presenting cells and do not efficiently reach lymph nodes. Hence, the lack of efficient delivery remains a major limitation for successful clinical translation of cancer vaccination using peptide antigens. Here we propose a generic peptide nanoformulation strategy by extending the amino acid sequence of the peptide antigen epitope with 10 glutamic acid residues. The resulting overall anionic charge of the peptide allows encapsulation into lipid nanoparticles (peptide-LNP) by electrostatic interaction with an ionizable cationic lipid. We demonstrate that intravenous injection of peptide-LNP efficiently delivers the peptide to immune cells in the spleen. Peptide-LNP that co-encapsulate an imidazoquinoline TLR7/8 agonist (IMDQ) induce robust innate immune activation in a broad range of immune cell subsets in the spleen. Peptide-LNP containing the minimal CD8+ T cell epitope of the HPV type 16 E7 oncoprotein and IMDQ induces high levels of antigen-specific CD8+ T cells in the blood, and can confer protective immunity against E7-expressing tumors in both prophylactic and therapeutic settings.
Collapse
Affiliation(s)
- Tingting Ye
- Department of Pharmaceutics, Ghent University, Ghent, Belgium
| | - Zifu Zhong
- Department of Pharmaceutics, Ghent University, Ghent, Belgium
| | - Federica Cappellesso
- Lab of Cellular and Molecular Immunology, Brussel Center for Immunology, Vrije Universiteit Brussel, Brussels, Belgium; Lab of Dendritic Cell Biology and Cancer Immunotherapy, VIB Center for Inflammation Research, Brussels, Belgium
| | - Kim Deswarte
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Yong Chen
- Department of Pharmaceutics, Ghent University, Ghent, Belgium
| | - Heleen Lauwers
- Department of Pharmaceutics, Ghent University, Ghent, Belgium
| | | | - Mark Gontsarik
- Department of Pharmaceutics, Ghent University, Ghent, Belgium
| | - Stefan Lienenklaus
- Institute of Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | | | - Niek N Sanders
- Laboratory of Gene Therapy, Department of Veterinary and Biosciences, Ghent University, Merelbeke, Belgium
| | - Bart N Lambrecht
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium; Department of Pulmonary Medicine, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands
| | | | - Damya Laoui
- Lab of Cellular and Molecular Immunology, Brussel Center for Immunology, Vrije Universiteit Brussel, Brussels, Belgium; Lab of Dendritic Cell Biology and Cancer Immunotherapy, VIB Center for Inflammation Research, Brussels, Belgium.
| | | |
Collapse
|
2
|
Ren M, Abdullah SW, Pei C, Guo H, Sun S. Use of virus-like particles and nanoparticle-based vaccines for combating picornavirus infections. Vet Res 2024; 55:128. [PMID: 39350170 PMCID: PMC11443892 DOI: 10.1186/s13567-024-01383-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/15/2024] [Indexed: 10/04/2024] Open
Abstract
Picornaviridae are non-enveloped ssRNA viruses that cause diseases such as poliomyelitis, hand-foot-and-mouth disease (HFMD), hepatitis A, encephalitis, myocarditis, and foot-and-mouth disease (FMD). Virus-like particles (VLPs) vaccines mainly comprise particles formed through the self-assembly of viral capsid proteins (for enveloped viruses, envelope proteins are also an option). They do not contain the viral genome. On the other hand, the nanoparticles vaccine (NPs) is mainly composed of self-assembling biological proteins or nanomaterials, with viral antigens displayed on the surface. The presentation of viral antigens on these particles in a repetitive array can elicit a strong immune response in animals. VLPs and NPs can be powerful platforms for multivalent antigen presentation. This review summarises the development of virus-like particle vaccines (VLPs) and nanoparticle vaccines (NPs) against picornaviruses. By detailing the progress made in the fight against various picornaviruses such as poliovirus (PV), foot-and-mouth disease virus (FMDV), enterovirus (EV), Senecavirus A (SVA), and encephalomyocarditis virus (EMCV), we in turn highlight the significant strides made in vaccine technology. These advancements include diverse construction methods, expression systems, elicited immune responses, and the use of various adjuvants. We see promising prospects for the continued development and optimisation of VLPs and NPs vaccines. Future research should focus on enhancing these vaccines' immunogenicity, stability, and delivery methods. Moreover, expanding our understanding of the interplay between these vaccines and the immune system will be crucial. We hope these insights will inspire and guide fellow researchers in the ongoing quest to combat picornavirus infections more effectively.
Collapse
Affiliation(s)
- Mei Ren
- State Key Laboratory for Animal Disease Control and Prevention, CollegeofVeterinaryMedicine, Lanzhou UniversityLanzhou Veterinary Research InstituteChinese Academy of Agricultural Sciences, Lanzhou, 730000, China
- Gembloux Agro-Biotech, University of Liege, Gembloux, Belgium
| | - Sahibzada Waheed Abdullah
- Livestock and dairy development department peshawar, Government of Khyber Pakhtunkhwa, Peshawar, Pakistan
| | - Chenchen Pei
- State Key Laboratory for Animal Disease Control and Prevention, CollegeofVeterinaryMedicine, Lanzhou UniversityLanzhou Veterinary Research InstituteChinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Huichen Guo
- State Key Laboratory for Animal Disease Control and Prevention, CollegeofVeterinaryMedicine, Lanzhou UniversityLanzhou Veterinary Research InstituteChinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Shiqi Sun
- State Key Laboratory for Animal Disease Control and Prevention, CollegeofVeterinaryMedicine, Lanzhou UniversityLanzhou Veterinary Research InstituteChinese Academy of Agricultural Sciences, Lanzhou, 730000, China.
| |
Collapse
|
3
|
Badreldin M, Salas-Ambrosio P, Bourasseau S, Lecommandoux S, Harrisson S, Bonduelle C. Toward Synthetic Intrinsically Disordered Polypeptides (IDPs): Controlled Incorporation of Glycine in the Ring-Opening Polymerization of N-Carboxyanhydrides. Biomacromolecules 2024; 25:3033-3043. [PMID: 38652289 DOI: 10.1021/acs.biomac.4c00142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Intrinsically disordered proteins (IDPs) do not have a well-defined folded structure but instead behave as extended polymer chains in solution. Many IDPs are rich in glycine residues, which create steric barriers to secondary structuring and protein folding. Inspired by this feature, we have studied how the introduction of glycine residues influences the secondary structure of a model polypeptide, poly(l-glutamic acid), a helical polymer. For this purpose, we carried out ring-opening copolymerization with γ-benzyl-l-glutamate and glycine N-carboxyanhydride (NCA) monomers. We aimed to control the glycine distribution within PBLG by adjusting the reactivity ratios of the two NCAs using different reaction conditions (temperature, solvent). The relationship between those conditions, the monomer distributions, and the secondary structure enabled the design of intrinsically disordered polypeptides when a highly gradient microstructure was achieved in DMSO.
Collapse
Affiliation(s)
- Mostafa Badreldin
- Université Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600 Pessac, France
| | - Pedro Salas-Ambrosio
- Université Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600 Pessac, France
- Department of Chemistry and Biochemistry, University of California Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569, United States
| | - Sylvain Bourasseau
- Université Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600 Pessac, France
| | | | - Simon Harrisson
- Université Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600 Pessac, France
| | - Colin Bonduelle
- Université Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600 Pessac, France
| |
Collapse
|
4
|
Zhang S, Fan W, Ding C, Zhang M, Liu S, Liu W, Tang Z, Huang C, Yan L, Song S. Self-Assembling Sulfated Lactobacillus Exopolysaccharide Nanoparticles as Adjuvants for SARS-CoV-2 Subunit Vaccine Elicit Potent Humoral and Cellular Immune Responses. ACS APPLIED MATERIALS & INTERFACES 2024; 16:18591-18607. [PMID: 38564431 DOI: 10.1021/acsami.4c01384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Coronavirus disease 2019 (COVID-19) has caused a global pandemic since its onset in 2019, and the development of effective vaccines for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to induce potent and long-lasting immunity remains a priority. Herein, we prepared two Lactobacillus exopolysaccharide (EPS) nanoparticle adjuvants (NPs 7-4 and NPs 8-2) that were constructed by using sulfation-modified EPS and quaternization-modified chitosan. These two NPs displayed a spherical morphology with sizes of 39 and 47 nm. Furthermore, the zeta potentials of NPs 7-4 and NPs 8-2 were 50.40 and 44.40 mV, respectively. In vitro assays demonstrated that NPs could effectively adsorb antigenic proteins and exhibited a sustained release effect. Mouse immunization tests showed that the NPs induced the expression of cytokines and chemokines at the injection site and promoted the uptake of antigenic proteins by macrophages. Mechanically, the NPs upregulated the expression of pattern recognition receptors (toll-like receptors and nod-like receptors) and activated the immune response of T cells and the production of neutralizing antibodies. In addition, the NP adjuvants had favorable immune-enhancing effects in cats, which are of great significance for controlling the trans-host transmission and re-endemicity of SARS-CoV-2. Overall, we demonstrated that NP-adjuvanted SARS-CoV-2 receptor binding domain proteins could induce robust specific humoral and cellular immunity.
Collapse
Affiliation(s)
- Shuo Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Wentao Fan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Chenchen Ding
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Meihua Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Shuhui Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenjian Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhihui Tang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Chaobo Huang
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Liping Yan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Suquan Song
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
5
|
Liu Z, He Y, Ma X. Preparation, Characterization and Drug Delivery Research of γ-Polyglutamic Acid Nanoparticles: A Review. Curr Drug Deliv 2024; 21:795-806. [PMID: 36593700 DOI: 10.2174/1567201820666230102140450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 01/04/2023]
Abstract
γ-Polyglutamic acid is a kind of biomaterial and environmentally friendly polymer material with the characteristics of water solubility and good biocompatibility. It has a wide range of applications in medicine, food, cosmetics and other fields. This article reviews the preparation, characterization and medical applications of γ-polyglutamic acid nanoparticles. Nanoparticles prepared by using γ- polyglutamic acid not only had the traditional advantages of enhancing drug stability and slow-release effect, but also were simple to prepare without any biological toxicity. The current methods of nanoparticle preparation mainly include the ion gel method and solvent exchange method, which use the total electrostatic force, van der Waals force, hydrophobic interaction force and hydrogen bond force between molecules to embed materials with different characteristics. At present, there are more and more studies on the use of γ-polyglutamic acid to encapsulate drugs, and the research on the mechanism of its encapsulation and sustained release has gradually matured. The development and application of polyglutamic acid nanoparticles have broad prospects.
Collapse
Affiliation(s)
- Zhihan Liu
- Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai-201418, China
| | - Yan He
- Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai-201418, China
| | - Xia Ma
- Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai-201418, China
| |
Collapse
|
6
|
Malfanti A, Bausart M, Vanvarenberg K, Ucakar B, Préat V. Hyaluronic acid-antigens conjugates trigger potent immune response in both prophylactic and therapeutic immunization in a melanoma model. Drug Deliv Transl Res 2023; 13:2550-2567. [PMID: 37040031 DOI: 10.1007/s13346-023-01337-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2023] [Indexed: 04/12/2023]
Abstract
Immunotherapy of advanced melanoma has encountered significant hurdles in terms of clinical efficacy. Here, we designed a clinically translatable hyaluronic acid (HA)-based vaccine delivering a combination of major histocompatibility complex (MHC) class I- and class II-restricted melanoma antigens (TRP2 and Gp100, respectively) conjugated to HA. HA-nanovaccine (HA-TRP2-Gp100 conjugate) exhibited tropism in the lymph nodes and promoted stimulation of the immune response (2.3-fold higher than the HA+TRP2+Gp100). HA-nanovaccine significantly delayed the growth of B16F10 melanoma and extended survival in both the prophylactic and therapeutic settings (median survival of 22 and 27, respectively, vs 17 days of the untreated group). Moreover, mice prophylactically treated with the HA-nanovaccine displayed significantly higher CD8+ and CD4+ T-cell/Treg ratios in both the spleen and tumor at day 16, suggesting that the HA-nanovaccine overcame the immunosuppressive tumor microenvironment. Superior infiltration of active CD4+ and CD8+ T cells was observed at the endpoint. This study supports the conclusion that HA potentiates the effect of a combination of MHC I and MHC II antigens via a potent immune response against melanoma.
Collapse
Affiliation(s)
- Alessio Malfanti
- Advanced Drug Delivery and Biomaterials, UCLouvain, Louvain Drug Research Institute, Avenue Mounier 73 B1.73.12, 1200, Brussels, Belgium.
| | - Mathilde Bausart
- Advanced Drug Delivery and Biomaterials, UCLouvain, Louvain Drug Research Institute, Avenue Mounier 73 B1.73.12, 1200, Brussels, Belgium
| | - Kevin Vanvarenberg
- Advanced Drug Delivery and Biomaterials, UCLouvain, Louvain Drug Research Institute, Avenue Mounier 73 B1.73.12, 1200, Brussels, Belgium
| | - Bernard Ucakar
- Advanced Drug Delivery and Biomaterials, UCLouvain, Louvain Drug Research Institute, Avenue Mounier 73 B1.73.12, 1200, Brussels, Belgium
| | - Véronique Préat
- Advanced Drug Delivery and Biomaterials, UCLouvain, Louvain Drug Research Institute, Avenue Mounier 73 B1.73.12, 1200, Brussels, Belgium.
| |
Collapse
|
7
|
Wang N, Zhang G, Zhang P, Zhao K, Tian Y, Cui J. Vaccination of TLR7/8 Agonist-Conjugated Antigen Nanoparticles for Cancer Immunotherapy. Adv Healthc Mater 2023; 12:e2300249. [PMID: 37016572 DOI: 10.1002/adhm.202300249] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/14/2023] [Indexed: 04/06/2023]
Abstract
Nanovaccine-based immunotherapy can initiate strong immune responses and establish a long-term immune memory to prevent tumor invasion and recurrence. Herein, the assembly of redox-responsive antigen nanoparticles (NPs) conjugated with imidazoquinoline-based TLR7/8 agonists for lymph node-targeted immune activation is reported, which can potentiate tumor therapy and prevention. Antigen NPs are assembled via the templating of zeolitic imidazolate framework-8 NPs to cross-link ovalbumin with disulfide bonds, which enables the NPs with redox-responsiveness for improved antigen cross-presentation and dendritic cell activation. The formulated nanovaccines promote the lymphatic co-delivery of antigens and agonists, which can trigger immune responses of cytotoxic T lymphocytes and strong immunological memory. Notably, nanovaccines demonstrate their superiority for tumor prevention owing to the elicited robust antitumor immunity. The reported strategy provides a rational design of nanovaccines for enhanced cancer immunotherapy.
Collapse
Affiliation(s)
- Ning Wang
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Guiqiang Zhang
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Peiyu Zhang
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Kaijie Zhao
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Yuan Tian
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Jiwei Cui
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, P. R. China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, P. R. China
| |
Collapse
|
8
|
Wang QT, Liu YX, Wang J, Wang H. Advances in Cancer Nanovaccines: Harnessing Nanotechnology for Broadening Cancer Immune Response. ChemMedChem 2023; 18:e202200673. [PMID: 37088719 DOI: 10.1002/cmdc.202200673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/20/2023] [Accepted: 04/20/2023] [Indexed: 04/25/2023]
Abstract
Many advances have been made recently in the field of cancer immunotherapy, particularly with the development of treatments such as immune checkpoint inhibitors and adoptive cellular immunotherapy. The efficacy of immunotherapy is limited, however, owing to high levels of tumor heterogeneity and the immunosuppressive environments of advanced malignant tumors. Therefore, therapeutic anticancer vaccines have gradually become powerful tools for inducing valid antitumor immune responses and regulating the immune microenvironment. Tumor vaccines loaded in nanocarriers have become an indispensable delivery platform for tumor treatment because of their enhanced stability, targeting capability, and high level of safety. Through a unique design, cancer nanovaccines activate innate immunity and tumor-specific immunity simultaneously. For example, the design of cancer vaccines can incorporate strategies such as enhancing the stability and targeting of tumor antigens, combining effective adjuvants, cytokines, and immune microenvironment regulators, and promoting the maturation and cross-presentation of antigen-presenting cells (APCs). In this review, we discuss the design and preparation of nanovaccines for remodeling tumor antigen immunogenicity and regulating the immunosuppressive microenvironment.
Collapse
Affiliation(s)
- Qian-Ting Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, P. R. China
| | - Yi-Xuan Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, P. R. China
- University of the Chinese Academy of Sciences (UCAS), Beijing, 100049, P. R. China
| | - Jie Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, P. R. China
| | - Hao Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, P. R. China
| |
Collapse
|
9
|
Strasser P, Montsch B, Weiss S, Sami H, Kugler C, Hager S, Schueffl H, Mader R, Brüggemann O, Kowol CR, Ogris M, Heffeter P, Teasdale I. Degradable Bottlebrush Polypeptides and the Impact of their Architecture on Cell Uptake, Pharmacokinetics, and Biodistribution In Vivo. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300767. [PMID: 36843221 PMCID: PMC11475343 DOI: 10.1002/smll.202300767] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Indexed: 06/02/2023]
Abstract
Bottlebrush polymers are highly promising as unimolecular nanomedicines due to their unique control over the critical parameters of size, shape and chemical function. However, since they are prepared from biopersistent carbon backbones, most known bottlebrush polymers are non-degradable and thus unsuitable for systemic therapeutic administration. Herein, we report the design and synthesis of novel poly(organo)phosphazene-g-poly(α-glutamate) (PPz-g-PGA) bottlebrush polymers with exceptional control over their structure and molecular dimensions (Dh ≈ 15-50 nm). These single macromolecules show outstanding aqueous solubility, ultra-high multivalency and biodegradability, making them ideal as nanomedicines. While well-established in polymer therapeutics, it has hitherto not been possible to prepare defined single macromolecules of PGA in these nanosized dimensions. A direct correlation was observed between the macromolecular dimensions of the bottlebrush polymers and their intracellular uptake in CT26 colon cancer cells. Furthermore, the bottlebrush macromolecular structure visibly enhanced the pharmacokinetics by reducing renal clearance and extending plasma half-lives. Real-time analysis of the biodistribution dynamics showed architecture-driven organ distribution and enhanced tumor accumulation. This work, therefore, introduces a robust, controlled synthesis route to bottlebrush polypeptides, overcoming limitations of current polymer-based nanomedicines and, in doing so, offers valuable insights into the influence of architecture on the in vivo performance of nanomedicines.
Collapse
Affiliation(s)
- Paul Strasser
- Institute of Polymer ChemistryJohannes Kepler University LinzLinz4040Austria
| | - Bianca Montsch
- Center for Cancer Research and Comprehensive Cancer CenterMedical University ViennaVienna1090Austria
- Research Cluster “Translational Cancer Therapy Research”University of ViennaVienna1090Austria
| | - Silvia Weiss
- Laboratory of Macromolecular Cancer Therapeutics (MMCT)Department of Pharmaceutical SciencesFaculty of Life SciencesUniversity of ViennaVienna1090Austria
| | - Haider Sami
- Laboratory of Macromolecular Cancer Therapeutics (MMCT)Department of Pharmaceutical SciencesFaculty of Life SciencesUniversity of ViennaVienna1090Austria
| | - Christoph Kugler
- Laboratory of Macromolecular Cancer Therapeutics (MMCT)Department of Pharmaceutical SciencesFaculty of Life SciencesUniversity of ViennaVienna1090Austria
| | - Sonja Hager
- Center for Cancer Research and Comprehensive Cancer CenterMedical University ViennaVienna1090Austria
- Department of Food Chemistry and ToxicologyFaculty of ChemistryUniversity of ViennaVienna1090Austria
| | - Hemma Schueffl
- Center for Cancer Research and Comprehensive Cancer CenterMedical University ViennaVienna1090Austria
- Research Cluster “Translational Cancer Therapy Research”University of ViennaVienna1090Austria
| | - Robert Mader
- Department of Medicine IMedical University of ViennaVienna1090Austria
| | - Oliver Brüggemann
- Institute of Polymer ChemistryJohannes Kepler University LinzLinz4040Austria
| | - Christian R. Kowol
- Research Cluster “Translational Cancer Therapy Research”University of ViennaVienna1090Austria
- Institute of Inorganic ChemistryFaculty of ChemistryUniversity of ViennaVienna1090Austria
| | - Manfred Ogris
- Laboratory of Macromolecular Cancer Therapeutics (MMCT)Department of Pharmaceutical SciencesFaculty of Life SciencesUniversity of ViennaVienna1090Austria
| | - Petra Heffeter
- Center for Cancer Research and Comprehensive Cancer CenterMedical University ViennaVienna1090Austria
- Research Cluster “Translational Cancer Therapy Research”University of ViennaVienna1090Austria
| | - Ian Teasdale
- Institute of Polymer ChemistryJohannes Kepler University LinzLinz4040Austria
| |
Collapse
|
10
|
Catania G, Rodella G, Vanvarenberg K, Préat V, Malfanti A. Combination of hyaluronic acid conjugates with immunogenic cell death inducer and CpG for glioblastoma local chemo-immunotherapy elicits an immune response and induces long-term survival. Biomaterials 2023; 294:122006. [PMID: 36701998 DOI: 10.1016/j.biomaterials.2023.122006] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 12/30/2022] [Accepted: 01/13/2023] [Indexed: 01/22/2023]
Abstract
The efficacy of standard glioblastoma (GBM) treatments has been limited due to the highly immunosuppressive tumor immune microenvironment, interpatient tumor heterogenicity and anatomical barriers, such as the blood brain barrier. In the present work, we hypothesized that a new local therapy based on the combination of doxorubicin (DOX) as an immunogenic cell death (ICD) inducer and CpG, a Toll-like receptor (TLR)-9 agonist, would act synergistically to eradicate GBM. DOX and CpG were first tested in an orthotopic GL261 GBM model showing enhanced survival. To improve the outcome with a reduced dose, we designed bioresponsive hyaluronic acid (HA)-drug conjugates for effective in situ chemoimmunotherapy. HA was derivatized with CpG. The new HA-CpG conjugate showed high efficacy in re-educating protumoral M2-like microglia into an antitumoral M1-like phenotype, inducing the expression of immune-stimulatory cytokines. DOX was also conjugated to HA. DOX conjugation increased ICD induction in GL261 cells. Finally, a combination of the conjugates was explored in an orthotopic GL261 GBM model. The local delivery of combined HA-DOX + HA-CpG into the tumor mass elicited antitumor CD8+ T cell responses in the brain tumor microenvironment and reduced the infiltration of M2-like tumor-associated macrophages and myeloid-derived suppressor cells. Importantly, the combination of HA-DOX and HA-CpG induced long-term survival in >66% of GBM-bearing animals than other treatments (no long-term survivor observed), demonstrating the benefits of conjugating synergistic drugs to HA nanocarrier. These results emphasize that HA-drug conjugates constitute an effective drug delivery platform for local chemoimmunotherapy against GBM and open new perspectives for the treatment of other brain cancers and brain metastasis.
Collapse
Affiliation(s)
- Giuseppina Catania
- UCLouvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier 73 B1.73.12, 1200, Brussels, Belgium
| | - Giulia Rodella
- UCLouvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier 73 B1.73.12, 1200, Brussels, Belgium
| | - Kevin Vanvarenberg
- UCLouvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier 73 B1.73.12, 1200, Brussels, Belgium
| | - Véronique Préat
- UCLouvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier 73 B1.73.12, 1200, Brussels, Belgium.
| | - Alessio Malfanti
- UCLouvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier 73 B1.73.12, 1200, Brussels, Belgium.
| |
Collapse
|
11
|
Zhang YQ, Guo RR, Chen YH, Li TC, Du WZ, Xiang RW, Guan JB, Li YP, Huang YY, Yu ZQ, Cai Y, Zhang P, Ling GX. Ionizable drug delivery systems for efficient and selective gene therapy. Mil Med Res 2023; 10:9. [PMID: 36843103 PMCID: PMC9968649 DOI: 10.1186/s40779-023-00445-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 02/01/2023] [Indexed: 02/28/2023] Open
Abstract
Gene therapy has shown great potential to treat various diseases by repairing the abnormal gene function. However, a great challenge in bringing the nucleic acid formulations to the market is the safe and effective delivery to the specific tissues and cells. To be excited, the development of ionizable drug delivery systems (IDDSs) has promoted a great breakthrough as evidenced by the approval of the BNT162b2 vaccine for prevention of coronavirus disease 2019 (COVID-19) in 2021. Compared with conventional cationic gene vectors, IDDSs can decrease the toxicity of carriers to cell membranes, and increase cellular uptake and endosomal escape of nucleic acids by their unique pH-responsive structures. Despite the progress, there remain necessary requirements for designing more efficient IDDSs for precise gene therapy. Herein, we systematically classify the IDDSs and summarize the characteristics and advantages of IDDSs in order to explore the underlying design mechanisms. The delivery mechanisms and therapeutic applications of IDDSs are comprehensively reviewed for the delivery of pDNA and four kinds of RNA. In particular, organ selecting considerations and high-throughput screening are highlighted to explore efficiently multifunctional ionizable nanomaterials with superior gene delivery capacity. We anticipate providing references for researchers to rationally design more efficient and accurate targeted gene delivery systems in the future, and indicate ideas for developing next generation gene vectors.
Collapse
Affiliation(s)
- Yu-Qi Zhang
- Faculty of Medical Device, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China
| | - Ran-Ran Guo
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China
| | - Yong-Hu Chen
- School of Pharmacy, Yanbian University, Yanji, 133002, Jilin, China
| | - Tian-Cheng Li
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China
| | - Wen-Zhen Du
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China
| | - Rong-Wu Xiang
- Faculty of Medical Device, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China
| | - Ji-Bin Guan
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Yu-Peng Li
- Masonic Cancer Center and Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Yuan-Yu Huang
- Advanced Research Institute of Multidisciplinary Science; School of Life Science; School of Medical Technology; Key Laboratory of Molecular Medicine and Biotherapy; Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Zhi-Qiang Yu
- Department of Laboratory Medicine, Dongguan Institute of Clinical Cancer Research, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, 523018, Guangdong, China
| | - Yin Cai
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
| | - Peng Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China.
| | - Gui-Xia Ling
- Faculty of Medical Device, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China.
| |
Collapse
|
12
|
Hou B, Yang F, Hu C, Liu C, Xiao X, Chen Y, Huang X, Xie S. A Novel Bifunctional Nanoplatform with Aggregation-Induced Emission Property for Efficient Photodynamic Killing of Bacteria and Wound Healing. Infect Drug Resist 2022; 15:7351-7361. [PMID: 36540099 PMCID: PMC9760083 DOI: 10.2147/idr.s391272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/06/2022] [Indexed: 08/30/2023] Open
Abstract
BACKGROUND Photodynamic antimicrobial therapy (PDAT) has been extensively studied because of its potential applications such as precise controllability, high spatiotemporal accuracy, and non-invasiveness. More importantly, it is difficult for bacteria to develop resistance to the aforementioned PDATs. However, the selectivity of traditional PDAT methods to bacteria is generally poor, so it has been proposed to introduce positively charged components such as quaternary ammonium salts to enhance the targeting of bacteria; however, they always possess high toxicity to normal cells. As a result, measures should be taken to enhance the targeting of bacteria and avoid side effects on normal cells. METHODS AND RESULTS In our work, we creatively design a nanoplatform with high anti-bacterial efficiency, low side effects and its size is approximately 121 nm. BSA, as a nanocarrier, encapsulates the photosensitizer (E)-4-(4-(diphenylamino)styryl)-1-methylpyridin-1-ium with AIE properties named as BSA-Tpy, which increases its circulation time in vivo and improves the biocompatibility. Under acidic conditions (pH = 5.0), the surface positive charge of the BSA-Tpy is increased to +18.8 mV due to protonation of amine residues to achieve the targeting effect on bacteria. Besides, under the irradiation of white light, the BSA-Tpy will produce ROS to kill bacteria efficiently about 99.99% for both Gram-positive and Gram-negative bacteria, which shows the potential application value for the treatment of infected wounds. CONCLUSION We have developed a feasible method for photodynamic antibacterial therapy, possessing excellent biocompatibility and high antibacterial efficiency with good fluorescence imaging property.
Collapse
Affiliation(s)
- Biao Hou
- Department of Hand and Foot Microsurgery, The Affiliated Nanhua Hospital, Hengyang Medical College, University of South China, Hengyang, People’s Republic of China
| | - Fen Yang
- Department of Infectious Diseases, The Affiliated Nanhua Hospital, Hengyang Medical College, University of South China, Hengyang, People’s Republic of China
| | - Chaotao Hu
- Department of Hand and Foot Microsurgery, The Affiliated Nanhua Hospital, Hengyang Medical College, University of South China, Hengyang, People’s Republic of China
| | - Changxiong Liu
- Department of Hand and Foot Microsurgery, The Affiliated Nanhua Hospital, Hengyang Medical College, University of South China, Hengyang, People’s Republic of China
| | - Xiangjun Xiao
- Department of Hand and Foot Microsurgery, The Affiliated Nanhua Hospital, Hengyang Medical College, University of South China, Hengyang, People’s Republic of China
| | - Yanming Chen
- Department of Hand and Foot Microsurgery, The Affiliated Nanhua Hospital, Hengyang Medical College, University of South China, Hengyang, People’s Republic of China
| | - Xiongjie Huang
- Department of Hand and Foot Microsurgery, The Affiliated Nanhua Hospital, Hengyang Medical College, University of South China, Hengyang, People’s Republic of China
| | - Songlin Xie
- Department of Hand and Foot Microsurgery, The Affiliated Nanhua Hospital, Hengyang Medical College, University of South China, Hengyang, People’s Republic of China
| |
Collapse
|
13
|
Lin Y, Sun B, Jin Z, Zhao K. Enhanced Immune Responses to Mucosa by Functionalized Chitosan-Based Composite Nanoparticles as a Vaccine Adjuvant for Intranasal Delivery. ACS APPLIED MATERIALS & INTERFACES 2022; 14:52691-52701. [PMID: 36382954 DOI: 10.1021/acsami.2c17627] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Nasal administration for vaccine delivery is a novel non-invasive vaccine administration approach that can induce local or systemic immune responses and overcome the disadvantages caused by traditional injectable administration. However, mucosal vaccine and adjuvant delivery systems with sustained-release ability and enhanced immune effects at mucosal sites have still been highly demanded. In this work, N-2-hydroxypropyl trimethyl ammonium chloride chitosan/N,O-carboxymethyl chitosan nanoparticles (N-2-HACC/CMCS NPs) with excellent mucosal absorption, high drug loading capacity, and enhanced immune responses were prepared by the ionic cross-linking method. To evaluate the potential capacity of the N-2-HACC/CMCS NPs as a vaccine adjuvant and the molecular mechanism for the induction of enhanced mucosal and systemic immune responses, bovine serum albumin (BSA) was employed as a general model antigen and loaded into the N-2-HACC/CMCS NPs to prepare a BSA-loaded N-2-HACC/CMCS adjuvant vaccine (N-2-HACC/CMCS/BSA NPs). It was well demonstrated that the N-2-HACC/CMCS/BSA NPs with great biostability and mucosal absorption could effectively promote the proliferation of lymphocytes and the secretion of related pro-inflammatory factors, resulting in the stimulation of specific mucosal and systemic immune responses. This study revealed that the chitosan-based nano-delivery system can act as the mucosal vaccine adjuvant and possesses great promise in viral infectious diseases and immunization therapy.
Collapse
Affiliation(s)
- Yuhong Lin
- Institute of Nanobiomaterials and Immunology, School of Life Science, Taizhou University, Zhejiang, Taizhou318000, China
| | - Beini Sun
- MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangdong, Guangzhou510631, China
| | - Zheng Jin
- Institute of Nanobiomaterials and Immunology, School of Life Science, Taizhou University, Zhejiang, Taizhou318000, China
| | - Kai Zhao
- Institute of Nanobiomaterials and Immunology, School of Life Science, Taizhou University, Zhejiang, Taizhou318000, China
| |
Collapse
|
14
|
Jansen EM, Frijlink HW, Hinrichs WLJ, Ruigrok MJR. Are inhaled mRNA vaccines safe and effective? A review of preclinical studies. Expert Opin Drug Deliv 2022; 19:1471-1485. [DOI: 10.1080/17425247.2022.2131767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Evalyne M Jansen
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen, The Netherlands
| | - Henderik W Frijlink
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen, The Netherlands
| | - Wouter LJ Hinrichs
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen, The Netherlands
| | - Mitchel JR Ruigrok
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
15
|
Goharshadi EK, Goharshadi K, Moghayedi M. The use of nanotechnology in the fight against viruses: A critical review. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214559] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
16
|
Foglizzo V, Marchiò S. Nanoparticles as Physically- and Biochemically-Tuned Drug Formulations for Cancers Therapy. Cancers (Basel) 2022; 14:cancers14102473. [PMID: 35626078 PMCID: PMC9139219 DOI: 10.3390/cancers14102473] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/26/2022] [Accepted: 05/13/2022] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Conventional antitumor drugs have limitations, including poor water solubility and lack of targeting capability, with consequent non-specific distribution, systemic toxicity, and low therapeutic index. Nanotechnology promises to overcome these drawbacks by exploiting the physical properties of diverse nanocarriers that can be linked to moieties with binding selectivity for cancer cells. The use of nanoparticles as therapeutic formulations allows a targeted delivery and a slow, controlled release of the drug(s), making them tunable modules for applications in precision medicine. In addition, nanoparticles are also being developed as cancer vaccines, offering an opportunity to increase both cellular and humoral immunity, thus providing a new weapon to beat cancer. Abstract Malignant tumors originate from a combination of genetic alterations, which induce activation of oncogenes and inactivation of oncosuppressor genes, ultimately resulting in uncontrolled growth and neoplastic transformation. Chemotherapy prevents the abnormal proliferation of cancer cells, but it also affects the entire cellular network in the human body with heavy side effects. For this reason, the ultimate aim of cancer therapy remains to selectively kill cancer cells while sparing their normal counterparts. Nanoparticle formulations have the potential to achieve this aim by providing optimized drug delivery to a pathological site with minimal accumulation in healthy tissues. In this review, we will first describe the characteristics of recently developed nanoparticles and how their physical properties and targeting functionalization are exploited depending on their therapeutic payload, route of delivery, and tumor type. Second, we will analyze how nanoparticles can overcome multidrug resistance based on their ability to combine different therapies and targeting moieties within a single formulation. Finally, we will discuss how the implementation of these strategies has led to the generation of nanoparticle-based cancer vaccines as cutting-edge instruments for cancer immunotherapy.
Collapse
Affiliation(s)
- Valentina Foglizzo
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
| | - Serena Marchiò
- Department of Oncology, University of Torino, 10060 Candiolo, Italy
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy
- Correspondence: ; Tel.: +39-01199333239
| |
Collapse
|
17
|
Schmitt S, Nuhn L, Barz M, Butt HJ, Koynov K. Shining Light on Polymeric Drug Nanocarriers with Fluorescence Correlation Spectroscopy. Macromol Rapid Commun 2022; 43:e2100892. [PMID: 35174569 DOI: 10.1002/marc.202100892] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/04/2022] [Indexed: 11/07/2022]
Abstract
The use of nanoparticles as carriers is an extremely promising way for administration of therapeutic agents, such as drug molecules, proteins and nucleic acids. Such nanocarriers (NCs) can increase the solubility of hydrophobic compounds, protect their cargo from the environment, and if properly functionalized, deliver it to specific target cells and tissues. Polymer-based NCs are especially promising, because they offer high degree of versatility and tunability. However, in order to get a full advantage of this therapeutic approach and develop efficient delivery systems, a careful characterization of the NCs is needed. This Feature Article highlights the fluorescence correlation spectroscopy (FCS) technique as a powerful and versatile tool for NCs characterization at all stages of the drug delivery process. In particular, FCS can monitor and quantify the size of the NCs and the drug loading efficiency after preparation, the NCs stability and possible interactions with, e.g., plasma proteins in the blood stream and the kinetic of drug release in the cytoplasm of the target cells. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Sascha Schmitt
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz, 55128, Germany
| | - Lutz Nuhn
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz, 55128, Germany
| | - Matthias Barz
- Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Hans-Jürgen Butt
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz, 55128, Germany
| | - Kaloian Koynov
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz, 55128, Germany
| |
Collapse
|
18
|
Johnson LC, Akinmola AT, Scholz C. Poly(glutamic acid): From natto to drug delivery systems. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
19
|
Saify Nabiabad H, Amini M, Demirdas S. Specific delivering of RNAi using Spike's aptamer-functionalized lipid nanoparticles for targeting SARS-CoV-2: A strong anti-Covid drug in a clinical case study. Chem Biol Drug Des 2022; 99:233-246. [PMID: 34714580 PMCID: PMC8653378 DOI: 10.1111/cbdd.13978] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/24/2021] [Accepted: 10/24/2021] [Indexed: 12/15/2022]
Abstract
Coronavirus (SARS-CoV-2) as a global pandemic has attracted the attention of many scientific centers to find the right treatment. We expressed and purified the recombinant receptor-binding domain (RBD) of the SARS-CoV-2 spike (S) protein, and specific RBD aptamers were designed using SELEX method. RNAi targeting nucleocapsid phosphoprotein was synthesized and human lung cells were inoculated with aptamer-functionalized lipid nanoparticles (LNPs) containing RNAi. The results demonstrated that RBD aptamer having KD values of 0.290 nm possessed good affinity. Based on molecular docking and efficacy prediction analysis, siRNA molecule was showed the best action. LNPs were appropriately functionalized by aptamer and contained RNAi molecules. Antiviral assay using q-PCR and ELISA demonstrated that LNP functionalized with 35 µm Apt and containing 30 nm RNAi/ml of cell culture had the best antiviral activity compared to other concentrations. Applied aptamer in the nanocarrier has two important functions. First, it can deliver the drug (RNAi) to the surface of epithelial cells. Second, by binding to the SARS-CoV-2 spike protein, it inhibits the virus entrance into cells. Our data reveal an interaction between the aptamer and the virus, and RNAi targeted the virus RNA. CT scan and the clinical laboratory tests in a clinical case study, a 36-year old man who presented with severe SARS-CoV-2, demonstrated that inhalation of 10 mg Apt-LNPs-RNAi nebulized/day for six days resulted in an improvement in consolidation and ground-glass opacity in lungs on the sixth day of treatment. Our findings suggest the treatment of SARS-CoV-2 infection through inhalation of Aptamer-LNPs-RNAi.
Collapse
Affiliation(s)
| | - Massoume Amini
- Department of BiotechnologyBu‐Ali Sina UniversityHamadanIran
| | - Serwet Demirdas
- Department of Clinical GeneticsErasmus Medical CentreRotterdamthe Netherlands
| |
Collapse
|
20
|
Neoantigen Cancer Vaccines: Generation, Optimization, and Therapeutic Targeting Strategies. Vaccines (Basel) 2022; 10:vaccines10020196. [PMID: 35214655 PMCID: PMC8877108 DOI: 10.3390/vaccines10020196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/21/2022] [Accepted: 01/23/2022] [Indexed: 12/30/2022] Open
Abstract
Alternatives to conventional cancer treatments are highly sought after for high-risk malignancies that have a poor response to established treatment modalities. With research advancing rapidly in the past decade, neoantigen-based immunotherapeutic approaches represent an effective and highly tolerable therapeutic option. Neoantigens are tumor-specific antigens that are not expressed in normal cells and possess significant immunogenic potential. Several recent studies have described the conceptual framework and methodologies to generate neoantigen-based vaccines as well as the formulation of appropriate clinical trials to advance this approach for patient care. This review aims to describe some of the key studies in the recent literature in this rapidly evolving field and summarize the current advances in neoantigen identification and selection, vaccine generation and delivery, and the optimization of neoantigen-based therapeutic strategies, including the early data from pivotal clinical studies.
Collapse
|
21
|
Huppertsberg A, Kaps L, Zhong Z, Schmitt S, Stickdorn J, Deswarte K, Combes F, Czysch C, De Vrieze J, Kasmi S, Choteschovsky N, Klefenz A, Medina-Montano C, Winterwerber P, Chen C, Bros M, Lienenklaus S, Sanders NN, Koynov K, Schuppan D, Lambrecht BN, David SA, De Geest BG, Nuhn L. Squaric Ester-Based, pH-Degradable Nanogels: Modular Nanocarriers for Safe, Systemic Administration of Toll-like Receptor 7/8 Agonistic Immune Modulators. J Am Chem Soc 2021; 143:9872-9883. [PMID: 34166595 PMCID: PMC8267846 DOI: 10.1021/jacs.1c03772] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Indexed: 12/25/2022]
Abstract
Small-molecular Toll-like receptor 7/8 (TLR7/8) agonists hold promise as immune modulators for a variety of immune therapeutic purposes including cancer therapy or vaccination. However, due to their rapid systemic distribution causing difficult-to-control inflammatory off-target effects, their application is still problematic, in particular systemically. To address this problem, we designed and robustly fabricated pH-responsive nanogels serving as versatile immunodrug nanocarriers for safe delivery of TLR7/8-stimulating imidazoquinolines after intravenous administration. To this aim, a primary amine-reactive methacrylamide monomer bearing a pendant squaric ester amide is introduced, which is polymerized under controlled RAFT polymerization conditions. Corresponding PEG-derived squaric ester amide block copolymers self-assemble into precursor micelles in polar protic solvents. Their cores are amine-reactive and can sequentially be transformed by acid-sensitive cross-linkers, dyes, and imidazoquinolines. Remaining squaric ester amides are hydrophilized affording fully hydrophilic nanogels with profound stability in human plasma but stimuli-responsive degradation upon exposure to endolysosomal pH conditions. The immunomodulatory behavior of the imidazoquinolines alone or conjugated to the nanogels was demonstrated by macrophages in vitro. In vivo, however, we observed a remarkable impact of the nanogel: After intravenous injection, a spatially controlled immunostimulatory activity was evident in the spleen, whereas systemic off-target inflammatory responses triggered by the small-molecular imidazoquinoline analogue were absent. These findings underline the potential of squaric ester-based, pH-degradable nanogels as a promising platform to permit intravenous administration routes of small-molecular TLR7/8 agonists and, thus, the opportunity to explore their adjuvant potency for systemic vaccination or cancer immunotherapy purposes.
Collapse
Affiliation(s)
| | - Leonard Kaps
- Institute
for Translational Immunology and Research Center for Immune Therapy,
University Medical Center, Johannes Gutenberg-University
Mainz, 55131 Mainz, Germany
- Department
of Internal Medicine I, University Medical
Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Zifu Zhong
- Department
of Pharmaceutics and Cancer Research Institute Ghent (CRIG), Ghent University, Ghent 9000, Belgium
| | - Sascha Schmitt
- Max
Planck Institute for Polymer Research, 55128 Mainz, Germany
| | | | - Kim Deswarte
- Department
of Internal Medicine and Pediatrics, Ghent
University, VIB Center for Inflammation Research, Ghent 9052, Belgium
| | - Francis Combes
- Laboratory
of Gene Therapy, Department of Nutrition, Genetics and Ethology, Ghent University, Merelbeke 9820, Belgium
| | | | - Jana De Vrieze
- Department
of Pharmaceutics and Cancer Research Institute Ghent (CRIG), Ghent University, Ghent 9000, Belgium
| | - Sabah Kasmi
- Department
of Pharmaceutics and Cancer Research Institute Ghent (CRIG), Ghent University, Ghent 9000, Belgium
| | - Niklas Choteschovsky
- Institute
for Translational Immunology and Research Center for Immune Therapy,
University Medical Center, Johannes Gutenberg-University
Mainz, 55131 Mainz, Germany
| | - Adrian Klefenz
- Institute
for Translational Immunology and Research Center for Immune Therapy,
University Medical Center, Johannes Gutenberg-University
Mainz, 55131 Mainz, Germany
| | - Carolina Medina-Montano
- Department
of Dermatology, University Medical Center
of Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | | | - Chaojian Chen
- Max
Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - Matthias Bros
- Department
of Dermatology, University Medical Center
of Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Stefan Lienenklaus
- Institute
for Laboratory Animal Science and Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany
| | - Niek N. Sanders
- Laboratory
of Gene Therapy, Department of Nutrition, Genetics and Ethology, Ghent University, Merelbeke 9820, Belgium
| | - Kaloian Koynov
- Max
Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - Detlef Schuppan
- Institute
for Translational Immunology and Research Center for Immune Therapy,
University Medical Center, Johannes Gutenberg-University
Mainz, 55131 Mainz, Germany
- Division
of Gastroenterology, Beth Israel Deaconess
Medical Center, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Bart N. Lambrecht
- Department
of Internal Medicine and Pediatrics, Ghent
University, VIB Center for Inflammation Research, Ghent 9052, Belgium
- Department
of Pulmonary Medicine, Erasmus University
Medical Center, Rotterdam 3015, Netherlands
| | | | - Bruno G. De Geest
- Department
of Pharmaceutics and Cancer Research Institute Ghent (CRIG), Ghent University, Ghent 9000, Belgium
| | - Lutz Nuhn
- Max
Planck Institute for Polymer Research, 55128 Mainz, Germany
| |
Collapse
|