1
|
Victorelli FD, Lutz-Bueno V, Santos KP, Wu D, Sturla SJ, Mezzenga R. Cubosomes functionalized with antibodies as a potential strategy for the treatment of HER2-positive breast cancer. J Colloid Interface Sci 2024; 673:291-300. [PMID: 38875795 DOI: 10.1016/j.jcis.2024.06.091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/23/2024] [Accepted: 06/10/2024] [Indexed: 06/16/2024]
Abstract
Breast cancers that overexpress human epidermal growth factor receptor 2 (HER2) have poor prognosis. Moreover, available chemotherapies cause numerous side effects due to poor selectivity. To advance more effective and safer therapies for HER2-positive breast cancer, we explored the fusion of drug delivery technology and immunotherapy. Our research led to the design of immunocubosomes loaded with panobinostat and functionalized with trastuzumab antibodies, enabling precise targeting of breast cancer cells that overexpress HER2. We characterised the nanostructure of cubosomes using small-angle X-ray scattering (SAXS), cryo-transmission electron microscopy (cryo-TEM), and dynamic light scattering (DLS). Moreover, we confirmed the integrity of the trastuzumab antibodies on the immunocubosomes by Fourier-transform infrared spectroscopy (FTIR) and sodium dodecyl-sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Additionally, we found that panobinostat-loaded immunocubosomes were more cytotoxic, and in an uptake-dependant manner, towards a HER2-positive breast cancer cell line (SKBR3) compared to a cell line representing healthy cells (L929). These results support that the functionalization of cubosomes with antibodies enhances both the effectiveness of the loaded drug and its selectivity for targeting HER2-positive breast cancer cells.
Collapse
Affiliation(s)
| | | | - Kaio Pini Santos
- Department of Drugs and Medicine, School of Pharmaceutical Sciences, São Paulo State University, 14800-903 Araraquara, São Paulo, Brazil.
| | - Di Wu
- College of Food Science and Engineering, Qingdao Agricultural University, 266109 Qingdao, Shandong, China.
| | - Shana J Sturla
- Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland.
| | - Raffaele Mezzenga
- Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland; Department of Materials, ETH Zurich, 8093 Zurich, Switzerland.
| |
Collapse
|
2
|
Rui X, Okamoto Y, Watanabe NM, Shimizu T, Wakileh W, Kajimura N, Umakoshi H. Preparation and characterization of macrophage membrane camouflaged cubosomes as a stabilized and immune evasive biomimetic nano-DDS. J Mater Chem B 2024; 12:8702-8715. [PMID: 39129447 DOI: 10.1039/d4tb01063a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
This study aims to develop a biomimetic nano-drug delivery system (nano-DDS) by employing a macrophage cell membrane camouflaging strategy to modify lyotropic liquid crystal nanoparticles (LLC-NPs). The cubic-structured LLC-NPs (Cubosomes, CBs) were prepared via a top-down approach (ultra-sonification) using monoolein (MO) and doped with the cationic lipid, DOTAP. The cell membrane camouflaging procedure induced changes in the cubic lipid phase from primitive cubic phase (QIIP) to a coexistence of QIIP and diamond cubic phase (QIID). The macrophage membrane camouflaging strategy protected CB cores from the destabilization by blood plasma and enhanced the stability of CBs. The in vitro experiment results revealed that the macrophage cell membrane coating significantly reduced macrophage uptake efficacy within 8 h of incubation compared to the non-camouflaged CBs, while it had minimal impact on cancer cell uptake efficacy. The macrophage membrane coated CBs showed lower accumulation in the heart, kidney and lungs in vivo. This study demonstrated the feasibility of employing cell membrane camouflaging on CBs and confirmed that the bio-functionalities of the CBs-based biomimetic nano-DDS were retained from the membrane source cells, and opened up promising possibilities for developing an efficient and safe drug delivery system based on the biomimetic approach.
Collapse
Affiliation(s)
- Xuehui Rui
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyamacho, Toyonaka, Osaka 560-8531, Japan.
| | - Yukihiro Okamoto
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyamacho, Toyonaka, Osaka 560-8531, Japan.
| | - Nozomi Morishita Watanabe
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyamacho, Toyonaka, Osaka 560-8531, Japan.
| | - Taro Shimizu
- Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Ward Wakileh
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyamacho, Toyonaka, Osaka 560-8531, Japan.
| | - Naoko Kajimura
- Research Center for Ultra-High Voltage Electron Microscopy, Osaka University, 7-1, Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Hiroshi Umakoshi
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyamacho, Toyonaka, Osaka 560-8531, Japan.
| |
Collapse
|
3
|
Batra N, Tu MJ, Yu AM. Molecular Engineering of Functional SiRNA Agents. ACS Synth Biol 2024; 13:1906-1915. [PMID: 38733599 PMCID: PMC11197084 DOI: 10.1021/acssynbio.4c00181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/17/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024]
Abstract
Synthetic biology constitutes a scientific domain focused on intentional redesign of organisms to confer novel functionalities or create new products through strategic engineering of their genetic makeup. Leveraging the inherent capabilities of nature, one may address challenges across diverse sectors including medicine. Inspired by this concept, we have developed an innovative bioengineering platform, enabling high-yield and large-scale production of biological small interfering RNA (BioRNA/siRNA) agents via bacterial fermentation. Herein, we show that with the use of a new tRNA fused pre-miRNA carrier, we can produce various forms of BioRNA/siRNA agents within living host cells. We report a high-level overexpression of nine target BioRNA/siRNA molecules at 100% success rate, yielding 3-10 mg of BioRNA/siRNA per 0.25 L of bacterial culture with high purity (>98%) and low endotoxin (<5 EU/μg RNA). Furthermore, we demonstrate that three representative BioRNA/siRNAs against GFP, BCL2, and PD-L1 are biologically active and can specifically and efficiently silence their respective targets with the potential to effectively produce downstream antiproliferation effects by PD-L1-siRNA. With these promising results, we aim to advance the field of synthetic biology by offering a novel platform to bioengineer functional siRNA agents for research and drug development.
Collapse
Affiliation(s)
- Neelu Batra
- Department of Biochemistry
and Molecular Medicine, UC Davis School
of Medicine, Sacramento, California 95817, United States
| | - Mei-Juan Tu
- Department of Biochemistry
and Molecular Medicine, UC Davis School
of Medicine, Sacramento, California 95817, United States
| | - Ai-Ming Yu
- Department of Biochemistry
and Molecular Medicine, UC Davis School
of Medicine, Sacramento, California 95817, United States
| |
Collapse
|
4
|
Pushpa Ragini S, Dyett BP, Sarkar S, Zhai J, White JF, Banerjee R, Drummond CJ, Conn CE. A systematic study of the effect of lipid architecture on cytotoxicity and cellular uptake of cationic cubosomes. J Colloid Interface Sci 2024; 663:82-93. [PMID: 38394820 DOI: 10.1016/j.jcis.2024.02.099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/26/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024]
Abstract
HYPOTHESIS Lipid nanoparticles containing a cationic lipid are increasingly used in drug and gene delivery as they can display improved cellular uptake, enhanced loading for anionic cargo such as siRNA and mRNA or exhibit additional functionality such as cytotoxicity against cancer cells. This research study tests the hypothesis that the molecular structure of the cationic lipid influences the structure of the lipid nanoparticle, the cellular uptake, and the resultant cytotoxicity. EXPERIMENTS Three potentially cytotoxic cationic lipids, with systematic variations to the hydrophobic moiety, were designed and synthesised. All the three cationic lipids synthesised contain pharmacophores such as the bicyclic coumarin group (CCA12), the tricyclic etodolac moiety (ETD12), or the large pentacyclic triterpenoid "ursolic" group (U12) conjugated to a quaternary ammonium cationic lipid containing twin C12 chains. The cationic lipids were doped into monoolein cubosomes at a range of concentrations from 0.1 mol% to 5 mol% and the effect of the lipid molecular architecture on the cubosome phase behaviour was assessed using a combination of Small Angle X-Ray Scattering (SAXS), Dynamic Light Scattering (DLS), zeta-potential and cryo-Transmission Electron Microscopy (Cryo-TEM). The resulting cytotoxicity of these particles against a range of cancerous and non-cancerous cell-lines was assessed, along with their cellular uptake. FINDINGS The molecular architecture of the cationic lipid was linked to the internal nanostructure of the resulting cationic cubosomes with a transition to more curved cubic and hexagonal phases generally observed. Cubosomes formed from the cationic lipid CCA12 were found to have improved cellular uptake and significantly higher cytotoxicity than the cationic lipids ETD12 and U12 against the gastric cancer cell-line (AGS) at lipid concentrations ≥ 75 µg/mL. CCA12 cationic cubosomes also displayed reasonable cytotoxicity against the prostate cancer PC-3 cell-line at lipid concentrations ≥ 100 µg/mL. In contrast, 2.5 mol% ETD12 and 2.5 mol% U12 cubosomes were generally non-toxic against both cancerous and non-cancerous cell lines over the entire concentration range tested. The molecular architecture of the cationic lipid was found to influence the cubosome phase behaviour, the cellular uptake and the toxicity although further studies are necessary to determine the exact relationship between structure and cellular uptake across a range of cell lines.
Collapse
Affiliation(s)
- S Pushpa Ragini
- Department of Oils, lipids science and technology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India; Academy of Scientific and Innovation Research (AcSIR), Ghaziabad, 201002, India; STEM College, RMIT University, Melbourne 3000, Victoria, Australia
| | - Brendan P Dyett
- STEM College, RMIT University, Melbourne 3000, Victoria, Australia
| | - Sampa Sarkar
- STEM College, RMIT University, Melbourne 3000, Victoria, Australia
| | - Jiali Zhai
- STEM College, RMIT University, Melbourne 3000, Victoria, Australia
| | - Jacinta F White
- CSIRO Manufacturing, Bayview Avenue, Clayton, VIC 3168, Australia
| | - Rajkumar Banerjee
- Department of Oils, lipids science and technology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India; Academy of Scientific and Innovation Research (AcSIR), Ghaziabad, 201002, India
| | - Calum J Drummond
- STEM College, RMIT University, Melbourne 3000, Victoria, Australia.
| | - Charlotte E Conn
- STEM College, RMIT University, Melbourne 3000, Victoria, Australia.
| |
Collapse
|
5
|
Attri N, Das S, Banerjee J, Shamsuddin SH, Dash SK, Pramanik A. Liposomes to Cubosomes: The Evolution of Lipidic Nanocarriers and Their Cutting-Edge Biomedical Applications. ACS APPLIED BIO MATERIALS 2024; 7:2677-2694. [PMID: 38613498 PMCID: PMC11110070 DOI: 10.1021/acsabm.4c00153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/15/2024]
Abstract
Lipidic nanoparticles have undergone extensive research toward the exploration of their diverse therapeutic applications. Although several liposomal formulations are in the clinic (e.g., DOXIL) for cancer therapy, there are many challenges associated with traditional liposomes. To address these issues, modifications in liposomal structure and further functionalization are desirable, leading to the emergence of solid lipid nanoparticles and the more recent liquid lipid nanoparticles. In this context, "cubosomes", third-generation lipidic nanocarriers, have attracted significant attention due to their numerous advantages, including their porous structure, structural adaptability, high encapsulation efficiency resulting from their extensive internal surface area, enhanced stability, and biocompatibility. Cubosomes offer the potential for both enhanced cellular uptake and controlled release of encapsulated payloads. Beyond cancer therapy, cubosomes have demonstrated effectiveness in wound healing, antibacterial treatments, and various dermatological applications. In this review, the authors provide an overview of the evolution of lipidic nanocarriers, spanning from conventional liposomes to solid lipid nanoparticles, with a special emphasis on the development and application of cubosomes. Additionally, it delves into recent applications and preclinical trials associated with cubosome formulations, which could be of significant interest to readers from backgrounds in nanomedicine and clinicians.
Collapse
Affiliation(s)
- Nishtha Attri
- Amity
Institute of Biotechnology, Amity University, Noida 201301, India
| | - Swarnali Das
- Department
of Physiology, University of Gour Banga, Malda 732103, West Bengal, India
| | - Jhimli Banerjee
- Department
of Physiology, University of Gour Banga, Malda 732103, West Bengal, India
| | - Shazana H. Shamsuddin
- Department
of Pathology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Sandeep Kumar Dash
- Department
of Physiology, University of Gour Banga, Malda 732103, West Bengal, India
| | - Arindam Pramanik
- Amity
Institute of Biotechnology, Amity University, Noida 201301, India
- School
of Medicine, University of Leeds, Leeds LS53RL, United Kingdom
| |
Collapse
|
6
|
Caselli L, Conti L, De Santis I, Berti D. Small-angle X-ray and neutron scattering applied to lipid-based nanoparticles: Recent advancements across different length scales. Adv Colloid Interface Sci 2024; 327:103156. [PMID: 38643519 DOI: 10.1016/j.cis.2024.103156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/28/2024] [Accepted: 04/08/2024] [Indexed: 04/23/2024]
Abstract
Lipid-based nanoparticles (LNPs), ranging from nanovesicles to non-lamellar assemblies, have gained significant attention in recent years, as versatile carriers for delivering drugs, vaccines, and nutrients. Small-angle scattering methods, employing X-rays (SAXS) or neutrons (SANS), represent unique tools to unveil structure, dynamics, and interactions of such particles on different length scales, spanning from the nano to the molecular scale. This review explores the state-of-the-art on scattering methods applied to unveil the structure of lipid-based nanoparticles and their interactions with drugs and bioactive molecules, to inform their rational design and formulation for medical applications. We will focus on complementary information accessible with X-rays or neutrons, ranging from insights on the structure and colloidal processes at a nanoscale level (SAXS) to details on the lipid organization and molecular interactions of LNPs (SANS). In addition, we will review new opportunities offered by Time-resolved (TR)-SAXS and -SANS for the investigation of dynamic processes involving LNPs. These span from real-time monitoring of LNPs structural evolution in response to endogenous or external stimuli (TR-SANS), to the investigation of the kinetics of lipid diffusion and exchange upon interaction with biomolecules (TR-SANS). Finally, we will spotlight novel combinations of SAXS and SANS with complementary on-line techniques, recently enabled at Large Scale Facilities for X-rays and neutrons. This emerging technology enables synchronized multi-method investigation, offering exciting opportunities for the simultaneous characterization of the structure and chemical or mechanical properties of LNPs.
Collapse
Affiliation(s)
- Lucrezia Caselli
- Physical Chemistry 1, University of Lund, S-221 00 Lund, Sweden.
| | - Laura Conti
- Consorzio Sistemi a Grande Interfase, Department of Chemistry, University of Florence, Sesto Fiorentino, Italy
| | - Ilaria De Santis
- Department of Chemistry, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, Florence 50019, Italy
| | - Debora Berti
- Department of Chemistry, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, Florence 50019, Italy; Consorzio Sistemi a Grande Interfase, Department of Chemistry, University of Florence, Sesto Fiorentino, Italy.
| |
Collapse
|
7
|
Yu H, Dyett B, Kirby N, Cai X, Mohamad ME, Bozinovski S, Drummond CJ, Zhai J. pH-Dependent Lyotropic Liquid Crystalline Mesophase and Ionization Behavior of Phytantriol-Based Ionizable Lipid Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309200. [PMID: 38295089 DOI: 10.1002/smll.202309200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/13/2023] [Indexed: 02/02/2024]
Abstract
Self-assembled lipid nanoparticles (LNPs), serving as essential nanocarriers in recent COVID-19 mRNA vaccines, provide a stable and versatile platform for delivering a wide range of biological materials. Notably, LNPs with unique inverse mesostructures, such as cubosomes and hexosomes, are recognized as fusogenic nanocarriers in the drug delivery field. This study delves into the physicochemical properties, including size, lyotropic liquid crystalline mesophase, and apparent pKa of LNPs with various lipid components, consisting of two ionizable lipids (ALC-0315 and SM-102) used in commercial COVID-19 mRNA vaccines and a well-known inverse mesophase structure-forming helper lipid, phytantriol (PT). Two partial mesophase diagrams are generated for both ALC-0315/PT LNPs and SM-102/PT LNPs as a function of two factors, ionizable lipid ratio (α, 0-100 mol%) and pH condition (pH 3-11). Furthermore, the impact of different LNP stabilizers (Pluronic F127, Pluronic F108, and Tween 80) on their pH-dependent phase behavior is evaluated. The findings offer insights into the self-assembled mesostructure and ionization state of the studied LNPs with potentially enhanced endosomal escape ability. This research is relevant to developing innovative next-generation LNP systems for delivering various therapeutics.
Collapse
Affiliation(s)
- Haitao Yu
- School of Science, STEM College, RMIT University, 124 La Trobe Street, Melbourne, Victoria, 3000, Australia
| | - Brendan Dyett
- School of Science, STEM College, RMIT University, 124 La Trobe Street, Melbourne, Victoria, 3000, Australia
| | - Nigel Kirby
- SAXS/WAXS beamline, Australian Synchrotron, ANSTO, 800 Blackburn Rd, Clayton, Victoria, 3168, Australia
| | - Xudong Cai
- School of Science, STEM College, RMIT University, 124 La Trobe Street, Melbourne, Victoria, 3000, Australia
| | - Mohamad El Mohamad
- School of Science, STEM College, RMIT University, 124 La Trobe Street, Melbourne, Victoria, 3000, Australia
| | - Steven Bozinovski
- Centre for Respiratory Science and Health, School of Health and Biomedical Sciences, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Calum J Drummond
- School of Science, STEM College, RMIT University, 124 La Trobe Street, Melbourne, Victoria, 3000, Australia
| | - Jiali Zhai
- School of Science, STEM College, RMIT University, 124 La Trobe Street, Melbourne, Victoria, 3000, Australia
| |
Collapse
|
8
|
Nele V, Campani V, Alia Moosavian S, De Rosa G. Lipid nanoparticles for RNA delivery: Self-assembling vs driven-assembling strategies. Adv Drug Deliv Rev 2024; 208:115291. [PMID: 38514018 DOI: 10.1016/j.addr.2024.115291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/20/2024] [Accepted: 03/14/2024] [Indexed: 03/23/2024]
Abstract
Among non-viral vectors, lipid nanovectors are considered the gold standard for the delivery of RNA therapeutics. The success of lipid nanoparticles for RNA delivery, with three products approved for human use, has stimulated further investigation into RNA therapeutics for different pathologies. This requires decoding the pathological intracellular processes and tailoring the delivery system to the target tissue and cells. The complexity of the lipid nanovectors morphology originates from the assembling of the lipidic components, which can be elicited by various methods able to drive the formation of nanoparticles with the desired organization. In other cases, pre-formed nanoparticles can be mixed with RNA to induce self-assembly and structural reorganization into RNA-loaded nanoparticles. In this review, the most relevant lipid nanovectors and their potentialities for RNA delivery are described on the basis of the assembling mechanism and of the particle architecture.
Collapse
Affiliation(s)
- Valeria Nele
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano, 49 80131 Naples, Italy
| | - Virginia Campani
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano, 49 80131 Naples, Italy
| | - Seyedeh Alia Moosavian
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano, 49 80131 Naples, Italy
| | - Giuseppe De Rosa
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano, 49 80131 Naples, Italy.
| |
Collapse
|
9
|
Silvestrini AVP, Morais MF, Debiasi BW, Praça FG, Bentley MVLB. Nanotechnology strategies to address challenges in topical and cellular delivery of siRNAs in skin disease therapy. Adv Drug Deliv Rev 2024; 207:115198. [PMID: 38341146 DOI: 10.1016/j.addr.2024.115198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/14/2023] [Accepted: 02/02/2024] [Indexed: 02/12/2024]
Abstract
Gene therapy is one of the most advanced therapies in current medicine. In particular, interference RNA-based therapy by small interfering RNA (siRNA) has gained attention in recent years as it is a highly versatile, selective and specific therapy. In dermatological conditions, topical delivery of siRNA offers numerous therapeutic advantages, mainly by inhibiting the expression of target transcripts directly in the skin. However, crossing the stratum corneum and overcoming intracellular barriers is an inherent challenge. Substantial efforts by scientists have moved towards the use of multimodal and multifunctional nanoparticles to overcome these barriers and achieve greater bioavailability in their site of action, the cytoplasm. In this review the most innovative strategies based on nanoparticle and physical methods are presented, as well as the design principles and the main factors that contribute to the performance of these systems. This review also highlights the synergistic contributions of medicine, nanotechnology, and molecular biology to advancing translational research into siRNA-based therapeutics for skin diseases.
Collapse
Affiliation(s)
- Ana Vitoria Pupo Silvestrini
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Av. do Café, s/n, 14040-903 Ribeirão Preto, SP, Brazil
| | - Milena Finazzi Morais
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Av. do Café, s/n, 14040-903 Ribeirão Preto, SP, Brazil
| | - Bryan Wender Debiasi
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Av. do Café, s/n, 14040-903 Ribeirão Preto, SP, Brazil
| | - Fabíola Garcia Praça
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Av. do Café, s/n, 14040-903 Ribeirão Preto, SP, Brazil
| | - Maria Vitória Lopes Badra Bentley
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Av. do Café, s/n, 14040-903 Ribeirão Preto, SP, Brazil.
| |
Collapse
|
10
|
El Mohamad M, Han Q, Clulow AJ, Cao C, Safdar A, Stenzel M, Drummond CJ, Greaves TL, Zhai J. Regulating the structural polymorphism and protein corona composition of phytantriol-based lipid nanoparticles using choline ionic liquids. J Colloid Interface Sci 2024; 657:841-852. [PMID: 38091907 DOI: 10.1016/j.jcis.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/29/2023] [Accepted: 12/01/2023] [Indexed: 01/02/2024]
Abstract
Lipid-based lyotropic liquid crystalline nanoparticles (LCNPs) face stability challenges in biological fluids during clinical translation. Ionic Liquids (ILs) have emerged as effective solvent additives for tuning the structure of LCNP's and enhancing their stability. We investigated the effect of a library of 21 choline-based biocompatible ILs with 9 amino acid anions as well as 10 other organic/inorganic anions during the preparation of phytantriol (PHY)-based LCNPs, followed by incubation in human serum and serum proteins. Small angle X-ray scattering (SAXS) results show that the phase behaviour of the LCNPs depends on the IL concentration and anion structure. Incubation with human serum led to a phase transition from the inverse bicontinuous cubic (Q2) to the inverse hexagonal (H2) mesophase, influenced by the specific IL present. Liquid chromatography-mass spectrometry (LC-MS) and proteomics analysis of selected samples, including PHY control and those with choline glutamate, choline hexanoate, and choline geranate, identified abundant proteins in the protein corona, including albumin, apolipoproteins, and serotransferrin. The composition of the protein corona varied among samples, shedding light on the intricate interplay between ILs, internal structure and surface chemistry of LCNPs, and biological fluids.
Collapse
Affiliation(s)
- Mohamad El Mohamad
- School of Science, STEM College, RMIT University, 124 La Trobe Street, Melbourne, VIC 3000, Australia
| | - Qi Han
- School of Science, STEM College, RMIT University, 124 La Trobe Street, Melbourne, VIC 3000, Australia
| | - Andrew J Clulow
- Australian Synchrotron, ANSTO, 800 Blackburn Road, Clayton, VIC 3168, Australia
| | - Cheng Cao
- Centre for Advanced Macromolecular Design, School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - Aneeqa Safdar
- Centre for Advanced Macromolecular Design, School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - Martina Stenzel
- Centre for Advanced Macromolecular Design, School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - Calum J Drummond
- School of Science, STEM College, RMIT University, 124 La Trobe Street, Melbourne, VIC 3000, Australia.
| | - Tamar L Greaves
- School of Science, STEM College, RMIT University, 124 La Trobe Street, Melbourne, VIC 3000, Australia.
| | - Jiali Zhai
- School of Science, STEM College, RMIT University, 124 La Trobe Street, Melbourne, VIC 3000, Australia.
| |
Collapse
|
11
|
Yap SL, Yu H, Li S, Drummond CJ, Conn CE, Tran N. Cell interactions with lipid nanoparticles possessing different internal nanostructures: Liposomes, bicontinuous cubosomes, hexosomes, and discontinuous micellar cubosomes. J Colloid Interface Sci 2024; 656:409-423. [PMID: 38000253 DOI: 10.1016/j.jcis.2023.11.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/30/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023]
Abstract
HYPOTHESIS Lyotropic liquid crystalline nanoparticles (LLCNPs) with complex internal nanostructures hold promise for drug delivery. Cubosomes, in particular, have garnered interest for their ability to fuse with cell membranes, potentially bypassing endosomal escape challenges and improving cellular uptake. The mesostructure of nanoparticles plays a crucial role in cellular interactions and uptake. Therefore, we hypothesise that the specific internal mesophase of the LLCNPs will affect their cellular interactions and uptake efficiencies, with cubosomes exhibiting superior cellular uptake compared to other LLCNPs. EXPERIMENTS LLCNPs with various mesophases, including liposomes, cubosomes, hexosomes, and micellar cubosomes, were formulated and characterised. Their physicochemical properties and cytotoxicity were assessed. Chinese Hamster Ovarian (CHO) cells were treated with fluorescently labelled LLCNPs, and their interactions were monitored and quantified through confocal microscopy and flow cytometry. FINDINGS The non-lamellar LLCNPs showed significantly higher cellular interactions compared to liposomes, with cubosomes exhibiting the highest level. However, there was no significant difference in relative cell uptake between cubosomes, hexosomes, and micellar cubosomes. Cell uptake experiments at 4 °C revealed the presence of an energy-independent uptake mechanism. This study provides the first comparative analysis of cellular interactions and uptake efficiencies among LLCNPs with varying mesophases, while maintaining similar size, composition, and surface charge.
Collapse
Affiliation(s)
- Sue Lyn Yap
- School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia
| | - Haitao Yu
- School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia
| | - Shiyao Li
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Calum J Drummond
- School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia.
| | - Charlotte E Conn
- School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia.
| | - Nhiem Tran
- School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia.
| |
Collapse
|
12
|
Araújo-Silva H, Teixeira PV, Gomes AC, Lúcio M, Lopes CM. Lyotropic liquid crystalline 2D and 3D mesophases: Advanced materials for multifunctional anticancer nanosystems. Biochim Biophys Acta Rev Cancer 2023; 1878:189011. [PMID: 37923232 DOI: 10.1016/j.bbcan.2023.189011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/03/2023] [Accepted: 10/23/2023] [Indexed: 11/07/2023]
Abstract
Cancer remains a leading cause of mortality. Despite significant breakthroughs in conventional therapies, treatment is still far from ideal due to high toxicity in normal tissues and therapeutic inefficiency caused by short drug lifetime in the body and resistance mechanisms. Current research moves towards the development of multifunctional nanosystems for delivery of chemotherapeutic drugs, bioactives and/or radionuclides that can be combined with other therapeutic modalities, like gene therapy, or imaging to use in therapeutic screening and diagnosis. The preparation and characterization of Lyotropic Liquid Crystalline (LLC) mesophases self-assembled as 2D and 3D structures are addressed, with an emphasis on the unique properties of these nanoassemblies. A comprehensive review of LLC nanoassemblies is also presented, highlighting the most recent advances and their outstanding advantages as drug delivery systems, including tailoring strategies that can be used to overcome cancer challenges. Therapeutic agents loaded in LLC nanoassemblies offer qualitative and quantitative enhancements that are superior to conventional chemotherapy, particularly in terms of preferential accumulation at tumor sites and promoting enhanced cancer cell uptake, lowering tumor volume and weight, improving survival rates, and increasing the cytotoxicity of their loaded therapeutic agents. In terms of quantitative anticancer efficacy, loaded LLC nanoassemblies reduced the IC50 values from 1.4-fold against lung cancer cells to 125-fold against ovarian cancer cells.
Collapse
Affiliation(s)
- Henrique Araújo-Silva
- Centro de Biologia Molecular e Ambiental (CBMA), Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Patricia V Teixeira
- Centro de Física das Universidades do Minho e Porto (CF-UM-UP), Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Andreia C Gomes
- Centro de Biologia Molecular e Ambiental (CBMA), Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal; Institute of Science and Innovation for Sustainability (IB-S), University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| | - Marlene Lúcio
- Centro de Biologia Molecular e Ambiental (CBMA), Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal; Centro de Física das Universidades do Minho e Porto (CF-UM-UP), Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | - Carla M Lopes
- Instituto de Investigação, Inovação e Desenvolvimento (FP-I3ID), Biomedical and Health Sciences Research Unit (FP-BHS), Faculdade de Ciências da Saúde, Universidade Fernando Pessoa, 4200-150 Porto, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; UCIBIO - Applied Molecular Biosciences Unit, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| |
Collapse
|
13
|
Yu H, Angelova A, Angelov B, Dyett B, Matthews L, Zhang Y, El Mohamad M, Cai X, Valimehr S, Drummond CJ, Zhai J. Real-Time pH-Dependent Self-Assembly of Ionisable Lipids from COVID-19 Vaccines and In Situ Nucleic Acid Complexation. Angew Chem Int Ed Engl 2023; 62:e202304977. [PMID: 37391876 DOI: 10.1002/anie.202304977] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/02/2023]
Abstract
Ionisable amino-lipid is a key component in lipid nanoparticles (LNPs), which plays a crucial role in the encapsulation of RNA molecules, allowing efficient cellular uptake and then releasing RNA from acidic endosomes. Herein, we present direct evidence for the remarkable structural transitions, with decreasing membrane curvature, including from inverse micellar, to inverse hexagonal, to two distinct inverse bicontinuous cubic, and finally to a lamellar phase for the two mainstream COVID-19 vaccine ionisable ALC-0315 and SM-102 lipids, occurring upon gradual acidification as encountered in endosomes. The millisecond kinetic growth of the inverse cubic and hexagonal structures and the evolution of the ordered structural formation upon ionisable lipid-RNA/DNA complexation are quantitatively revealed by in situ synchrotron radiation time-resolved small angle X-ray scattering coupled with rapid flow mixing. We found that the final self-assembled structural identity, and the formation kinetics, were controlled by the ionisable lipid molecular structure, acidic bulk environment, lipid compositions, and nucleic acid molecular structure/size. The implicated link between the inverse membrane curvature of LNP and LNP endosomal escape helps future optimisation of ionisable lipids and LNP engineering for RNA and gene delivery.
Collapse
Affiliation(s)
- Haitao Yu
- School of Science, STEM College, RMIT University, Melbourne, Victoria 3000, Australia
| | - Angelina Angelova
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400, Orsay, France
| | - Borislav Angelov
- Extreme Light Infrastructure ERIC, Za Radnici 835, 25241, Dolni Brezany, Czech Republic
| | - Brendan Dyett
- School of Science, STEM College, RMIT University, Melbourne, Victoria 3000, Australia
| | - Lauren Matthews
- ESRF, The European Synchrotron, 71 avenue des Martyrs, 38043, Grenoble, France
| | - Yiran Zhang
- School of Science, STEM College, RMIT University, Melbourne, Victoria 3000, Australia
| | - Mohamad El Mohamad
- School of Science, STEM College, RMIT University, Melbourne, Victoria 3000, Australia
| | - Xudong Cai
- School of Science, STEM College, RMIT University, Melbourne, Victoria 3000, Australia
| | - Sepideh Valimehr
- Ian Holmes Imaging Center, Bio21 Molecular Science & Biotechnology Institute, University of Melbourne, Parkville, Victoria 3052, Australia
- Australian Research Council Centre for Cryo-Electron Microscopy of Membrane Proteins, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Calum J Drummond
- School of Science, STEM College, RMIT University, Melbourne, Victoria 3000, Australia
| | - Jiali Zhai
- School of Science, STEM College, RMIT University, Melbourne, Victoria 3000, Australia
| |
Collapse
|
14
|
Pushpa Ragini S, White J, Kirby N, Banerjee R, Reddy Bathula S, Drummond CJ, Conn CE. Novel bioactive cationic cubosomes enhance the cytotoxic effect of paclitaxel against a paclitaxel resistant prostate cancer cell-line. J Colloid Interface Sci 2023; 649:966-976. [PMID: 37392686 DOI: 10.1016/j.jcis.2023.06.122] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/05/2023] [Accepted: 06/17/2023] [Indexed: 07/03/2023]
Abstract
Hypothesis The study aimed to use molecular hybridization of a cationic lipid with a known pharmacophore to produce a bifunctional lipid having a cationic charge to enhance fusion with the cancer cell surface and biological activity via the pharmacophoric head group. Experiments The novel cationic lipid DMP12 [N-(2-(3-(3,4-dimethoxyphenyl) propanamido) ethyl)-N-dodecyl-N-methyldodecan-1-aminium iodide] was synthesised by conjugating 3-(3,4-dimethoxyphenyl) propanoic acid (or 3,4-dimethoxyhydrocinnamic acid) to twin 12 carbon chains bearing a quaternary ammonium group [N-(2-aminoethyl)-N-dodecyl-N-methyldodecan-1-aminium iodide]. The physicochemical and biological properties of DMP12 were investigated. Cubosome particles consisting of monoolein (MO) doped with DMP12 and paclitaxel were characterized using Small-angle X-ray Scattering (SAXS), Dynamic Light Scattering (DLS), and Cryo-Transmission Electron Microscopy (Cryo-TEM). Combination therapy using these cubosomes was assessed in vitro against the gastric (AGS) and prostate (DU-145 and PC-3) cancer cell lines using cytotoxicity assay. Findings Monoolein (MO) cubosomes doped with DMP12 were observed to be toxic against the AGS and DU-145 cell-lines at higher cubosome concentrations (≥100 µg/ml) but had limited activity against the PC-3 cell-line. However, combination therapy consisting of 5 mol% DMP12 and 0.5 mol% paclitaxel (PTX) significantly increased the cytotoxicity against the PC-3 cell-line which was resistant to either DMP12 or PTX individually. The results demonstrate that DMP12 has a prospective role as a bioactive excipient in cancer therapy.
Collapse
Affiliation(s)
- S Pushpa Ragini
- Department of Oils, lipids science and technology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India; Academy of Scientific and Innovation Research (AcSIR), Ghaziabad, 201002, India; Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad-500007, India; School of Science, College of Science, Engineering and Health, RMIT University, Melbourne 3000, Victoria, Australia
| | - Jacinta White
- CSIRO Manufacturing, Bayview Avenue, Clayton, VIC 3168, Australia
| | - Nigel Kirby
- Australian Synchrotron, 800 Blackburn Rd, Clayton, VIC 3168, Australia
| | - Rajkumar Banerjee
- Department of Oils, lipids science and technology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India; Academy of Scientific and Innovation Research (AcSIR), Ghaziabad, 201002, India
| | - Surendar Reddy Bathula
- Academy of Scientific and Innovation Research (AcSIR), Ghaziabad, 201002, India; Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad-500007, India
| | - Calum J Drummond
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne 3000, Victoria, Australia
| | - Charlotte E Conn
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne 3000, Victoria, Australia.
| |
Collapse
|
15
|
Sarkar S, Mishra A, Periasamy S, Dyett B, Dogra P, Ball AS, Yeo LY, White JF, Wang Z, Cristini V, Jagannath C, Khan A, Soni SK, Drummond CJ, Conn CE. Prospective Subunit Nanovaccine against Mycobacterium tuberculosis Infection─Cubosome Lipid Nanocarriers of Cord Factor, Trehalose 6,6' Dimycolate. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37262346 DOI: 10.1021/acsami.3c04063] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
An improved vaccine is urgently needed to replace the now more than 100-year-old Bacillus Calmette-Guérin (BCG) vaccine against tuberculosis (TB) disease, which represents a significant burden on global public health. Mycolic acid, or cord factor trehalose 6,6' dimycolate (TDM), a lipid component abundant in the cell wall of the pathogen Mycobacterium tuberculosis (MTB), has been shown to have strong immunostimulatory activity but remains underexplored due to its high toxicity and poor solubility. Herein, we employed a novel strategy to encapsulate TDM within a cubosome lipid nanocarrier as a potential subunit nanovaccine candidate against TB. This strategy not only increased the solubility and reduced the toxicity of TDM but also elicited a protective immune response to control MTB growth in macrophages. Both pre-treatment and concurrent treatment of the TDM encapsulated in lipid monoolein (MO) cubosomes (MO-TDM) (1 mol %) induced a strong proinflammatory cytokine response in MTB-infected macrophages, due to epigenetic changes at the promoters of tumor necrosis factor alpha (TNF-α) and interleukin 6 (IL-6) in comparison to the untreated control. Furthermore, treatment with MO-TDM (1 mol %) cubosomes significantly improved antigen processing and presentation capabilities of MTB-infected macrophages to CD4 T cells. The ability of MO-TDM (1 mol %) cubosomes to induce a robust innate and adaptive response in vitro was further supported by a mathematical modeling study predicting the vaccine efficacy in vivo. Overall, these results indicate a strong immunostimulatory effect of TDM when delivered through the lipid nanocarrier, suggesting its potential as a novel TB vaccine.
Collapse
Affiliation(s)
- Sampa Sarkar
- School of Science, STEM College, RMIT University, Melbourne 3001, Victoria, Australia
| | - Abhishek Mishra
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Houston, Texas 77030, United States
| | - Selvakannan Periasamy
- School of Science, STEM College, RMIT University, Melbourne 3001, Victoria, Australia
| | - Brendan Dyett
- School of Science, STEM College, RMIT University, Melbourne 3001, Victoria, Australia
| | - Prashant Dogra
- Mathematics in Medicine Program, Houston Methodist Research Institute, Houston, Texas 77030, United States
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York 10021, United States
| | - Andrew S Ball
- School of Science, STEM College, RMIT University, Melbourne 3001, Victoria, Australia
| | - Leslie Y Yeo
- School of Engineering, STEM College, RMIT University, Melbourne 3001, Victoria, Australia
| | - Jacinta F White
- The Commonwealth Scientific and Industrial Research Organisation, Clayton 3169, Victoria, Australia
| | - Zhihui Wang
- Mathematics in Medicine Program, Houston Methodist Research Institute, Houston, Texas 77030, United States
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York 10021, United States
- Neal Cancer Center, Houston Methodist Research Institute, Houston, Texas 77030, United States
| | - Vittorio Cristini
- Mathematics in Medicine Program, Houston Methodist Research Institute, Houston, Texas 77030, United States
- Neal Cancer Center, Houston Methodist Research Institute, Houston, Texas 77030, United States
- Department of Imaging Physics, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, United States
- Physiology, Biophysics, and Systems Biology Program, Graduate School of Medical Sciences, Weill Cornell Medicine, New York, New York 10021, United States
| | - Chinnaswamy Jagannath
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Houston, Texas 77030, United States
| | - Arshad Khan
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Houston, Texas 77030, United States
| | - Sarvesh K Soni
- School of Science, STEM College, RMIT University, Melbourne 3001, Victoria, Australia
| | - Calum J Drummond
- School of Science, STEM College, RMIT University, Melbourne 3001, Victoria, Australia
| | - Charlotte E Conn
- School of Science, STEM College, RMIT University, Melbourne 3001, Victoria, Australia
| |
Collapse
|
16
|
Yu H, Dyett BP, Zhai J, Strachan JB, Drummond CJ, Conn CE. Formation of particulate lipid lyotropic liquid crystalline nanocarriers using a microfluidic platform. J Colloid Interface Sci 2023; 634:279-289. [PMID: 36542965 DOI: 10.1016/j.jcis.2022.12.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/30/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022]
Abstract
HYPOTHESIS Non-lamellar lyotropic liquid crystal nanoparticles (LLCNPs) are gaining significant interest in the fields of drug delivery and nanomedicine. Traditional, top-down formulation strategies for LLCNPs are typically low-throughput, can lack controllability and reproducibility in the particle size distribution, and may be unsuitable for loading more fragile therapeutics. The development of a controllable, reproducible, scalable, and high-throughput strategy is urgently needed. EXPERIMENTS Monoolein (MO)-based LLCNPs with various stabilizers (F127, F108, and Tween 80) and phytantriol (PT)-F127 cubosomes were produced at various flow conditions via a bottom-up method using a microfluidic platform. FINDINGS This simple enabling strategy was used to formulate LLCNPs with lower polydispersity compared to the traditional top-down homogenization method. Significantly, particle size could be quantitatively controlled by varying the overall flow-rate; a scaling law was identified between nanoparticle mean size and the total flow rate (Q) of meansize∼Q-0.15 for MO cubosomes and meansize∼Q-0.19 for PT cubosomes (at a fixed flow rate ratio). Effective size control was achieved for a range of cubosome formulations involving different lipids and stabilizers. The formulation of stable, drug-loaded cubosomes with high encapsulation efficiency using this method was exemplified using calcein as a model drug. This work will further promote the utilisation of LLCNPs in nanomedicine and facilitate their clinical translation.
Collapse
Affiliation(s)
- Haitao Yu
- School of Science, STEM College, RMIT University, Victoria, Australia.
| | - Brendan P Dyett
- School of Science, STEM College, RMIT University, Victoria, Australia
| | - Jiali Zhai
- School of Science, STEM College, RMIT University, Victoria, Australia
| | - Jamie B Strachan
- School of Science, STEM College, RMIT University, Victoria, Australia
| | - Calum J Drummond
- School of Science, STEM College, RMIT University, Victoria, Australia.
| | - Charlotte E Conn
- School of Science, STEM College, RMIT University, Victoria, Australia.
| |
Collapse
|
17
|
Strachan JB, Dyett B, Chan S, McDonald B, Vlahos R, Valery C, Conn CE. A promising new oral delivery mode for insulin using lipid-filled enteric-coated capsules. BIOMATERIALS ADVANCES 2023; 148:213368. [PMID: 36931081 DOI: 10.1016/j.bioadv.2023.213368] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023]
Abstract
The treatment of diabetes requires daily administration of the peptide insulin via subcutaneous (SC) injection due to poor stability following oral administration. Enteric capsules, designed to protect against low pH conditions in the stomach by providing a polymeric coating which only breaks down in the small intestine, have failed to significantly increase oral bioavailability for insulin. In parallel, amphiphilic lipid mesophases are versatile carrier materials which can protect encapsulated proteins and peptides from undesirable enzymatic degradation. Here we show the combined delivery capacity of a hydrated bicontinuous cubic lipid mesophase embedded within an enteric capsule. Animal studies demonstrated that the lipid filled enteric capsules could deliver insulin with bioavailabilities (relative to SC injection) as high as 99 % and 150 % for fast and slow acting insulin, respectively. These results provide a promising starting point towards further trials to develop an alternative, non-invasive mode for the delivery of insulin.
Collapse
Affiliation(s)
- Jamie B Strachan
- School of Science, STEM College, RMIT University, VIC, 3001 Melbourne, Australia.
| | - Brendan Dyett
- School of Science, STEM College, RMIT University, VIC, 3001 Melbourne, Australia
| | - Stanley Chan
- School of Health and Biomedical Sciences, STEM College, RMIT University, VIC, 3083 Bundoora, Australia
| | - Brody McDonald
- School of Health and Biomedical Sciences, STEM College, RMIT University, VIC, 3083 Bundoora, Australia
| | - Ross Vlahos
- School of Health and Biomedical Sciences, STEM College, RMIT University, VIC, 3083 Bundoora, Australia
| | - Celine Valery
- School of Health and Biomedical Sciences, STEM College, RMIT University, VIC, 3083 Bundoora, Australia
| | - Charlotte E Conn
- School of Science, STEM College, RMIT University, VIC, 3001 Melbourne, Australia.
| |
Collapse
|
18
|
Blanco-Fernández G, Blanco-Fernandez B, Fernández-Ferreiro A, Otero-Espinar FJ. Lipidic lyotropic liquid crystals: Insights on biomedical applications. Adv Colloid Interface Sci 2023; 313:102867. [PMID: 36889183 DOI: 10.1016/j.cis.2023.102867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/26/2023] [Accepted: 02/26/2023] [Indexed: 03/04/2023]
Abstract
Liquid crystals (LCs) possess unique physicochemical properties, translatable into a wide range of applications. To date, lipidic lyotropic LCs (LLCs) have been extensively explored in drug delivery and imaging owing to the capability to encapsulate and release payloads with different characteristics. The current landscape of lipidic LLCs in biomedical applications is provided in this review. Initially, the main properties, types, methods of fabrication and applications of LCs are showcased. Then, a comprehensive discussion of the main biomedical applications of lipidic LLCs accordingly to the application (drug and biomacromolecule delivery, tissue engineering and molecular imaging) and route of administration is examined. Further discussion of the main limitations and perspectives of lipidic LLCs in biomedical applications are also provided. STATEMENT OF SIGNIFICANCE: Liquid crystals (LCs) are those systems between a solid and liquid state that possess unique morphological and physicochemical properties, translatable into a wide range of biomedical applications. A short description of the properties of LCs, their types and manufacturing procedures is given to serve as a background to the topic. Then, the latest and most innovative research in the field of biomedicine is examined, specifically the areas of drug and biomacromolecule delivery, tissue engineering and molecular imaging. Finally, prospects of LCs in biomedicine are discussed to show future trends and perspectives that might be utilized. This article is an ampliation, improvement and actualization of our previous short forum article "Bringing lipidic lyotropic liquid crystal technology into biomedicine" published in TIPS.
Collapse
Affiliation(s)
- Guillermo Blanco-Fernández
- Pharmacology, Pharmacy and Pharmaceutical Technology Department, Faculty of Pharmacy, University of Santiago de Compostela (USC), Santiago de Compostela, Spain; Paraquasil Group, Health Research Institute of Santiago de Compostela (FIDIS), Santiago de Compostela, Spain; Institute of Materials (iMATUS), University of Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Bárbara Blanco-Fernandez
- CIBER in Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Madrid, Spain; Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, Barcelona 08028, Spain.
| | - Anxo Fernández-Ferreiro
- Pharmacology Group, Health Research Institute of Santiago de Compostela (FIDIS), Santiago de Compostela, Spain; Pharmacy Department, University Clinical Hospital of Santiago de Compostela (SERGAS), Santiago de Compostela, Spain.
| | - Francisco J Otero-Espinar
- Pharmacology, Pharmacy and Pharmaceutical Technology Department, Faculty of Pharmacy, University of Santiago de Compostela (USC), Santiago de Compostela, Spain; Paraquasil Group, Health Research Institute of Santiago de Compostela (FIDIS), Santiago de Compostela, Spain; Institute of Materials (iMATUS), University of Santiago de Compostela (USC), Santiago de Compostela, Spain.
| |
Collapse
|
19
|
Zhai J, Bao L, Walduck AK, Dyett BP, Cai X, Li M, Nasa Z, Drummond CJ. Enhancing the photoluminescence and cellular uptake of fluorescent carbon nanodots via cubosome lipid nanocarriers. NANOSCALE 2022; 14:17940-17954. [PMID: 36349848 DOI: 10.1039/d2nr03415h] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Carbon nanodots (C-dots) have attracted much attention for their use in the fields of bioimaging, drug delivery, and sensing due to their excellent fluorescent and photoluminescent properties, photostability, biocompatibility, and amenability to surface modification. Herein, we report a nanocomposite formulation of C-dots (<5 nm) encapsulated in lipid-based lyotropic liquid crystalline nanoparticles (∼250 nm) via either passive diffusion or electrostatic mechanisms. The physicochemical properties of the nanocomposite formulation including particle size, surface charge, internal cubic nanostructures, and pH-dependent fluorescent properties were characterised. Upon loading of C-dots into lipid nanoparticles, the highly ordered inverse bicontinuous cubic mesophase existed in the internal phase of the nanoparticles, demonstrated by synchrotron small angle X-ray scattering, molecular dynamic simulation and cryogenic transmission electron microscopy. The pH-dependent fluorescent property of the C-dots was modified via electrostatic interaction between the C-dots and cationic lipid nanoparticles, which further enhanced the brightness of C-dots through self-quenching prevention. The cytotoxicity and cellular uptake efficiency of the developed nanocomposites were also examined in an epithelial gastric adenocarcinoma cell line (AGS) and a macrophage cell line (stimulated THP-1). Compared to free C-dots, the uptake and cell imaging potential of the C-dot nanocomposites was significantly improved, by several orders of magnitude as demonstrated by cytoplasmic fluorescent intensities using confocal microscopy. Loading C-dots into mesoporous lipid nanocarriers presents a new way of modifying C-dot physicochemical and fluorescent properties, alternative to direct chemical surface modification, and advances the bioimaging potential of C-dots by enhancing cellular uptake efficiency and converging C-dot light emission.
Collapse
Affiliation(s)
- Jiali Zhai
- School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia.
| | - Lei Bao
- School of Engineering, STEM College, RMIT University, Melbourne, VIC 3000, Australia.
| | - Anna K Walduck
- School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia.
| | - Brendan P Dyett
- School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia.
| | - Xudong Cai
- School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia.
| | - Miaosi Li
- School of Engineering, STEM College, RMIT University, Melbourne, VIC 3000, Australia.
| | - Zeyad Nasa
- Micro Nano Research Facility, RMIT University, Melbourne, VIC 3000, Australia
| | - Calum J Drummond
- School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia.
| |
Collapse
|
20
|
Liu T, Gao C, Gu D, Tang H. Cell-based carrier for targeted hitchhiking delivery. Drug Deliv Transl Res 2022; 12:2634-2648. [PMID: 35499717 DOI: 10.1007/s13346-022-01149-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2022] [Indexed: 12/15/2022]
Abstract
Drug delivery systems aim at improving drug transport efficiency and therapeutic efficacy by rational design, and current research on conventional delivery systems brings new developments for disease treatment. Recently, studies on cell-based drug delivery systems are rapidly emerging, which shows great advantages in comparison to conventional drug delivery system. The system uses cells as carriers to delivery conventional drugs or nanomedicines and shows good biocompatibility and enhanced targeting efficiency, beneficial from self component and its physiological function. The construction methodology of cell-based carrier determines the effect on the physiological functions of transporting cell and affects its clinical application. There are different strategies to prepare cell-based carrier, such as direct internalization or surface conjugation of drugs or drug loaded materials. Thus, it is necessary to fully understand the advantages and disadvantages of different strategies for constructing cell-based carrier and then to seek the appropriate construction methodology for achieving better therapeutic results based on disease characterization. We here summarize the application of different types of cell-based carriers reported in recent years and further discuss their applications in disease therapy and the dilemmas faced in clinical translation. We hope that this summary can accelerate the process of clinical translation by promoting the technology development of cell-based carrier.
Collapse
Affiliation(s)
- Tonggong Liu
- Department of Preventive Medicine, School of Public Health, Dongguan Key Laboratory of Environmental Medicine, Guangdong Medical University, Dongguan, 523808, China.,Department of Laboratory Medicine, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518035, China
| | - Cheng Gao
- Department of Laboratory Medicine, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518035, China.,Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Dayong Gu
- Department of Laboratory Medicine, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518035, China.
| | - Huanwen Tang
- Department of Preventive Medicine, School of Public Health, Dongguan Key Laboratory of Environmental Medicine, Guangdong Medical University, Dongguan, 523808, China.
| |
Collapse
|
21
|
Progress and challenges of lyotropic liquid crystalline nanoparticles for innovative therapies. Int J Pharm 2022; 628:122299. [DOI: 10.1016/j.ijpharm.2022.122299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 10/07/2022] [Accepted: 10/10/2022] [Indexed: 11/22/2022]
|
22
|
Cheung E, Xia Y, Caporini MA, Gilmore JL. Tools shaping drug discovery and development. BIOPHYSICS REVIEWS 2022; 3:031301. [PMID: 38505278 PMCID: PMC10903431 DOI: 10.1063/5.0087583] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 06/21/2022] [Indexed: 03/21/2024]
Abstract
Spectroscopic, scattering, and imaging methods play an important role in advancing the study of pharmaceutical and biopharmaceutical therapies. The tools more familiar to scientists within industry and beyond, such as nuclear magnetic resonance and fluorescence spectroscopy, serve two functions: as simple high-throughput techniques for identification and purity analysis, and as potential tools for measuring dynamics and structures of complex biological systems, from proteins and nucleic acids to membranes and nanoparticle delivery systems. With the expansion of commercial small-angle x-ray scattering instruments into the laboratory setting and the accessibility of industrial researchers to small-angle neutron scattering facilities, scattering methods are now used more frequently in the industrial research setting, and probe-less time-resolved small-angle scattering experiments are now able to be conducted to truly probe the mechanism of reactions and the location of individual components in complex model or biological systems. The availability of atomic force microscopes in the past several decades enables measurements that are, in some ways, complementary to the spectroscopic techniques, and wholly orthogonal in others, such as those related to nanomechanics. As therapies have advanced from small molecules to protein biologics and now messenger RNA vaccines, the depth of biophysical knowledge must continue to serve in drug discovery and development to ensure quality of the drug, and the characterization toolbox must be opened up to adapt traditional spectroscopic methods and adopt new techniques for unraveling the complexities of the new modalities. The overview of the biophysical methods in this review is meant to showcase the uses of multiple techniques for different modalities and present recent applications for tackling particularly challenging situations in drug development that can be solved with the aid of fluorescence spectroscopy, nuclear magnetic resonance spectroscopy, atomic force microscopy, and small-angle scattering.
Collapse
Affiliation(s)
- Eugene Cheung
- Moderna, 200 Technology Square, Cambridge, Massachusetts 02139, USA
| | - Yan Xia
- Moderna, 200 Technology Square, Cambridge, Massachusetts 02139, USA
| | - Marc A. Caporini
- Moderna, 200 Technology Square, Cambridge, Massachusetts 02139, USA
| | - Jamie L. Gilmore
- Moderna, 200 Technology Square, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
23
|
Li ZM, Fan ZL, Wang XY, Wang TY. Factors Affecting the Expression of Recombinant Protein and Improvement Strategies in Chinese Hamster Ovary Cells. Front Bioeng Biotechnol 2022; 10:880155. [PMID: 35860329 PMCID: PMC9289362 DOI: 10.3389/fbioe.2022.880155] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 06/01/2022] [Indexed: 01/20/2023] Open
Abstract
Recombinant therapeutic proteins (RTPs) are important parts of biopharmaceuticals. Chinese hamster ovary cells (CHO) have become the main cell hosts for the production of most RTPs approved for marketing because of their high-density suspension growth characteristics, and similar human post-translational modification patterns et al. In recent years, many studies have been performed on CHO cell expression systems, and the yields and quality of recombinant protein expression have been greatly improved. However, the expression levels of some proteins are still low or even difficult-to express in CHO cells. It is urgent further to increase the yields and to express successfully the “difficult-to express” protein in CHO cells. The process of recombinant protein expression of is a complex, involving multiple steps such as transcription, translation, folding processing and secretion. In addition, the inherent characteristics of molecular will also affect the production of protein. Here, we reviewed the factors affecting the expression of recombinant protein and improvement strategies in CHO cells.
Collapse
Affiliation(s)
- Zheng-Mei Li
- School of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang, China
| | - Zhen-Lin Fan
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang, China
- Institutes of Health Central Plain, Xinxiang Medical University, Xinxiang, China
| | - Xiao-Yin Wang
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang, China
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, China
| | - Tian-Yun Wang
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang, China
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, China
- *Correspondence: Tian-Yun Wang,
| |
Collapse
|
24
|
Oliveira C, Ferreira CJO, Sousa M, Paris JL, Gaspar R, Silva BFB, Teixeira JA, Ferreira-Santos P, Botelho CM. A Versatile Nanocarrier-Cubosomes, Characterization, and Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2224. [PMID: 35808060 PMCID: PMC9268278 DOI: 10.3390/nano12132224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/22/2022] [Accepted: 06/25/2022] [Indexed: 02/05/2023]
Abstract
The impact of nanotechnology on the exponential growth of several research areas, particularly nanomedicine, is undeniable. The ability to deliver active molecules to the desired site could significantly improve the efficiency of medical treatments. One of the nanocarriers developed which has drawn researchers' attention are cubosomes, which are nanosized dispersions of lipid bicontinuous cubic phases in water, consisting of a lipidic interior and aqueous domains folded in a cubic lattice. They stand out due to their ability to incorporate hydrophobic, hydrophilic, and amphiphilic compounds, their tortuous internal configuration that provides a sustained release, and the capacity to protect and safely deliver molecules. Several approaches can be taken to prepare this structure, as well as different lipids like monoolein or phytantriol. This review paper describes the different methods to prepare nanocarriers. As it is known, the physicochemical properties of nanocarriers are very important, as they influence their pharmacokinetics and their ability to incorporate and deliver active molecules. Therefore, an extensive characterization is essential to obtain the desired effect. As a result, we have extensively described the most common techniques to characterize cubosomes, particularly nanocarriers. The exceptional properties of the cubosomes make them suitable to be used in several applications in the biomedical field, from cancer therapeutics to imaging, which will be described. Taking in consideration the outstanding properties of cubosomes, their application in several research fields is envisaged.
Collapse
Affiliation(s)
- Cristiana Oliveira
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (C.O.); (C.J.O.F.); (M.S.); (J.A.T.); (P.F.-S.)
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
| | - Celso J. O. Ferreira
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (C.O.); (C.J.O.F.); (M.S.); (J.A.T.); (P.F.-S.)
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
- INL—International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal; (R.G.); (B.F.B.S.)
- CF-UM_UP Department of Physics, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Miguel Sousa
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (C.O.); (C.J.O.F.); (M.S.); (J.A.T.); (P.F.-S.)
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
| | - Juan L. Paris
- Andalusian Centre for Nanomedicine and Biotechnology-BIONAND, 29590 Málaga, Spain;
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga—IBIMA, 29590 Málaga, Spain
| | - Ricardo Gaspar
- INL—International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal; (R.G.); (B.F.B.S.)
| | - Bruno F. B. Silva
- INL—International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal; (R.G.); (B.F.B.S.)
| | - José A. Teixeira
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (C.O.); (C.J.O.F.); (M.S.); (J.A.T.); (P.F.-S.)
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
| | - Pedro Ferreira-Santos
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (C.O.); (C.J.O.F.); (M.S.); (J.A.T.); (P.F.-S.)
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
| | - Claudia M. Botelho
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (C.O.); (C.J.O.F.); (M.S.); (J.A.T.); (P.F.-S.)
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
| |
Collapse
|
25
|
Shan X, Luo L, Yu Z, You J. Recent advances in versatile inverse lyotropic liquid crystals. J Control Release 2022; 348:1-21. [PMID: 35636617 DOI: 10.1016/j.jconrel.2022.05.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/19/2022] [Accepted: 05/21/2022] [Indexed: 01/01/2023]
Abstract
Owing to the rapid and significant progress in advanced materials and life sciences, nanotechnology is increasingly gaining in popularity. Among numerous bio-mimicking carriers, inverse lyotropic liquid crystals are known for their unique properties. These carriers make accommodation of molecules with varied characteristics achievable due to their complicated topologies. Besides, versatile symmetries of inverse LCNPs (lyotropic crystalline nanoparticles) and their aggregating bulk phases allow them to be applied in a wide range of fields including drug delivery, food, cosmetics, material sciences etc. In this review, in-depth summary, discussion and outlook for inverse lyotropic liquid crystals are provided.
Collapse
Affiliation(s)
- Xinyu Shan
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Lihua Luo
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Zhixin Yu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Jian You
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
26
|
Bazylińska U, Wawrzyńczyk D, Kulbacka J, Picci G, Manni LS, Handschin S, Fornasier M, Caltagirone C, Mezzenga R, Murgia S. Hybrid Theranostic Cubosomes for Efficient NIR-Induced Photodynamic Therapy. ACS NANO 2022; 16:5427-5438. [PMID: 35333516 PMCID: PMC9047672 DOI: 10.1021/acsnano.1c09367] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 03/21/2022] [Indexed: 05/29/2023]
Abstract
In recent years, lipid bicontinuous cubic liquid-crystalline nanoparticles known as cubosomes have been under investigation because of their favorable properties as drug nanocarriers useful for anticancer treatments. Herein, we present organic/inorganic hybrid, theranostic cubosomes stabilized in water with a shell of alternate layers of chitosan, single strand DNA (model genetic material for potential gene therapy), and folic acid-chitosan conjugate (the outmost layer), coencapsulating up-converting Er3+ and Yb3+ codoped NaYF4 nanoparticles and daunorubicin. The latter acts as a chemotherapeutic drug of photosensitizing activity, while up-converting nanoparticles serve as energy harvester and diagnostic agent. Cellular uptake and NIR-induced photodynamic therapy were evaluated in vitro against human skin melanoma (MeWo) and ovarian (SKOV-3) cancer cells. Results evidenced the preferential uptake of the theranostic cubosomes in SKOV-3 cells in comparison to uptake in MeWo cells, and this effect was enhanced by the folic acid functionalization of the cubosomes surface. Nanocarriers coloaded with the hybrid fluorophores exhibited a superior NIR-induced photodynamic activity, also confirmed by the improved mitochondrial activity and the most affecting f-actin fibers of cytoskeleton. Similar results, but with higher photocytotoxicity, were detected when folic acid-functionalized cubosomes were incubated with SKOV-3 cells. Taken on the whole, these results prove these hybrid cubosomes are good candidates for the photodynamic treatment of tumor lesions.
Collapse
Affiliation(s)
- Urszula Bazylińska
- Department
of Physical and Quantum Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Dominika Wawrzyńczyk
- Advanced
Materials Engineering and Modelling Group, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Julita Kulbacka
- Department
of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211 A, 50-556 Wroclaw, Poland
| | - Giacomo Picci
- Department
of Chemical and Geological Sciences, University
of Cagliari and CSGI, s.s. 554 bivio Sestu, I-09042 Monserrato, CA, Italy
| | - Livia Salvati Manni
- School
of Medical Sciences, School of Chemistry and University of Sydney
Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
- ETH
Zurich Department of Health Sciences & Technology, Schmelzbergstrasse 9, Zurich 8093, Switzerland
| | - Stephan Handschin
- ETH
Zurich Scientific Center for Optical and Electron Microscopy (ScopeM), Otto-Stern-Weg 3, Zurich 8093, Switzerland
| | - Marco Fornasier
- Department
of Chemical and Geological Sciences, University
of Cagliari and CSGI, s.s. 554 bivio Sestu, I-09042 Monserrato, CA, Italy
- Department
of Chemistry, Lund University, SE-22100 Lund, Sweden
| | - Claudia Caltagirone
- Department
of Chemical and Geological Sciences, University
of Cagliari and CSGI, s.s. 554 bivio Sestu, I-09042 Monserrato, CA, Italy
| | - Raffaele Mezzenga
- ETH
Zurich Department of Health Sciences & Technology, Schmelzbergstrasse 9, Zurich 8093, Switzerland
- ETH
Zurich
Department of Materials, Wolfgang-Pauli-Strasse 10, Zurich 8093, Switzerland
| | - Sergio Murgia
- Department
of Life and Environmental Sciences, University
of Cagliari and CSGI, via Ospedale 72, I-09124 Cagliari, Italy
| |
Collapse
|
27
|
Abourehab MA, Ansari MJ, Singh A, Hassan A, Abdelgawad MA, Shrivastav P, Abualsoud BM, Amaral LS, Pramanik S. Cubosomes as an emerging platform for drug delivery: a state-of-the-art review. J Mater Chem B 2022; 10:2781-2819. [DOI: 10.1039/d2tb00031h] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lipid-based drug delivery nanoparticles, including non-lamellar type, mesophasic nanostructured materials of lyotropic liquid crystals (LLCs), have been a topic of interest for researchers for their applications in encapsulation of drugs...
Collapse
|
28
|
Zhai J, Fan B, Thang SH, Drummond CJ. Novel Amphiphilic Block Copolymers for the Formation of Stimuli-Responsive Non-Lamellar Lipid Nanoparticles. Molecules 2021; 26:3648. [PMID: 34203820 PMCID: PMC8232580 DOI: 10.3390/molecules26123648] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/10/2021] [Accepted: 06/10/2021] [Indexed: 12/04/2022] Open
Abstract
Non-lamellar lyotropic liquid crystalline (LLC) lipid nanoparticles contain internal multidimensional nanostructures such as the inverse bicontinuous cubic and the inverse hexagonal mesophases, which can respond to external stimuli and have the potential of controlling drug release. To date, the internal LLC mesophase responsiveness of these lipid nanoparticles is largely achieved by adding ionizable small molecules to the parent lipid such as monoolein (MO), the mixture of which is then dispersed into nanoparticle suspensions by commercially available poly(ethylene oxide)-poly(propylene oxide) block copolymers. In this study, the Reversible Addition-Fragmentation chain Transfer (RAFT) technique was used to synthesize a series of novel amphiphilic block copolymers (ABCs) containing a hydrophilic poly(ethylene glycol) (PEG) block, a hydrophobic block and one or two responsive blocks, i.e., poly(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzyl acrylate) (PTBA) and/or poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA). High throughput small angle X-ray scattering studies demonstrated that the synthesized ABCs could simultaneously stabilize a range of LLC MO nanoparticles (vesicles, cubosomes, hexosomes, inverse micelles) and provide internal particle nanostructure responsiveness to changes of hydrogen peroxide (H2O2) concentrations, pH and temperature. It was found that the novel functional ABCs can substitute for the commercial polymer stabilizer and the ionizable additive in the formation of next generation non-lamellar lipid nanoparticles. These novel formulations have the potential to control drug release in the tumor microenvironment with endogenous H2O2 and acidic pH conditions.
Collapse
Affiliation(s)
- Jiali Zhai
- School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia
| | - Bo Fan
- School of Chemistry, Monash University, Clayton, VIC 3800, Australia; (B.F.); (S.H.T.)
| | - San H. Thang
- School of Chemistry, Monash University, Clayton, VIC 3800, Australia; (B.F.); (S.H.T.)
| | - Calum J. Drummond
- School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia
| |
Collapse
|
29
|
Pilkington CP, Seddon JM, Elani Y. Microfluidic technologies for the synthesis and manipulation of biomimetic membranous nano-assemblies. Phys Chem Chem Phys 2021; 23:3693-3706. [PMID: 33533338 DOI: 10.1039/d0cp06226j] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Microfluidics has been proposed as an attractive alternative to conventional bulk methods used in the generation of self-assembled biomimetic structures, particularly where there is a desire for more scalable production. The approach also allows for greater control over the self-assembly process, and parameters such as particle architecture, size, and composition can be finely tuned. Microfluidic techniques used in the generation of microscale assemblies (giant vesicles and higher-order multi-compartment assemblies) are fairly well established. These tend to rely on microdroplet templation, and the resulting structures have found use as comparmentalised motifs in artificial cells. Challenges in generating sub-micron droplets have meant that reconfiguring this approach to form nano-scale structures is not straightforward. This is beginning to change however, and recent technological advances have instigated the manufacture and manipulation of an increasingly diverse repertoire of biomimetic nano-assemblies, including liposomes, polymersomes, hybrid particles, multi-lamellar structures, cubosomes, hexosomes, nanodiscs, and virus-like particles. The following review will discuss these higher-order self-assembled nanostructures, including their biochemical and industrial applications, and techniques used in their production and analysis. We suggest ways in which existing technologies could be repurposed for the enhanced design, manufacture, and exploitation of these structures and discuss potential challenges and future research directions. By compiling recent advances in this area, it is hoped we will inspire future efforts toward establishing scalable microfluidic platforms for the generation of biomimetic nanoparticles of enhanced architectural and functional complexity.
Collapse
Affiliation(s)
- Colin P Pilkington
- Department of Chemistry, Molecular Science Research Hub, Imperial College London, 82 Wood Lane, London, W12 0BZ, UK and Department of Chemical Engineering, Exhibition Road, Imperial College London, London, SW7 2AZ, UK.
| | - John M Seddon
- Department of Chemistry, Molecular Science Research Hub, Imperial College London, 82 Wood Lane, London, W12 0BZ, UK
| | - Yuval Elani
- Department of Chemical Engineering, Exhibition Road, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|