1
|
Thakur S, Giri A. Pushing the Limits of Heat Conduction in Covalent Organic Frameworks Through High-Throughput Screening of Their Thermal Conductivity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401702. [PMID: 38567486 DOI: 10.1002/smll.202401702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/08/2024] [Indexed: 04/04/2024]
Abstract
Tailor-made materials featuring large tunability in their thermal transport properties are highly sought-after for diverse applications. However, achieving `user-defined' thermal transport in a single class of material system with tunability across a wide range of thermal conductivity values requires a thorough understanding of the structure-property relationships, which has proven to be challenging. Herein, large-scale computational screening of covalent organic frameworks (COFs) for thermal conductivity is performed, providing a comprehensive understanding of their structure-property relationships by leveraging systematic atomistic simulations of 10,750 COFs with 651 distinct organic linkers. Through the data-driven approach, it is shown that by strategic modulation of their chemical and structural features, the thermal conductivity can be tuned from ultralow (≈0.02 W m-1 K-1) to exceptionally high (≈50 W m-1 K-1) values. It is revealed that achieving high thermal conductivity in COFs requires their assembly through carbon-carbon linkages with densities greater than 500 kg m-3, nominal void fractions (in the range of ≈0.6-0.9) and highly aligned polymeric chains along the heat flow direction. Following these criteria, it is shown that these flexible polymeric materials can possess exceptionally high thermal conductivities, on par with several fully dense inorganic materials. As such, the work reveals that COFs mark a new regime of materials design that combines high thermal conductivities with low densities.
Collapse
Affiliation(s)
- Sandip Thakur
- Department of Mechanical, Industrial, and Systems Engineering, University of Rhode Island, Kingston, RI, 02881, USA
| | - Ashutosh Giri
- Department of Mechanical, Industrial, and Systems Engineering, University of Rhode Island, Kingston, RI, 02881, USA
| |
Collapse
|
2
|
Lin Y, Cheng R, Liang T, Wu W, Li S, Li W. Understanding the influence of secondary building units on the thermal conductivity of metal-organic frameworks via high-throughput computational screening. Phys Chem Chem Phys 2023; 25:32407-32415. [PMID: 38009366 DOI: 10.1039/d3cp04640k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2023]
Abstract
The thermal conductivity of metal-organic frameworks (MOFs) has garnered increasing interest due to their potential applications in energy-related fields. However, due to the diversity of building units, understanding the relationship between MOF structures and their thermal conductivity remains an imperative challenge. In this study, we predicted the thermal conductivity (κ) of MOFs using equilibrium molecular dynamics (EMD) simulations and investigated the contribution of structure properties to their thermal conductivity. It is revealed that the arrangement of secondary building units (SBUs) with a closer distance of metal atoms, a larger proportion of metal elements, and transition metal elements (Fe, Mn, and Co) leads to high thermal conductivity. To generally quantify the influence of such factors on thermal conductivity, the pathway factors with SBU influence (Pm) were proposed and can be used to efficiently classify structures into high, medium, and low thermal conductivity types. It was found that Pm indicates that MOFs with met topology tend to have high thermal conductivity, while rna and pcu topologies naturally tend to possess medium and low thermal conductivity. Moreover, it was also suggested that taking Pm as a descriptor in the machine learning algorithms can significantly improve the prediction accuracy for thermal conductivity. This study offers molecular insight into the impact of various SBUs on thermal conductivity in framework-based nanomaterials, which may guide the rational design of nanoporous materials with desirable thermal conductivity.
Collapse
Affiliation(s)
- Yuanchuang Lin
- Energy & Electricity Research Center, Jinan University, Zhuhai, 519070, China.
| | - Ruihuan Cheng
- Department of Mechanical Engineering, The University of HongKong, Pokfulam Road, HongKong SAR 999077, China
| | - Tiangui Liang
- Energy & Electricity Research Center, Jinan University, Zhuhai, 519070, China.
| | - Weixiong Wu
- Energy & Electricity Research Center, Jinan University, Zhuhai, 519070, China.
| | - Song Li
- Department of New Energy Science and Engineering, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Wei Li
- Energy & Electricity Research Center, Jinan University, Zhuhai, 519070, China.
| |
Collapse
|
3
|
Cheng R, Wei W, Zhang J, Li S. Understanding the Heat Transfer Performance of Zeolitic Imidazolate Frameworks upon Gas Adsorption by Molecular Dynamics Simulations. J Phys Chem B 2023; 127:9390-9398. [PMID: 37851407 DOI: 10.1021/acs.jpcb.3c04372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
Metal-organic frameworks (MOFs) with ultrahigh specific surface area and porosity have emerged as promising nanoporous materials for gas separation, storage, and adsorption-driven thermal energy conversion systems such as adsorption heat pumps. However, an inadequate understanding of the thermal transport of MOFs with adsorbed gases hampers the thermal management of such systems in practical applications. In this work, an in-depth investigation on the mechanistic heat transfer performance of three topological zeolitic imidazolate frameworks (ZIFs) upon hydrogen, methane, and ethanol adsorption was carried out by molecular dynamics simulations. It is revealed that the trade-off between the additional heat transfer pathway and phonon scattering resulting from adsorbed gases determines the thermal conductivity of ZIFs. It is found that the increased thermal conductivity with the increased number of adsorbed gases is correlated with the overlap energy between the vibrational density of states of gases and Zn atoms, suggesting the additional heat transfer pathways formed between gas molecules and frameworks. Moreover, the gas spatial distribution and diffusion also impose remarkable impacts on the heat transfer performance. Both the homogeneous gas distribution and the fast gas diffusion are conducive to form effective heat transfer pathways, leading to enhanced thermal conductivity. This study provides molecular insight into the mechanism of the improved thermal conductivity of ZIFs upon gas adsorption, which may pave the way for effective thermal management in MOF-related applications.
Collapse
Affiliation(s)
- Ruihuan Cheng
- Department of New Energy Science and Engineering, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- China-EU Institute for Clean and Renewable Energy, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wei Wei
- Key Lab for Material Chemistry of Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jincheng Zhang
- Department of New Energy Science and Engineering, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- China-EU Institute for Clean and Renewable Energy, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Song Li
- Department of New Energy Science and Engineering, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- China-EU Institute for Clean and Renewable Energy, Huazhong University of Science and Technology, Wuhan 430074, China
- Shenzhen Research Institute of Huazhong University of Science and Technology, Shenzhen 518057, China
| |
Collapse
|
4
|
Ying P, Liang T, Xu K, Zhang J, Xu J, Zhong Z, Fan Z. Sub-Micrometer Phonon Mean Free Paths in Metal-Organic Frameworks Revealed by Machine Learning Molecular Dynamics Simulations. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37481760 DOI: 10.1021/acsami.3c07770] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Metal-organic frameworks (MOFs) are a family of materials that have high porosity and structural tunability and hold great potential in various applications, many of which require a proper understanding of the thermal transport properties. Molecular dynamics (MD) simulations play an important role in characterizing the thermal transport properties of various materials. However, due to the complexity of the structures, it is difficult to construct accurate empirical interatomic potentials for reliable MD simulations of MOFs. To this end, we develop a set of accurate yet highly efficient machine-learned potentials for three typical MOFs, including MOF-5, HKUST-1, and ZIF-8, using the neuroevolution potential approach as implemented in the GPUMD package, and perform extensive MD simulations to study thermal transport in the three MOFs. Although the lattice thermal conductivity values of the three MOFs are all predicted to be smaller than 1 W/(m K) at room temperature, the phonon mean free paths (MFPs) are found to reach the sub-micrometer scale in the low-frequency region. As a consequence, the apparent thermal conductivity only converges to the diffusive limit for micrometer single crystals, which means that the thermal conductivity is heavily reduced in nanocrystalline MOFs. The sub-micrometer phonon MFPs are also found to be correlated with a moderate temperature dependence of thermal conductivity between those in typical crystalline and amorphous materials. Both the large phonon MFPs and the moderate temperature dependence of thermal conductivity fundamentally change our understanding of thermal transport in MOFs.
Collapse
Affiliation(s)
- Penghua Ying
- School of Science, Harbin Institute of Technology, Shenzhen 518055, P. R. China
| | - Ting Liang
- Department of Electronic Engineering and Materials Science and Technology Research Center, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR 999077, P. R. China
| | - Ke Xu
- Department of Physics, Xiamen University, Xiamen 361005, P. R. China
| | - Jin Zhang
- School of Science, Harbin Institute of Technology, Shenzhen 518055, P. R. China
| | - Jianbin Xu
- Department of Electronic Engineering and Materials Science and Technology Research Center, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR 999077, P. R. China
| | - Zheng Zhong
- School of Science, Harbin Institute of Technology, Shenzhen 518055, P. R. China
| | - Zheyong Fan
- College of Physical Science and Technology, Bohai University, Jinzhou 121013, P. R. China
| |
Collapse
|
5
|
Islamov M, Boone P, Babaei H, McGaughey AJH, Wilmer CE. Correlated missing linker defects increase thermal conductivity in metal-organic framework UiO-66. Chem Sci 2023; 14:6592-6600. [PMID: 37350842 PMCID: PMC10284114 DOI: 10.1039/d2sc06120a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 04/02/2023] [Indexed: 06/24/2023] Open
Abstract
Thermal transport in metal-organic frameworks (MOFs) is an essential but frequently overlooked property. Among the small number of existing studies on thermal transport in MOFs, even fewer have considered explicitly the influence of defects. However, defects naturally exist in MOF crystals and are known to influence many of their material properties. In this work, we investigate the influence of both randomly and symmetrically distributed defects on the thermal conductivity of the MOF UiO-66. Two types of defects were examined: missing linker and missing cluster defects. For symmetrically distributed (i.e., spatially correlated) defects, we considered three experimentally resolved defect nanodomains of UiO-66 with underlying topologies of bcu, reo, and scu. We observed that both randomly distributed missing linker and missing cluster defects typically decrease thermal conductivity, as expected. However, we found that the spatial arrangement of defects can significantly impact thermal conductivity. In particular, the spatially correlated missing linker defect nanodomain (bcu topology) displayed an intriguing anisotropy, with the thermal conductivity along a particular direction being higher than that of the defect-free UiO-66. We attribute this unusual defect-induced increase in thermal conductivity to the removal of the linkers perpendicular to the primary direction of heat transport. These perpendicular linkers act as phonon scattering sources such that removing them increases thermal conductivity in that direction. Moreover, we also observed an increase in phonon group velocity, which might also contribute to the unusual increase. Overall, we show that structural defects could be an additional lever to tune the thermal conductivity of MOFs.
Collapse
Affiliation(s)
- Meiirbek Islamov
- Department of Chemical & Petroleum Engineering, University of Pittsburgh Pittsburgh Pennsylvania 15261 USA
| | - Paul Boone
- Department of Chemical & Petroleum Engineering, University of Pittsburgh Pittsburgh Pennsylvania 15261 USA
| | - Hasan Babaei
- Department of Chemistry, University of California Berkeley California 94720 USA
| | - Alan J H McGaughey
- Department of Mechanical Engineering, Carnegie Mellon University Pittsburgh Pennsylvania 15213 USA
| | - Christopher E Wilmer
- Department of Chemical & Petroleum Engineering, University of Pittsburgh Pittsburgh Pennsylvania 15261 USA
- Department of Electrical & Computer Engineering, University of Pittsburgh Pittsburgh Pennsylvania 15261 USA
| |
Collapse
|
6
|
Rahman MA, Dionne CJ, Giri A. Thermally Conductive Self-Healing Nanoporous Materials Based on Hydrogen-Bonded Organic Frameworks. NANO LETTERS 2022; 22:8534-8540. [PMID: 36260758 DOI: 10.1021/acs.nanolett.2c03032] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Hydrogen-bonded organic frameworks (HOFs) are a class of nanoporous crystalline materials formed by the assembly of organic building blocks that are held together by a network of hydrogen-bonding interactions. Herein, we show that the dynamic and responsive nature of these hydrogen-bonding interactions endows HOFs with a host of unique physical properties that combine ultraflexibility, high thermal conductivities, and the ability to "self-heal". Our systematic atomistic simulations reveal that their unique mechanical properties arise from the ability of the hydrogen-bond arrays to absorb and dissipate energy during deformation. Moreover, we also show that these materials demonstrate relatively high thermal conductivities for porous crystals with low mass densities due to their extended periodic framework structure that is comprised of light atoms. Our results reveal that HOFs mark a new regime of material design combining multifunctional properties that make them ideal candidates for gas storage and separation, flexible electronics, and thermal switching applications.
Collapse
Affiliation(s)
- Muhammad Akif Rahman
- Department of Mechanical Industrial and Systems Engineering, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - C Jaymes Dionne
- Department of Mechanical Industrial and Systems Engineering, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Ashutosh Giri
- Department of Mechanical Industrial and Systems Engineering, University of Rhode Island, Kingston, Rhode Island 02881, United States
| |
Collapse
|
7
|
The Chemistry and Applications of Metal-Organic Frameworks (MOFs) as Industrial Enzyme Immobilization Systems. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27144529. [PMID: 35889401 PMCID: PMC9320690 DOI: 10.3390/molecules27144529] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 02/02/2023]
Abstract
Enzymatic biocatalysis is a sustainable technology. Enzymes are versatile and highly efficient biocatalysts, and have been widely employed due to their biodegradable nature. However, because the three-dimensional structure of these enzymes is predominantly maintained by weaker non-covalent interactions, external conditions, such as temperature and pH variations, as well as the presence of chemical compounds, can modify or even neutralize their biological activity. The enablement of this category of processes is the result of the several advances in the areas of molecular biology and biotechnology achieved over the past two decades. In this scenario, metal–organic frameworks (MOFs) are highlighted as efficient supports for enzyme immobilization. They can be used to ‘house’ a specific enzyme, providing it with protection from environmental influences. This review discusses MOFs as structures; emphasizes their synthesis strategies, properties, and applications; explores the existing methods of using immobilization processes of various enzymes; and lists their possible chemical modifications and combinations with other compounds to formulate the ideal supports for a given application.
Collapse
|
8
|
Wieser S, Kamencek T, Schmid R, Bedoya-Martínez N, Zojer E. Exploring the Impact of the Linker Length on Heat Transport in Metal-Organic Frameworks. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2142. [PMID: 35807978 PMCID: PMC9268455 DOI: 10.3390/nano12132142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/09/2022] [Accepted: 06/13/2022] [Indexed: 12/04/2022]
Abstract
Metal-organic frameworks (MOFs) are a highly versatile group of porous materials suitable for a broad range of applications, which often crucially depend on the MOFs' heat transport properties. Nevertheless, detailed relationships between the chemical structure of MOFs and their thermal conductivities are still largely missing. To lay the foundations for developing such relationships, we performed non-equilibrium molecular dynamics simulations to analyze heat transport in a selected set of materials. In particular, we focus on the impact of organic linkers, the inorganic nodes and the interfaces between them. To obtain reliable data, great care was taken to generate and thoroughly benchmark system-specific force fields building on ab-initio-based reference data. To systematically separate the different factors arising from the complex structures of MOF, we also studied a series of suitably designed model systems. Notably, besides the expected trend that longer linkers lead to a reduction in thermal conductivity due to an increase in porosity, they also cause an increase in the interface resistance between the different building blocks of the MOFs. This is relevant insofar as the interface resistance dominates the total thermal resistance of the MOF. Employing suitably designed model systems, it can be shown that this dominance of the interface resistance is not the consequence of the specific, potentially weak, chemical interactions between nodes and linkers. Rather, it is inherent to the framework structures of the MOFs. These findings improve our understanding of heat transport in MOFs and will help in tailoring the thermal conductivities of MOFs for specific applications.
Collapse
Affiliation(s)
- Sandro Wieser
- Institute of Solid State Physics, NAWI Graz, Graz University of Technology, 8010 Graz, Austria; (S.W.); (T.K.)
| | - Tomas Kamencek
- Institute of Solid State Physics, NAWI Graz, Graz University of Technology, 8010 Graz, Austria; (S.W.); (T.K.)
- Institute of Physical and Theoretical Chemistry, NAWI Graz, Graz University of Technology, 8010 Graz, Austria
| | - Rochus Schmid
- Computational Materials Chemistry Group, Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, 44801 Bochum, Germany;
| | | | - Egbert Zojer
- Institute of Solid State Physics, NAWI Graz, Graz University of Technology, 8010 Graz, Austria; (S.W.); (T.K.)
| |
Collapse
|