1
|
Huang L, Li B, Jia D, Ge C. Generation of a switchable and tunable rectangular pulse and multi-pulse with different peak powers at the L-band. APPLIED OPTICS 2024; 63:4245-4250. [PMID: 38856599 DOI: 10.1364/ao.520957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 04/22/2024] [Indexed: 06/11/2024]
Abstract
A novel, to our knowledge, L-band erbium-doped fiber laser, utilizing a nonlinear optical loop mirror (NOLM) as a mode-locker, is presented in this study. Through precise adjustments of the polarization controllers (PCs), the laser achieves the generation of rectangular pulses with distinct single wavelengths, λ 1=1593n m and λ 2=1571n m, as well as dual-wavelength operation. The laser's operational mode can extend further to include harmonic mode-locking (HML). Furthermore, the investigation reveals the emergence of trapezoidal pulses and low-peak-power rectangular pulses within proximity of the conventional rectangular pulses. Notably, the evolutions of these low-peak-power pulses with the pump power also adhere to the peak power clamping (PPC) effect. Remarkably, the relative positioning of these pulses remains consistent across varying pump power levels or harmonic orders. Intriguingly, the evolution of the trapezoidal pulse with respect to pump power stands in stark contrast to that of the h-shaped pulse.
Collapse
|
2
|
Zhang W, Liang Y, Gan Y, Huang H, Liang G, Kang Q, Leng X, Jing Q, Wen Q. VTe 2: Broadband Saturable Absorber for Passively Q-Switched Lasers in the Near- and Mid-Infrared Regions. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 38038267 DOI: 10.1021/acsami.3c10790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
In this study, we demonstrate the fabrication of a novel 2D transition metal dichalcogenide, VTe2, into a saturable absorber (SA) by using the liquid phase exfoliation method. Furthermore, the first-principles calculations were conducted to elucidate the electronic band structures and absorption spectrum. The nonlinear optical absorption properties of VTe2 at 1.0, 2.0, and 3.0 μm were measured using open-aperture Z-scan and P-scan methods, which showed saturation intensities and modulation depths of 95.57 GW/cm2 and 9.24%, 3.11 GW/cm2 and 7.26%, and 15.8 MW/cm2 and 17.1%, respectively. Furthermore, in the realm of practical implementation, the achievement of stable passively Q-switched (PQS) lasers employing SA composed of few-layered VTe2 nanosheets has manifested itself with broadband operating wavelengths from 1.0 to ∼3.0 μm. Specifically, PQS laser operations from near-infrared to mid-infrared with pulse durations of 195 and 563 ns for 1.0 and 2.0 μm solid-state lasers, respectively, and 749 ns for an Er3+-doped fluoride fiber laser at 3.0 μm were obtained. Our experimental results demonstrate that VTe2 is a potential broadband SA device for achieving PQS lasers. To the best of our knowledge, this is the first demonstration of using VTe2 as an SA in PQS lasers in the near- and mid-infrared regions, which highlights the potential of VTe2 for future research and applications in optoelectronic devices.
Collapse
Affiliation(s)
- Wenyao Zhang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yuxian Liang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yiyu Gan
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Hongfu Huang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Guowen Liang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Qi Kang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Xudong Leng
- Xinjiang Key for Laboratory of Solid state Physics and Devices, Xinjiang University, 777 Huarui Street, Urumqi 830017, China
| | - Qun Jing
- Xinjiang Key for Laboratory of Solid state Physics and Devices, Xinjiang University, 777 Huarui Street, Urumqi 830017, China
| | - Qiao Wen
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
3
|
Zhang H, Meng G, Wei T, Ding J, Liu Q, Luo J, Liu X. Co doping promotes the alkaline overall seawater electrolysis performance over MnPSe 3 nanosheets. Chem Commun (Camb) 2023; 59:12144-12147. [PMID: 37740354 DOI: 10.1039/d3cc03434h] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Herein, two-dimensional cobalt-doped MnPSe3 nanosheets (CMPS) were constructed, which served as an outstanding bifunctional catalyst for alkaline seawater splitting, i.e., offering the current density of 10 mA cm-2 with applied overpotentials of 59 and 300 mV for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), respectively. The assembled two-electrode system of CMPS//CMPS also demonstrated excellent catalytic activity (10 mA cm-2, 1.59 V) and can remain stable for more than 100 h. Moreover, the theoretical calculations showed that CMPS features a suitable H* adsorption beneficial for the HER, as well as a lower free energy barrier favorable for the OER.
Collapse
Affiliation(s)
- Hao Zhang
- Institute for New Energy Materials & Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Ge Meng
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China.
| | - Tianran Wei
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, School of Resources, Environment and Materials, Guangxi University, Nanning, Guangxi 530004, China.
| | - Junyang Ding
- Institute for New Energy Materials & Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, School of Resources, Environment and Materials, Guangxi University, Nanning, Guangxi 530004, China.
| | - Qian Liu
- Institute for Advanced Study, Chengdu University, Chengdu 610106, Sichuan, China
| | - Jun Luo
- Institute for New Energy Materials & Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
- ShenSi Lab, Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Longhua District, Shenzhen 518110, China
| | - Xijun Liu
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, School of Resources, Environment and Materials, Guangxi University, Nanning, Guangxi 530004, China.
| |
Collapse
|
4
|
Li D, Xu Y, Guo J, Zhang F, Zhang Y, Liu J, Zhang H. Nonlinear optical properties and photoexcited carrier dynamics of MnPS 3 nanosheets. OPTICS EXPRESS 2022; 30:36802-36812. [PMID: 36258602 DOI: 10.1364/oe.471604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/06/2022] [Indexed: 06/16/2023]
Abstract
Here, we systematically report on the preparation of high-quality few-layered MnPS3 nanosheets (NSs) by chemical vapor transport (CVT) and mechanical stripping method, and its carrier dynamics and third-order nonlinear optical properties were studied. Using the classical technique of open aperture Z-scan, a typical phenomenon of saturable absorption (SA) was observed at 475 nm, which indicates that the material is expected to be used as a saturable absorber in ultrafast lasers. The typical phenomenon of reverse saturation absorption (RSA) is observed at 800 and 1550 nm, which shows its potential in the field of broadband optical limiting. Compared with graphene, BP, MXene, MoS2 and other typical two-dimensional materials, MnPS3 NSs has a higher modulation depth. Using the non-degenerate transient absorption spectroscopy technology at room temperature, a slower cooling process of thermal carrier of MnPS3 was observed. Moreover, the carrier lifetime can be tuned according to the wavelength. This work is of great significance to the improvement of MnPS3 based devices, and lays a foundation for the application of MnPS3 in short-wavelength photovoltaic cell, photoelectric detection and other fields.
Collapse
|
5
|
Sun Z, Zhou H, Wang C, Kumar S, Geng D, Yue S, Han X, Haraguchi Y, Shimada K, Cheng P, Chen L, Shi Y, Wu K, Meng S, Feng B. Observation of Topological Flat Bands in the Kagome Semiconductor Nb 3Cl 8. NANO LETTERS 2022; 22:4596-4602. [PMID: 35536689 DOI: 10.1021/acs.nanolett.2c00778] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The destructive interference of wavefunctions in a kagome lattice can give rise to topological flat bands (TFBs) with a highly degenerate state of electrons. Recently, TFBs have been observed in several kagome metals, including Fe3Sn2, FeSn, CoSn, and YMn6Sn6. Nonetheless, kagome materials that are both exfoliable and semiconducting are lacking, which seriously hinders their device applications. Herein, we show that Nb3Cl8, which hosts a breathing kagome lattice, is gapped out because of the absence of inversion symmetry, while the TFBs survive because of the protection of the mirror reflection symmetry. By angle-resolved photoemission spectroscopy measurements and first-principles calculations, we directly observe the TFBs and a moderate band gap in Nb3Cl8. By mechanical exfoliation, we successfully obtain monolayer Nb3Cl8, which is stable under ambient conditions. In addition, our calculations show that monolayer Nb3Cl8 has a magnetic ground state, thus providing opportunities to study the interplay among geometry, topology, and magnetism.
Collapse
Affiliation(s)
- Zhenyu Sun
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Hui Zhou
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Cuixiang Wang
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Shiv Kumar
- Hiroshima Synchrotron Radiation Center, Hiroshima University, 2-313 Kagamiyama, Higashi-Hiroshima 739-0046, Japan
| | - Daiyu Geng
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Shaosheng Yue
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Xin Han
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yuya Haraguchi
- Department of Applied Physics and Chemical Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Kenya Shimada
- Hiroshima Synchrotron Radiation Center, Hiroshima University, 2-313 Kagamiyama, Higashi-Hiroshima 739-0046, Japan
| | - Peng Cheng
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Lan Chen
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, People's Republic of China
| | - Youguo Shi
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Kehui Wu
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, People's Republic of China
| | - Sheng Meng
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Baojie Feng
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
6
|
Dai Y, Yu Q, Yang X, Guo K, Zhang Y, Zhang Y, Zhang J, Li J, Chen J, Deng H, Xian T, Wang X, Wu J, Zhang K. Controllable Synthesis of Narrow-Gap van der Waals Semiconductor Nb 2GeTe 4 with Asymmetric Architecture for Ultrafast Photonics. ACS NANO 2022; 16:4239-4250. [PMID: 35191693 DOI: 10.1021/acsnano.1c10241] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Ultrafast photonics has become an interdisciplinary topic of great consequence due to the spectacular progress of compact and efficient ultrafast pulse generation. Wide spectrum bandwidth is the key element for ultrafast pulse generation due to the Fourier transform limitation. Herein, monoclinic Nb2GeTe4, an emerging class of ternary narrow-gap semiconductors, was used as a real saturable absorber (SA), which manifests superior wide-range optical absorption. The crystallization form and growth mechanism of Nb2GeTe4 were revealed by a thermodynamic phase diagram. Furthermore, the Nb2GeTe4-SA showed reliable saturation intensity and larger modulation depth, ascribed to a built-in electric field driven by the asymmetric crystal architecture confirmed via X-ray diffraction, polarized Raman spectra, and scanning transmission electron microscopy. Based on the Nb2GeTe4-SA, femtosecond mode-locked operation with good overall performance was achieved by a properly designed ring cavity. These results suggest that Nb2GeTe4 shows great promise for ultrafast photonic applications and arouse interests in exploring the intriguing properties of the ternary van der Waals material family.
Collapse
Affiliation(s)
- Yongping Dai
- CAS Key Laboratory of Nanophotonic Materials and Devices & Key Laboratory of Nanodevices and Applications, i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, China
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, China
| | - Qiang Yu
- CAS Key Laboratory of Nanophotonic Materials and Devices & Key Laboratory of Nanodevices and Applications, i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, China
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China
| | - Xiaoxin Yang
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, China
- Shenzhen Key Laboratory of Nanobiomechanics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Kun Guo
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China
| | - Yan Zhang
- CAS Key Laboratory of Nanophotonic Materials and Devices & Key Laboratory of Nanodevices and Applications, i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, China
| | - Yushuang Zhang
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Junrong Zhang
- CAS Key Laboratory of Nanophotonic Materials and Devices & Key Laboratory of Nanodevices and Applications, i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, China
| | - Jie Li
- CAS Key Laboratory of Nanophotonic Materials and Devices & Key Laboratory of Nanodevices and Applications, i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, China
| | - Jie Chen
- CAS Key Laboratory of Nanophotonic Materials and Devices & Key Laboratory of Nanodevices and Applications, i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, China
- Shanghai IC R&D Center, Shanghai 201210, China
| | - Haiqin Deng
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China
| | - Tianhao Xian
- State Key Laboratory of Advanced Optical Communication System and Networks, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiao Wang
- Shenzhen Key Laboratory of Nanobiomechanics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jian Wu
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China
| | - Kai Zhang
- CAS Key Laboratory of Nanophotonic Materials and Devices & Key Laboratory of Nanodevices and Applications, i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, China
| |
Collapse
|
7
|
Guo K, Yu Q, Liu F, Deng H, Yi T, Ren B, Su W, Zhu S, Wang Z, Wu J, Zhou P. Synthesis of Hexagonal Structured GaS Nanosheets for Robust Femtosecond Pulse Generation. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:378. [PMID: 35159722 PMCID: PMC8839219 DOI: 10.3390/nano12030378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/04/2022] [Accepted: 01/21/2022] [Indexed: 02/04/2023]
Abstract
Gallium sulfide (GaS), with a hexagonal structure, has received extensive attention due to its graphene-like structure and derived optical properties. Here, high-quality GaS was obtained via chemical vapor synthesis and then prepared as a saturable absorber by the stamp-assisted localization-transfer technique onto fiber end face. The stability of the material and the laser damage threshold are maintained due to the optimized thickness and the cavity integration form. The potential of the GaS for nonlinear optics is explored by constructing a GaS-based Erbium-doped mode-locked fiber laser. Stable femtosecond (~448 fs) mode-locking operation of the single pulse train is achieved, and the robust mode-locked operation (>30 days) was recorded. Experimental results show the potential of GaS for multi-functional ultrafast high-power lasers and promote continuous research on graphene-like materials in nonlinear optics and photonics.
Collapse
Affiliation(s)
- Kun Guo
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China; (K.G.); (Q.Y.); (H.D.); (B.R.); (P.Z.)
| | - Qiang Yu
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China; (K.G.); (Q.Y.); (H.D.); (B.R.); (P.Z.)
| | - Fangqi Liu
- Hubei Province Key Laboratory of Systems Science in Metallurgical Process, College of Science, The State Key Laboratory for Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China; (F.L.); (S.Z.)
| | - Haiqin Deng
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China; (K.G.); (Q.Y.); (H.D.); (B.R.); (P.Z.)
| | - Tianan Yi
- College of Mechanical and Electrical Engineering, Hohai University, Changzhou 213022, China; (T.Y.); (W.S.)
| | - Bo Ren
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China; (K.G.); (Q.Y.); (H.D.); (B.R.); (P.Z.)
| | - Wei Su
- College of Mechanical and Electrical Engineering, Hohai University, Changzhou 213022, China; (T.Y.); (W.S.)
| | - Sicong Zhu
- Hubei Province Key Laboratory of Systems Science in Metallurgical Process, College of Science, The State Key Laboratory for Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China; (F.L.); (S.Z.)
| | - Zhiqiang Wang
- Aston Institute of Photonic Technologies, Aston University, Birmingham B4 7ET, UK
- Advanced Photonic Technology Lab, College of Electronic and Optical Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Jian Wu
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China; (K.G.); (Q.Y.); (H.D.); (B.R.); (P.Z.)
| | - Pu Zhou
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China; (K.G.); (Q.Y.); (H.D.); (B.R.); (P.Z.)
| |
Collapse
|
8
|
Yu Q, Wang S, Zhang Y, Dong Z, Deng H, Guo K, Wang T, Shi X, Liu F, Xian T, Zhu S, Wu J, Zhang Z, Zhang K, Zhan L. Femtosecond ultrafast pulse generation with high-quality 2H-TaS 2 nanosheets via top-down empirical approach. NANOSCALE 2021; 13:20471-20480. [PMID: 34851329 DOI: 10.1039/d1nr07075d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Tantalum disulfide (TaS2), an emerging group VB transition metal dichalcogenide, with unique layered structure, rich phase diagrams, metallic behavior, higher carrier concentration and mobility is emerging as a prototype for revealing basic physical phenomena and developing practical applications. However, its photonics properties and even engineering-related processes are still rare. Here, the top-down experiment demonstration, including synthesis, thickness optimization and nonlinear optical application, has been reported. In addition, the ultrafast (∼373 fs) erbium-doped fiber pulse with a small time-bandwidth product (∼0.34) and long-term stability (∼25 days) was realized using the nonlinear absorption properties of the high-quality 2H-TaS2 nanosheet. These results suggest an experimental route for further ultrafast photonics exploration based on metallic transition metal dichalcogenides.
Collapse
Affiliation(s)
- Qiang Yu
- i-Lab & Key Laboratory of Nanodevices and Applications & Key Laboratory of Nanophotonic Materials and Devices, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China.
| | - Shun Wang
- i-Lab & Key Laboratory of Nanodevices and Applications & Key Laboratory of Nanophotonic Materials and Devices, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, China
| | - Yan Zhang
- i-Lab & Key Laboratory of Nanodevices and Applications & Key Laboratory of Nanophotonic Materials and Devices, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| | - Zhuo Dong
- i-Lab & Key Laboratory of Nanodevices and Applications & Key Laboratory of Nanophotonic Materials and Devices, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| | - Haiqin Deng
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China.
| | - Kun Guo
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China.
| | - Tao Wang
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China.
| | - Xinyao Shi
- i-Lab & Key Laboratory of Nanodevices and Applications & Key Laboratory of Nanophotonic Materials and Devices, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| | - Fangqi Liu
- College of Science and Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Tianhao Xian
- State Key Laboratory of Advanced Optical Communication System and Networks, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Sicong Zhu
- College of Science and Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Jian Wu
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China.
| | - Ziyang Zhang
- i-Lab & Key Laboratory of Nanodevices and Applications & Key Laboratory of Nanophotonic Materials and Devices, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| | - Kai Zhang
- i-Lab & Key Laboratory of Nanodevices and Applications & Key Laboratory of Nanophotonic Materials and Devices, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| | - Li Zhan
- State Key Laboratory of Advanced Optical Communication System and Networks, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
9
|
Yu Q, Guo K, Dai Y, Deng H, Wang T, Wu H, Xu Y, Shi X, Wu J, Zhang K, Zhou P. Black phosphorus for near-infrared ultrafast lasers in the spatial/temporal domain. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:503001. [PMID: 34544055 DOI: 10.1088/1361-648x/ac2862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
Two-dimensional (2D) materials have attracted extensive interests due to their wide range of electronic and optical properties. After continuous and extensive research, black phosphorus (BP), a novel member of 2D layered semiconductor material, benefit for the unique in-plane anisotropic structure, controllable direct bandgap characteristic, and high charge carrier mobility, has attracted tremendous attention and successfully applied in ultrafast pulse generation. This article, which focuses on near-infrared ultrafast laser demonstration of BP, present discussion of preparation methods for high quality BP nanosheet, various BP based ultrafast lasers in the spatial/temporal domain, and the future research needs.
Collapse
Affiliation(s)
- Qiang Yu
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha, People's Republic of China
- I-Lab & Key Laboratory of Nanophotonic Materials and Devices, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, People's Republic of China
| | - Kun Guo
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha, People's Republic of China
| | - Yongping Dai
- I-Lab & Key Laboratory of Nanophotonic Materials and Devices, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, People's Republic of China
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, People's Republic of China
| | - Haiqin Deng
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha, People's Republic of China
| | - Tao Wang
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha, People's Republic of China
| | - Hanshuo Wu
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha, People's Republic of China
| | - Yijun Xu
- I-Lab & Key Laboratory of Nanophotonic Materials and Devices, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, People's Republic of China
| | - Xinyao Shi
- Institute of Quantum Sensing of Wuxi, Wuxi, People's Republic of China
| | - Jian Wu
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha, People's Republic of China
| | - Kai Zhang
- I-Lab & Key Laboratory of Nanophotonic Materials and Devices, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, People's Republic of China
| | - Pu Zhou
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha, People's Republic of China
| |
Collapse
|