1
|
Kang Z, Xue M, Miao H, Wang W, Ding X, Yin MM, Hu YJ. Structure-activity relationship between gold nanoclusters and human serum albumin: Effects of ligand isomerization. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 320:124598. [PMID: 38850819 DOI: 10.1016/j.saa.2024.124598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/08/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
The interactions between gold nanoclusters (AuNCs) and proteins have been extensively investigated. Nevertheless, the structure-activity relationship between gold nanoclusters and proteins in terms of ligand isomerization remained unclear. Here, interactions between Au25NCs modified with para-, inter- and ortho-mercaptobenzoic acid (p/m/o-MBA-Au25NCs) and human serum albumin (HSA) were analyzed. The results of the multispectral approach showed that all three gold nanoclusters bound to the site I in dynamic modes to increase the stability of HSA. There were significant differences in the binding intensity, thermodynamic parameters, main driving forces, and binding ratios between these three gold nanoclusters and HSA, which might be related to the existence forms of the three ligands on the surface of AuNCs. Due to the different polarities of AuNCs themselves, the impact of three AuNCs on the microenvironment of amino acid residues in HSA was also different. It could be seen that ligand isomerization significantly affected the interactions between gold nanoclusters and proteins. This work will provide theoretical guidance for ligand selection and biological applications of metal nanoclusters.
Collapse
Affiliation(s)
- Zhuo Kang
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, PR China
| | - Meng Xue
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, PR China
| | - Hu Miao
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, PR China
| | - Wen Wang
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, PR China
| | - Xin Ding
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, PR China
| | - Miao-Miao Yin
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, PR China.
| | - Yan-Jun Hu
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, PR China.
| |
Collapse
|
2
|
Wu T, Zhang Y, Li H, Pan Z, Ding J, Zhang W, Cai S, Yang R. Facile synthesis of EGCG modified Au nanoparticles and their inhibitory effects on amyloid protein aggregation. Int J Biol Macromol 2024; 281:136501. [PMID: 39393717 DOI: 10.1016/j.ijbiomac.2024.136501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 08/15/2024] [Accepted: 10/09/2024] [Indexed: 10/13/2024]
Abstract
Preventing β-amyloid (Aβ) peptide aggregation by Au nanoparticles (NPs) is a promising strategy for the treatment of Alzheimer's disease. However, construction of Au nanostructures with easy preparation and high therapeutic efficiency is still a challenge. Herein, one-step pulsed laser ablation in water is used to fabricate epigallocatechin-3-gallate (EGCG) modified Au (Au-EGCG) NPs with uniform size. The as-obtained Au-EGCG NPs can effectively inhibit β-amyloid (1-42) peptide (Aβ42) aggregation by the interaction with peptides, which is confirmed by transmission electron microscopy (TEM), fluorescence spectroscopy (thioflavin T (ThT), tyrosine and 8-anilinonaphthalene-1-sulfonic acid (ANS) assays), and Fourier transform infrared (FT-IR) spectroscopy. Besides, they can also effectively attenuate Aβ42-induced cytotoxicity based on the cell viability experiments. This work provides a facile approach to synthesize the surface-functionalized Au NPs for enhanced inhibition of Aβ aggregation and amelioration of Aβ-induced cytotoxicity.
Collapse
Affiliation(s)
- Ting Wu
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, Center of Materials Science and Optoelectronics Engineering, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Yufei Zhang
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, Center of Materials Science and Optoelectronics Engineering, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100190, China; Sino-Danish College, Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haolin Li
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, Center of Materials Science and Optoelectronics Engineering, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100190, China; Sino-Danish College, Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zian Pan
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, Center of Materials Science and Optoelectronics Engineering, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100190, China; Sino-Danish College, Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianwei Ding
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, Center of Materials Science and Optoelectronics Engineering, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Wei Zhang
- National Key Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Beijing 100088, China.
| | - Shuangfei Cai
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, Center of Materials Science and Optoelectronics Engineering, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100190, China.
| | - Rong Yang
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, Center of Materials Science and Optoelectronics Engineering, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100190, China; Sino-Danish College, Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
3
|
Zheng H, Jiang S, Li M, Liu J, Wang X, Liu M, Feng C, Wei Y, Deng X. Multi-Omics Reveals the Genetic and Metabolomic Architecture of Chirality Directed Stem Cell Lineage Diversification. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306400. [PMID: 37880901 DOI: 10.1002/smll.202306400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/05/2023] [Indexed: 10/27/2023]
Abstract
Chirality-directed stem-cell-fate determination involves coordinated transcriptional and metabolomics programming that is only partially understood. Here, using high-throughput transcriptional-metabolic profiling and pipeline network analysis, the molecular architecture of chirality-guided mesenchymal stem cell lineage diversification is revealed. A total of 4769 genes and 250 metabolites are identified that are significantly biased by the biomimetic chiral extracellular microenvironment (ECM). Chirality-dependent energetic metabolism analysis has revealed that glycolysis is preferred during left-handed ECM-facilitated osteogenic differentiation, whereas oxidative phosphorylation is favored during right-handed ECM-promoted adipogenic differentiation. Stereo-specificity in the global metabolite landscape is also demonstrated, in which amino acids are enriched in left-handed ECM, while ether lipids and nucleotides are enriched in right-handed ECM. Furthermore, chirality-ordered transcriptomic-metabolic regulatory networks are established, which address the role of positive feedback loops between key genes and central metabolites in driving lineage diversification. The highly integrated genotype-phenotype picture of stereochemical selectivity would provide the fundamental principle of regenerative material design.
Collapse
Affiliation(s)
- Huimin Zheng
- Beijing Laboratory of Biomedical Materials, Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
- Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, P. R. China
| | - Shengjie Jiang
- Beijing Laboratory of Biomedical Materials, Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
- Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, P. R. China
| | - Meijun Li
- Beijing National Laboratory for Molecular Science CAS Key Laboratory of Colloid Interface and Chemical Thermodynamics Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jinying Liu
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Henan University, Kaifeng, 475004, P. R. China
| | - Xiaowei Wang
- Beijing Laboratory of Biomedical Materials, Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
- Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, P. R. China
| | - Minghua Liu
- Beijing National Laboratory for Molecular Science CAS Key Laboratory of Colloid Interface and Chemical Thermodynamics Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Chuanliang Feng
- State Key Laboratory of Metal Matrix Composite School of Materials and Science Technology, Shanghai Jiaotong University, Shanghai, 200240, P. R. China
| | - Yan Wei
- Beijing Laboratory of Biomedical Materials, Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
- Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, P. R. China
| | - Xuliang Deng
- Beijing Laboratory of Biomedical Materials, Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
- Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, P. R. China
| |
Collapse
|
4
|
Yang B, Lu T, Wang S, Li C, Li C, Li F. Interfacial effect on the ability of peptide-modified gold nanoclusters to inhibit hIAPP fibrillation and cytotoxicity. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2023; 1865:184202. [PMID: 37541643 DOI: 10.1016/j.bbamem.2023.184202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/24/2023] [Accepted: 07/27/2023] [Indexed: 08/06/2023]
Abstract
Deposit of amyloid peptides in the cells is related to various amyloidosis diseases. A variety of nanomaterials have been developed to resist amyloid deposit. Most of the research on the inhibition of nanomaterials against amyloid aggregation are undertaken in solution, while the membranes that may mediate fibrillar aggregation and affect interaction of inhibitors with amyloid peptides in biotic environment are little taken into account. In this study, we synthesized three kinds of gold nanoclusters modified with cysteine (C@AuNCs), glutathione (GSH@AuNCs) and a peptide derived from the core region of hIAPP fibrillation (C-HL-8P@AuNCs), and investigated their inhibitory activities against hIAPP fibrillation in the absence and presence of lipid vesicles (POPC/POPG 4:1 LUVs) by the experiments of ThT fluorescence kinetics, AFM and CD. We also explored the inhibitions of hIAPP-induced membrane damage and cytotoxicity by peptide@AuNCs using fluorescent dye leakage and cell viability assays. Our study revealed that the inhibitory efficiency of these peptide@AuNCs against hIAPP fibrillation follows C-HL-8P@AuNCs≅GSH@AuNCs>C@AuNCs in lipid-free solution and C-HL-8P@AuNCs≫GSH@AuNCs>C@AuNCs in lipid membrane environment. Compared with the results obtained in lipid-free solution, the inhibitions of hIAPP fibrillation observed in lipid membrane environment were more associated with the inhibitions of hIAPP-induced damages of lipid vesicles and INS-1 cells (C-HL-8P@AuNCs≫GSH@AuNCs>C@AuNCs). An additional hydrophobic interaction with the homologous core region of hIAPP, which is only provided by C-HL-8P@AuNCs and largely suppressed in lipid-free solution, enhanced in the membrane environment and therefore made C-HL-8P@AuNCs much more powerful than GSH@AuNCs and C@AuNCs in the inhibitions of hIAPP fibrillation and cytotoxicity.
Collapse
Affiliation(s)
- Boqi Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Tong Lu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Shuyu Wang
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, College of Life Sciences, Jilin University, Changchun 130012, PR China
| | - Chengyao Li
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Chen Li
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, PR China.
| | - Fei Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China.
| |
Collapse
|
5
|
Zheng Y, Wei M, Wu H, Li F, Ling D. Antibacterial metal nanoclusters. J Nanobiotechnology 2022; 20:328. [PMID: 35842693 PMCID: PMC9287886 DOI: 10.1186/s12951-022-01538-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/14/2022] [Indexed: 11/10/2022] Open
Abstract
Combating bacterial infections is one of the most important applications of nanomedicine. In the past two decades, significant efforts have been committed to tune physicochemical properties of nanomaterials for the development of various novel nanoantibiotics. Among which, metal nanoclusters (NCs) with well-defined ultrasmall size and adjustable surface chemistry are emerging as the next-generation high performance nanoantibiotics. Metal NCs can penetrate bacterial cell envelope more easily than conventional nanomaterials due to their ultrasmall size. Meanwhile, the abundant active sites of the metal NCs help to catalyze the bacterial intracellular biochemical processes, resulting in enhanced antibacterial properties. In this review, we discuss the recent developments in metal NCs as a new generation of antimicrobial agents. Based on a brief introduction to the characteristics of metal NCs, we highlight the general working mechanisms by which metal NCs combating the bacterial infections. We also emphasize central roles of core size, element composition, oxidation state, and surface chemistry of metal NCs in their antimicrobial efficacy. Finally, we present a perspective on the remaining challenges and future developments of metal NCs for antibacterial therapeutics.
Collapse
Affiliation(s)
- Youkun Zheng
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Institute of Cardiovascular Research of Southwest Medical University, 646000, Luzhou, China
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Min Wei
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Haibin Wu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Fangyuan Li
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China.
| | - Daishun Ling
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China.
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, 200240, Shanghai, China.
| |
Collapse
|
6
|
Gao G, Liu X, Gu Z, Mu Q, Zhu G, Zhang T, Zhang C, Zhou L, Shen L, Sun T. Engineering Nanointerfaces of Au 25 Clusters for Chaperone-Mediated Peptide Amyloidosis. NANO LETTERS 2022; 22:2964-2970. [PMID: 35297644 DOI: 10.1021/acs.nanolett.2c00149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Synthetic nanomaterials possessing biomolecular-chaperone functions are good candidates for modulating physicochemical interactions in many bioapplications. Despite extensive research, no general principle to engineer nanomaterial surfaces is available to precisely manipulate biomolecular conformations and behaviors, greatly limiting attempts to develop high-performance nanochaperone materials. Here, we demonstrate that, by quantifying the length (-SCxR±, x = 3-11) and charges (R- = -COO-, R+ = -NH3+) of ligands on Au25 gold nanochaperones (AuNCs), simulating binding sites and affinities of amyloid-like peptides with AuNCs, and probing peptide folding and fibrillation in the presence of AuNCs, it is possible to precisely manipulate the peptides' conformations and, thus, their amyloidosis via customizing AuNCs nanointerfaces. We show that intermediate-length liganded AuNCs with a specific charge chaperone peptides' native conformations and thus inhibit their fibrillation, while other types of AuNCs destabilize peptides and promote their fibrillation. We offer a microscopic molecular insight into peptide identity on AuNCs and provide a guideline in customizing nanochaperones via manipulating their nanointerfaces.
Collapse
Affiliation(s)
- Guanbin Gao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Xinglin Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Zhenhua Gu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Qingxue Mu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Guowei Zhu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Ting Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Cheng Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Lin Zhou
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Lei Shen
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China
| | - Taolei Sun
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|
7
|
Luo H, Li B, Liu J, Liu Y, Xiao Q, Huang S. Investigation on conformational variation and fibrillation of human serum albumin affected by molybdenum disulfide quantum dots. Int J Biol Macromol 2021; 190:999-1006. [PMID: 34487782 DOI: 10.1016/j.ijbiomac.2021.08.215] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 11/25/2022]
Abstract
In this work, binding interaction between molybdenum disulfide quantum dots (MoS2 QDs) and human serum albumin (HSA) was researched deeply to dissect the conformational variation and fibrillation of HSA affected by MoS2 QDs. The results revealed that MoS2 QDs bound strongly with HSA with molar ratio of 1:1 under the joint actions of hydrogen bond and van der Waals force, leading to the static fluorescence quenching of HSA. MoS2 QDs caused the secondary structure transition of HSA from α-helix stepwise to β-turn, β-sheet, and random coil gradually. MoS2 QDs reduced both the molar enthalpy change and the melting temperature of HSA, reducing the thermal stability of HSA significantly. It is worth noting that MoS2 QDs inhibited the fibrillation process of HSA according to the reduced hydrophobic environment and the disturbance of disulfide bonds in HSA network structure. These results reveal the precise binding mechanism of MoS2 QDs with HSA at molecular level, providing indispensable information for the potential application of MoS2 QDs in biological fields.
Collapse
Affiliation(s)
- Huajian Luo
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, PR China
| | - Bo Li
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, PR China
| | - Jiajia Liu
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, PR China
| | - Yi Liu
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, PR China
| | - Qi Xiao
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, PR China.
| | - Shan Huang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, PR China.
| |
Collapse
|