1
|
Li G, Chen C, Liu Z, Sun Q, Liang L, Du C, Chen G. Distinguishing thermoelectric and photoelectric modes enables intelligent real-time detection of indoor electrical safety hazards. MATERIALS HORIZONS 2024; 11:1679-1688. [PMID: 38305351 DOI: 10.1039/d3mh02187d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Due to the prevalence of electronic devices, intelligent sensors have attracted much interest for the detecting and providing alarms with respect to indoor electrical safety. Nonetheless, how to effectively identify various indoor electrical safety hazards remains a challenge. In this study, we fabricated single-walled carbon nanotube/poly(3-hexylthiophene-2,5-diyl) (SWCNT/P3HT) composites with exceptional bifunctional thermoelectric and photoelectric responses. Through synergy of the thermo-/photoelectric effects, the composites yielded greatly enhanced output voltages compared with the use of thermoelectric effects alone. Interestingly, modes of heat transfer can be effectively distinguished using the nominal Seebeck coefficients. Based on the remarkable output voltages and deviations in the nominal Seebeck coefficients, we developed indoor intelligent sensors capable of effectively identifying and monitoring diverse indoor electrical conditions, including electrical overheating, fire, and air conditioning flow. This pioneering investigation proposes a novel avenue for designing intelligent sensors that can recognize heat transfer modes and hence effectively monitor indoor electrical safety hazards.
Collapse
Affiliation(s)
- Gang Li
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, China.
| | - Chengzhi Chen
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, China.
| | - Zijian Liu
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, China.
| | - Qi Sun
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China
| | - Lirong Liang
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, China.
| | - Chunyu Du
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, China.
| | - Guangming Chen
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, China.
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
2
|
Yang ZY, Jin XZ, Chen SY, Lei YZ, Wang Y. Designing Poly(3,4-ethylenedioxythiophene) Polystyrene Sulfonate/Graphene Oxide/Graphene Nanosheet/Polyethylene Glycol Phase-Change Composites with Superior Thermal Management for Photo-thermoelectric Generators. ACS APPLIED MATERIALS & INTERFACES 2023; 15:47111-47124. [PMID: 37768923 DOI: 10.1021/acsami.3c11161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
Recently, growing interest in self-powered devices has led to the invention of new energy conversion devices. Photo-thermoelectric generators (PTEGs) have rapidly developed for their ability to harvest both light and thermal energy, but these devices are overly dependent on the continuity of energy input and cannot sustain output in an emergency situation. In the current study, poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS)/graphene oxide (GO)/graphene nanosheets (GNPs)/polyethylene glycol (PEG) phase-change composites (PCCs) were prepared with freeze-drying and vacuum-filling processes to acquire materials suitable for imparting energy storage characteristics to PTEGs. The melting and crystallization enthalpies of the PCCs fabricated based on the PEDOT:PSS/GO/GNP aerogels can reach 211.5 and 207.6 J g-1, respectively, which increase by nearly 5% compared with pure PEG, and the growth rate of thermal conductivity of the composites is as high as 262.7% (1.12 W m-1 K-1). Meanwhile, the excellent photothermal properties and high-temperature shape stability that pure PEG does not possess can also be imparted to PCCs by the aerogels. The PTEG assembled with PCCs and thermoelectric components can achieve a continuous output of over 1500 s after 300 s of light irradiation. After integrating the output of the device during the lamp on/off period, it is found that the total output of the device during the light-off period (8.4 V and 9.6 mW) can far exceed its total output during the light-on period (2.7 V and 4.4 mW). This work provides guidance for modulating the performance of PCCs and giving PTEGs the ability to operate under emergency or extremely harsh conditions and the prepared PTEGs are highly promising for practical use.
Collapse
Affiliation(s)
- Zhen-Yu Yang
- School of Chemistry, Southwest Jiaotong University, Chengdu 610031, China
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
| | - Xin-Zheng Jin
- School of Chemistry, Southwest Jiaotong University, Chengdu 610031, China
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
| | - Shang-Yu Chen
- School of Chemistry, Southwest Jiaotong University, Chengdu 610031, China
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
| | - Yan-Zhou Lei
- Analytical and Testing Center, Southwest Jiaotong University, Chengdu 610031, China
| | - Yong Wang
- School of Chemistry, Southwest Jiaotong University, Chengdu 610031, China
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
| |
Collapse
|
3
|
Tunsound V, Krasian T, Daranarong D, Jantanasakulwong K, Punyodom W, Sriyai M, Somsunan R, Manokruang K, Rachtanapun P, Tipduangta P, Srithep Y, Amnuaypanich S, Dalton AB, Worajittiphon P. Ethyl cellulose composite membranes containing a 2D material (MoS 2) and helical carbon nanotubes for efficient solar steam generation and desalination. Int J Biol Macromol 2023; 244:125390. [PMID: 37330098 DOI: 10.1016/j.ijbiomac.2023.125390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/23/2023] [Accepted: 06/12/2023] [Indexed: 06/19/2023]
Abstract
With the increasing water consumption, water evaporators have been investigated for clean water production. Herein, the fabrication of electrospun composite membrane evaporators based on ethyl cellulose (EC), with the incorporation of light-absorption enhancers 2D MoS2 and helical carbon nanotubes, for steam generation and solar desalination is described. Under natural sunlight, the maximum water evaporation rate was 2.02 kg m-2 h-1 with an evaporation efficiency of 93.2 % (1 sun) and reached 2.42 kg m-2 h-1 at 12:00 pm (1.35 sun). The composite membranes demonstrated self-floating on the air-water interface and minimal accumulation of superficial salt during the desalination process due to the hydrophobic character of EC. For concentrated saline water (21 wt% NaCl), the composite membranes maintained a relatively high evaporation rate of up to ~79 % compared to the freshwater evaporation rate. The composite membranes are robust due to the thermomechanical stability of the polymer even while operating under steam-generating conditions. Over repeated use, they exhibited excellent reusability with a relative water mass change of >90 % compared to the first evaporation cycle. Moreover, desalination of artificial seawater produced a lower cation concentration (~3-5 orders of magnitude) and thereby yielded potable water, indicating the potential for solar-driven freshwater generation.
Collapse
Affiliation(s)
- Vasuphat Tunsound
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Tharnthip Krasian
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Donraporn Daranarong
- Science and Technology Research Institute, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Kittisak Jantanasakulwong
- Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand; Division of Packaging Technology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; The Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50100, Thailand
| | - Winita Punyodom
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Montira Sriyai
- Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand; Bioplastics Production Laboratory for Medical Applications, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Runglawan Somsunan
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Kiattikhun Manokruang
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Pornchai Rachtanapun
- Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand; Division of Packaging Technology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; The Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50100, Thailand
| | - Pratchaya Tipduangta
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Yottha Srithep
- Manufacturing and Materials Research Unit, Department of Manufacturing Engineering, Faculty of Engineering, Mahasarakham University, Mahasarakham 44150, Thailand
| | - Sittipong Amnuaypanich
- Department of Chemistry and the Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Alan B Dalton
- University of Sussex, Brighton BN1 9RH, United Kingdom
| | - Patnarin Worajittiphon
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
4
|
Tang XH, Jin XZ, Zhang Q, Zhao Q, Yang ZY, Fu Q. Achieving Free-Standing PEDOT:PSS Solar Generators with Efficient All-in-One Photothermoelectric Conversion. ACS APPLIED MATERIALS & INTERFACES 2023; 15:23286-23298. [PMID: 37139664 DOI: 10.1021/acsami.3c02852] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Poly(3,4-ethylene dioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) has attracted widespread attention in solar generation due to its unique all-in-one photothermoelectric effect. However, the poor photothermal conversion, low conductivity, and unsatisfied mechanical properties limit its practical application. Herein, ionic liquids (IL) were first used to improve the conductivity of PEDOT:PSS through ion exchange, then surface-charged nanoparticles SiO2-NH2 (SiO2+) were added to promote the dispersion of IL and as a thermal insulator to decrease thermal conductivity. It resulted in a largely enhanced electrical conductivity and decreased thermal conductivity of PEDOT:PSS simultaneously. The obtained PEDOT:PSS/Ionic Liquid/SiO2+ (P_IL_SiO2+) film generated an excellent photothermal conversion of 46.15 °C, which improved ∼134 and ∼82.3% compared with PEDOT:PSS and PEDOT:PSS/Ionic Liquid (P_IL) composites, respectively. In addition, the thermoelectric performance increased by ∼270% more than P_IL films. As a result, the photothermoelectric effect for the self-supported three-arm devices produced an enormous output current and power of ∼50 μA and 13.57 nW, respectively, which showed significant improvement compared with other PEDOT:PSS films reported in the literature. Furthermore, the devices demonstrated outstanding stability with an internal resistance variation of less than 5% after 2000 cycles of bending. Our research offered significant insights into the flexible, high-performance, all-in-one photothermoelectric integration.
Collapse
Affiliation(s)
- Xiao-Hong Tang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Xin-Zheng Jin
- School of Materials Science & Engineering, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, P. R. China
| | - Qi Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Qian Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Zhen-Yu Yang
- School of Materials Science & Engineering, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, P. R. China
| | - Qiang Fu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| |
Collapse
|
5
|
Carvalho R, Brito-Pereira R, Pereira N, Lima AC, Ribeiro C, Correia V, Lanceros-Mendez S, Martins P. Improving the Performance of Paper-Based Dipole Antennas by Electromagnetic Flux Concentration. ACS APPLIED MATERIALS & INTERFACES 2023; 15:11234-11243. [PMID: 36802478 PMCID: PMC9982821 DOI: 10.1021/acsami.2c19889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
One of the essential issues in modern advanced materials science is to design and manufacture flexible devices, in particular in the framework of the Internet of Things (IoT), to improve integration into applications. An antenna is an essential component of wireless communication modules and, in addition to flexibility, compact dimensions, printability, low cost, and environmentally friendlier production strategies, also represent relevant functional challenges. Concerning the antenna's performance, the optimization of the reflection coefficient and maximum range remain the key goals. In this context, this work reports on screen-printed paper@Ag-based antennas and optimizes their functional properties, with improvements in the reflection coefficient (S11) from -8 to -56 dB and maximum transmission range from 208 to 256 m, with the introduction of a PVA-Fe3O4@Ag magnetoactive layer into the antenna's structure. The incorporated magnetic nanostructures allow the optimization of the functional features of antennas with possible applications ranging from broadband arrays to portable wireless devices. In parallel, the use of printing technologies and sustainable materials represents a step toward more sustainable electronics.
Collapse
Affiliation(s)
- R. Carvalho
- Physics
Centre of Minho and Porto Universities (CF-UM-UP), Universidade do Minho, 4710-057 Braga, Portugal
- LaPMET—Laboratory
of Physics for Materials and Emergent Technologies, Universidade do Minho, 4710-057 Braga, Portugal
| | - R. Brito-Pereira
- Physics
Centre of Minho and Porto Universities (CF-UM-UP), Universidade do Minho, 4710-057 Braga, Portugal
- LaPMET—Laboratory
of Physics for Materials and Emergent Technologies, Universidade do Minho, 4710-057 Braga, Portugal
- Centre
for MicroElectroMechanics Systems (CMEMS), University of Minho, 4710-057 Braga, Portugal
| | - N. Pereira
- Physics
Centre of Minho and Porto Universities (CF-UM-UP), Universidade do Minho, 4710-057 Braga, Portugal
- LaPMET—Laboratory
of Physics for Materials and Emergent Technologies, Universidade do Minho, 4710-057 Braga, Portugal
| | - A. C. Lima
- Physics
Centre of Minho and Porto Universities (CF-UM-UP), Universidade do Minho, 4710-057 Braga, Portugal
- LaPMET—Laboratory
of Physics for Materials and Emergent Technologies, Universidade do Minho, 4710-057 Braga, Portugal
| | - C. Ribeiro
- Physics
Centre of Minho and Porto Universities (CF-UM-UP), Universidade do Minho, 4710-057 Braga, Portugal
- LaPMET—Laboratory
of Physics for Materials and Emergent Technologies, Universidade do Minho, 4710-057 Braga, Portugal
| | - V. Correia
- Centre
for MicroElectroMechanics Systems (CMEMS), University of Minho, 4710-057 Braga, Portugal
| | - S. Lanceros-Mendez
- Physics
Centre of Minho and Porto Universities (CF-UM-UP), Universidade do Minho, 4710-057 Braga, Portugal
- LaPMET—Laboratory
of Physics for Materials and Emergent Technologies, Universidade do Minho, 4710-057 Braga, Portugal
- BCMaterials,
Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
- IKERBASQUE,
Basque Foundation for Science, 48009 Bilbao, Spain
| | - P. Martins
- Physics
Centre of Minho and Porto Universities (CF-UM-UP), Universidade do Minho, 4710-057 Braga, Portugal
- LaPMET—Laboratory
of Physics for Materials and Emergent Technologies, Universidade do Minho, 4710-057 Braga, Portugal
- IB-S
Institute
of Science and Innovation for Sustainability, University of Minho, 4710-057 Braga, Portugal
| |
Collapse
|
6
|
Zhang M, Cao X, Wen M, Chen C, Wen Q, Fu Q, Deng H. Highly Electrical Conductive PEDOT:PSS/SWCNT Flexible Thermoelectric Films Fabricated by a High-Velocity Non-solvent Turbulent Secondary Doping Approach. ACS APPLIED MATERIALS & INTERFACES 2023; 15:10947-10957. [PMID: 36797207 DOI: 10.1021/acsami.2c21025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Materials based on poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) can be potentially employed as flexible thermoelectric generators (TEGs) to capture waste heat and generate electrical energy. Among various methods, secondary doping is an effective way to modulate its thermoelectric (TE) performance. Different from conventional measures such as dropping, soaking, and steam fumigation, strong shear is integrated with the doping process and termed high-velocity non-solvent turbulent secondary doping (HNTD). We systematically investigate the transformation of PEDOT:PSS during this procedure and the formation mechanism of its highly conductive pathway. It is illustrated that PEDOT:PSS experiences PSS swelling, the phase separation of PEDOT from PSS, the removal of isolated PSS, and the evolution of PEDOT to a linear conformation. These evolutions contribute to the substantial elevation of electrical conductivity (σ). Furthermore, by employing continuous single-walled carbon nanotube (SWCNT) networks as structural units, highly conductive flexible PEDOT:PSS/SWCNT TE thin films could be prepared without sacrificing the Seebeck coefficient (S). Additionally, the effect of HNTD and direct addition method on TE properties of composite films is also compared. Finally, the PEDOT:PSS composite film with 40 wt % SWCNTs by the HNTD method exhibits the maximized power factor (PF) of 501.31 ± 19.23 μW m-1 K-2 with σ of 4717.8 ± 41.51 S cm-1 and S of 32.6 ± 0.13 μV K-1 at room temperature. It is worth mentioning that the σ value 4717.8 ± 41.51 S cm-1 is the highest among the composites based on commercial carbon fillers and organic semiconductors. Finally, a 6-leg TEGs prototype is assembled and illustrates an output power of 4.416 μW under a temperature difference (ΔT) of 58 K. It is thought that such a strategy may provide some guidelines for manufacturing PEDOT:PSS-based functional materials.
Collapse
Affiliation(s)
- Mao Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Xiaoyin Cao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Ming Wen
- Special Polymer Materials for Automobile Key Laboratory of Sichuan Province, Sichuan Chuanhuan Technology Co. Ltd., Dazhou 635100, P. R. China
| | - Chuanliang Chen
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Qichao Wen
- Special Polymer Materials for Automobile Key Laboratory of Sichuan Province, Sichuan Chuanhuan Technology Co. Ltd., Dazhou 635100, P. R. China
| | - Qiang Fu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Hua Deng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| |
Collapse
|
7
|
Xie H, Zhang Y, Gao P. Thermoelectric-Powered Sensors for Internet of Things. MICROMACHINES 2022; 14:31. [PMID: 36677092 PMCID: PMC9861844 DOI: 10.3390/mi14010031] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/09/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
The Internet of Things (IoT) combines various sensors and the internet to form an expanded network, realizing the interconnection between human beings and machines anytime and anywhere. Nevertheless, the problem of energy supply limits the large-scale implementation of the IoT. Fortunately, thermoelectric generators (TEGs), which can directly convert thermal gradients into electricity, have attracted extensive attention in the IoT field due to their unique benefits, such as small sizes, long maintenance cycles, high stability, and no noise. Therefore, it is vital to integrate the significantly advanced research on TEGs into IoT. In this review, we first outline the basic principle of the thermoelectricity effect and summarize the common preparation methods for thermoelectric functional parts in TEGs. Then, we elaborate on the application of TEG-powered sensors in the human body, including wearable and implantable medical electronic devices. This is followed by a discussion on the application of scene sensors for IoTs, for example, building energy management and airliners. Finally, we provide a further outlook on the current challenges and opportunities.
Collapse
Affiliation(s)
- Huadeng Xie
- College of Chemistry, Fuzhou University, Fuzhou 350108, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Chinese Academy of Sciences, Xiamen 361021, China
| | - Yingyao Zhang
- College of Chemistry, Fuzhou University, Fuzhou 350108, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Chinese Academy of Sciences, Xiamen 361021, China
| | - Peng Gao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Chinese Academy of Sciences, Xiamen 361021, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350002, China
| |
Collapse
|
8
|
He N, Guo Z, Zhang C, Yu Y, Tan L, Luo H, Li L, Bahnemann J, Chen H, Jiang F. Bifunctional 2D/2D g-C 3N 4/BiO 2-x nanosheets heterojunction for bacterial disinfection mechanisms under visible and near-infrared light irradiation. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129123. [PMID: 35596988 DOI: 10.1016/j.jhazmat.2022.129123] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/06/2022] [Accepted: 05/07/2022] [Indexed: 06/15/2023]
Abstract
The efficient deployment of visible and near-infrared (NIR) light for photocatalytic disinfection is of great concern a matter. Herein, we report a specific bifunctional 2D/2D g-C3N4/BiO2-x nanosheets heterojunction, prepared through a self-assembly approach. Delightfully, the obtained 2D/2D heterojunctions exhibited satisfactory photocatalytic disinfection performance towards Escherichia coli K-12 (E. coli K-12) under visible light irradiation, which was credited to the Z-scheme interfacial heterojunction facilitating the migration of photogenerated carries. The photoactivity enhancement driven by NIR light illumination was ascribed to the cooperative synergy effect of photothermal effect and "hot electrons", engineering efficient charge transfer. Intriguingly, the carboxyl groups emerged on g-C3N4 nanosheets contributed a vital role in establishing the enhanced photocatalytic reaction. Moreover, the disinfection mechanism was systematically described. The cell membrane was destroyed, evidenced by the generation of lipid peroxidation reaction and loss of energy metabolism. Subsequently, the damage of defense enzymes and release of intracellular constituents announced the irreversible death of E. coli K-12. Interestingly enough, considerable microbial community shifts of surface water were observed after visible and NIR light exposure, highlighting the critical feature of disinfection process in shaping microbial communities. The authors believe that this work gives a fresh light on the feasibility of heterostructures-enabled disinfection processes.
Collapse
Affiliation(s)
- Nannan He
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Zichang Guo
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Chen Zhang
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yalin Yu
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Ling Tan
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Haopeng Luo
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Lu Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Janina Bahnemann
- Institute of Physics, University of Augsburg, Universitätsstrasse 1, 86159 Augsburg, Germany
| | - Huan Chen
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Fang Jiang
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
9
|
Yang ZY, Jin XZ, Huang CH, Lei YZ, Wang Y. Constructing A/B-Side Heterogeneous Asynchronous Structure with Ag 2Se Layers and Bushy-like PPy toward High-Performance Flexible Photo-Thermoelectric Generators. ACS APPLIED MATERIALS & INTERFACES 2022; 14:33370-33382. [PMID: 35835593 DOI: 10.1021/acsami.2c09009] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The enthusiasm for environmental energy harvesting has triggered a boom in research on photo-thermoelectric generators (PTEGs), and the relevant applications are mainly focused on self-energy supply sensors owing to the limitations of their output performances. For this purpose, high-output hierarchical heterogeneous PTEGs were constructed by assembling separately optimized thermoelectric (TE) and photothermal (PT) layers. The pressure and temperature conditions of Ag2Se films during the pressing process were first explored, and the sample with the optimal performance and least defects was selected as the TE layer. At the same time, different morphologies of polypyrrole (PPy) PT layers were electrochemically synthesized. It is found that the three-dimensional structure of Bushy-PPy could effectively improve the light absorption and thus enhance the PT conversion performance. The final assembled PTEG can produce an output voltage of -9.03 mV and an output power of 3.53 μW under the irradiation of a near-infrared light source of 300 mW cm-2 without a cooling source, and it can also achieve considerable output power under visible light irradiation of different intensities. Combining its high retentions of electrical conductivity (99%) and output performance (97%) after 1000 bending-tension cycles, it is proven to be a promising next-generation wearable flexible energy harvesting device.
Collapse
Affiliation(s)
- Zhen-Yu Yang
- School of Materials Science and Engineering, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
| | - Xin-Zheng Jin
- School of Materials Science and Engineering, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
| | - Chen-Hui Huang
- School of Materials Science and Engineering, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
| | - Yan-Zhou Lei
- Analytical and Testing Center, Southwest Jiaotong University, Chengdu 610031, China
| | - Yong Wang
- School of Materials Science and Engineering, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
| |
Collapse
|
10
|
Jin XZ, Li H, Wang Y, Yang ZY, Qi XD, Yang JH, Wang Y. Ultraflexible PEDOT:PSS/Helical Carbon Nanotubes Film for All-in-One Photothermoelectric Conversion. ACS APPLIED MATERIALS & INTERFACES 2022; 14:27083-27095. [PMID: 35638614 DOI: 10.1021/acsami.2c05875] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Photothermoelectric (PTE) conversion can achieve the recovery of low-quality light or heat efficiently. Much effort has been devoted to the exploitation of the inorganic heterogeneous asynchronous (separate) PTE conversion system. Here, a full organic PTE film with a pseudobilayer architecture (PBA) according to the homogeneous synchronous (all-in-one) PTE conversion hypothesis was prepared via successive drop-casting a PEDOT:PSS/helical carbon nanotube (HCNT) mixture and PEDOT:PSS onto a vacuum ultraviolet treated substrate. Our results prove that the heptagon-pentagon pairs embedded in HCNTs promote a denser arrangement of the molecular chains of PEDOT, which enhances the crystallinity and affects the thermoelectric properties. The weak connection and hollow structure of HCNTs inhibit the dissipation of heat, and the zT value of the film reaches over 0.01. The PBA film shows better photothermal conversion performance than a neat PEDOT:PSS film and stably generates a temperature difference of over 25.68 °C without external cooling. A flexible PTE chip demo was manufactured, and the ideal open-circuit voltage (simulated via COMSOL) of that reaches over 1.5 mV under weak NIR stimulation (83.12 mW/cm2), which is the best value reported for an organic all-in-one PTE device, and the real maximum output power reaches 2.55 nW (166.01 mW/cm2). The chip has incredible ultraflexibility, and its inner resistance changes less than 1.42% after 10000 bending cycles and displays ultrahigh stability (similarity >90%) in a continuous periodic output. Our work fills the deficit of homogeneous synchronous PTE research for a PEDOT:PSS composite and is a preliminary attempt in an ultraflexible integrated all-in-one PTE chip design.
Collapse
Affiliation(s)
- Xin-Zheng Jin
- School of Materials Science & Engineering, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, People's Republic of China
| | - Huan Li
- School of Materials Science & Engineering, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, People's Republic of China
| | - Ying Wang
- School of Materials Science & Engineering, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, People's Republic of China
| | - Zhen-Yu Yang
- School of Materials Science & Engineering, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, People's Republic of China
| | - Xiao-Dong Qi
- School of Materials Science & Engineering, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, People's Republic of China
| | - Jing-Hui Yang
- School of Materials Science & Engineering, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, People's Republic of China
| | - Yong Wang
- School of Materials Science & Engineering, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, People's Republic of China
| |
Collapse
|
11
|
Liu Y, Zhang S, Beirne S, Kim K, Qin C, Du Y, Zhou Y, Cheng Z, Wallace GG, Chen J. Wearable Photo-Thermo-Electrochemical Cells (PTECs) Harvesting Solar Energy. Macromol Rapid Commun 2022; 43:e2200001. [PMID: 35065001 DOI: 10.1002/marc.202200001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 01/14/2022] [Indexed: 11/11/2022]
Abstract
Solar induced thermal energy is a vital heat source supplementing body heat to realize thermo-to-electric energy supply for wearable electronics. Thermo-electrochemical cells (TECs), compared to the widely investigated thermoelectric generators (TEGs), show greater potential in wearable applications due to the higher voltage output from low-grade heat and the increased option range of cheap and flexible electrode/electrolyte materials. In this work, a wearable photo-thermo-electrochemical cell (PTEC) is firstly fabricated through the introduction of a polymer-based flexible photothermal film as a solar-absorber and hot electrode, followed by a systematic investigation of wearable device design. The as-prepared PTEC single device shows outstanding output voltage and current density of 15.0 mV and 10.8 A m-2 , 7.1 mV and 8.57 A m-2 , for the device employing p-type and n-type gel electrolytes, respectively. Benefiting from the equivalent performance in current density, a series connection containing 18 pairs of p-n PTEC devices is effectively made, which can harvest solar energy and charge supercapacitors to above 250 mV (1 sun solar illumination). Meanwhile, a watch-strap shaped flexible PTECs (8 p-n pairs) that can be worn on a wrist is fabricated, and the realised voltage above 150 mV under light shows the potential for use in wearable applications. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yuqing Liu
- State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Shuai Zhang
- Intelligent Polymer Research Institute and ARC Centre of Excellence for Electromaterials Science, Australian Institute for Innovative Materials, University of Wollongong, NSW, 2500, Australia
| | - Stephen Beirne
- Intelligent Polymer Research Institute and ARC Centre of Excellence for Electromaterials Science, Australian Institute for Innovative Materials, University of Wollongong, NSW, 2500, Australia
| | - Kyuman Kim
- Intelligent Polymer Research Institute and ARC Centre of Excellence for Electromaterials Science, Australian Institute for Innovative Materials, University of Wollongong, NSW, 2500, Australia
| | - Chunyan Qin
- Intelligent Polymer Research Institute and ARC Centre of Excellence for Electromaterials Science, Australian Institute for Innovative Materials, University of Wollongong, NSW, 2500, Australia
| | - Yumeng Du
- Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, Wollongong, NSW, 2500, Australia
| | - Yuetong Zhou
- Intelligent Polymer Research Institute and ARC Centre of Excellence for Electromaterials Science, Australian Institute for Innovative Materials, University of Wollongong, NSW, 2500, Australia
| | - Zhenxiang Cheng
- Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, Wollongong, NSW, 2500, Australia
| | - Gordon G Wallace
- Intelligent Polymer Research Institute and ARC Centre of Excellence for Electromaterials Science, Australian Institute for Innovative Materials, University of Wollongong, NSW, 2500, Australia
| | - Jun Chen
- Intelligent Polymer Research Institute and ARC Centre of Excellence for Electromaterials Science, Australian Institute for Innovative Materials, University of Wollongong, NSW, 2500, Australia
| |
Collapse
|
12
|
Chakraborty P, Ahamed ST, Mandal P, Mondal A, Banerjee D. Polypyrrole and a polypyrrole/nickel oxide composite – single-walled carbon nanotube enhanced photocatalytic activity under visible light. NEW J CHEM 2022. [DOI: 10.1039/d2nj02336a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel NiO/PPy/SWCNT composite for removal of organic dyes with an emphasis on the effect of photocatalytic charge carrier transport and photoluminescence properties.
Collapse
Affiliation(s)
- Prasenjit Chakraborty
- Department of Physics, Indian Institute of Engineering Science & Technology, Shibpur, Howrah 711103, India
| | - Sk. Taheruddin Ahamed
- Department of Chemistry, Indian Institute of Engineering Science & Technology, Shibpur, Howrah 711103, India
| | - Pinaki Mandal
- Department of Physics, Indian Institute of Engineering Science & Technology, Shibpur, Howrah 711103, India
| | - Anup Mondal
- Department of Chemistry, Indian Institute of Engineering Science & Technology, Shibpur, Howrah 711103, India
| | - Dipali Banerjee
- Department of Physics, Indian Institute of Engineering Science & Technology, Shibpur, Howrah 711103, India
| |
Collapse
|
13
|
Liu Y, Lan X, Xu J, Zhou W, Liu C, Liu C, Liu P, Li M, Jiang F. Organic/Inorganic Hybrid Boosting Energy Harvesting Based on the Photothermoelectric Effect. ACS APPLIED MATERIALS & INTERFACES 2021; 13:43155-43162. [PMID: 34463485 DOI: 10.1021/acsami.1c10990] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Attracted by the capability of light to heat and electricity conversion, the photothermoelectric (PTE) effect has drawn great attention in the field of energy conversion and self-powered electronics. However, it still requires effective strategies to convert electricity from light based on the corresponding photothermoelectric generator. Herein, considering the broad photoresponse and large Seebeck effect of tellurium nanowires (Te NWs) as well as the high electrical conductivity of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS), PEDOT:PSS/Te NW hybrid thin films were fabricated to enhance the conversion efficiency by the photothermoelectric effect with respect to single thermoelectric performance. A detailed comparison has been achieved between the photothermoelectric and thermoelectric properties induced by light illumination and heating plates through current-voltage (I-V) transport, respectively. PEDOT:PSS/Te NW hybrid films also show an enhanced photothermal harvesting compared to pure PEDOT:PSS. A photothermoelectric device was assembled based on the as-fabricated PEDOT:PSS/Te NW hybrid films with 90 wt% Te NWs and achieved a competitive output power density with good stability, which may provide insights into improving solar energy harvesting-based photothermoelectric conversion by organic/inorganic hybrids.
Collapse
Affiliation(s)
- Youfa Liu
- Department of Physics, Jiangxi Science & Technology Normal University, Nanchang 330013, P.R. China
- Flexible Electronics Innovation Institute, Jiangxi Science & Technology Normal University, Nanchang 330013, P.R. China
| | - Xiaoqi Lan
- Department of Physics, Jiangxi Science & Technology Normal University, Nanchang 330013, P.R. China
- Flexible Electronics Innovation Institute, Jiangxi Science & Technology Normal University, Nanchang 330013, P.R. China
| | - Jingkun Xu
- Flexible Electronics Innovation Institute, Jiangxi Science & Technology Normal University, Nanchang 330013, P.R. China
| | - Weiqiang Zhou
- Flexible Electronics Innovation Institute, Jiangxi Science & Technology Normal University, Nanchang 330013, P.R. China
| | - Cheng Liu
- Department of Physics, Jiangxi Science & Technology Normal University, Nanchang 330013, P.R. China
| | - Congcong Liu
- Flexible Electronics Innovation Institute, Jiangxi Science & Technology Normal University, Nanchang 330013, P.R. China
| | - Peipei Liu
- Department of Physics, Jiangxi Science & Technology Normal University, Nanchang 330013, P.R. China
| | - Meng Li
- Flexible Electronics Innovation Institute, Jiangxi Science & Technology Normal University, Nanchang 330013, P.R. China
| | - Fengxing Jiang
- Department of Physics, Jiangxi Science & Technology Normal University, Nanchang 330013, P.R. China
| |
Collapse
|