1
|
He Y, Miao W, Hu T, Su J, Saparbaev A, Wan M, Wu J, Li Y, Xiang H, Wang E, Wang X, Yang R. Siloxane Decorated Water-Obstructing Guest for Efficient Air-Processed OSCs. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412190. [PMID: 39977294 PMCID: PMC12005760 DOI: 10.1002/advs.202412190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/26/2024] [Indexed: 02/22/2025]
Abstract
The future applications of organic solar cells (OSCs) necessitate a thorough consideration of their ambient stability and processability, particularly for large area air-processed engineering, but water-induced degradation of active layer critically restricts its development. To surmount this hurdle, a water-obstructing guest (WOG) strategy is proposed to attenuate the interaction of the active layer with water molecules, reduce defects in blend films, and enhance the devices stability under high relative humidity (RH) conditions by introducing a siloxane-containing polymer D18-SiO. In addition to suppressing trap density, the WOG with hydrophobic and low surface free energy characteristics, forms a capping layer that blocks moisture penetration while preserving ideal nano-micromorphology with high crystallinity and tight packing properties. Power conversion efficiencies (PCE) of >19% is reported for spin coating OSCs fabricated across an RH range of 20 to 90%, and PCE of >17% blade coating OSCs at 90% RH. The D18-SiO, serves as a protective barrier to enhance the device stability, and the corresponding unencapsulated OSCs retained 80.7% of its initial performance in air (≈ 40% RH) after 600-h maximum power point tracking under continuous light illumination, showcasing great potential in designing WOG strategy for large-scale production of air-processed OSCs.
Collapse
Affiliation(s)
- Yurong He
- Key Laboratory of Optoelectronic Chemical Materials and Devices (Ministry of Education), School of Optoelectronic Materials & TechnologyJianghan UniversityWuhan430056China
| | - Wentao Miao
- Key Laboratory of Optoelectronic Chemical Materials and Devices (Ministry of Education), School of Optoelectronic Materials & TechnologyJianghan UniversityWuhan430056China
| | - Tianyu Hu
- Key Laboratory of Optoelectronic Chemical Materials and Devices (Ministry of Education), School of Optoelectronic Materials & TechnologyJianghan UniversityWuhan430056China
| | - Junchi Su
- Key Laboratory of Optoelectronic Chemical Materials and Devices (Ministry of Education), School of Optoelectronic Materials & TechnologyJianghan UniversityWuhan430056China
| | - Aziz Saparbaev
- Institute of Ion‐plasma and Laser TechnologiesNational University of UzbekistanTashkent100174Uzbekistan
| | - Ming Wan
- Key Laboratory of Optoelectronic Chemical Materials and Devices (Ministry of Education), School of Optoelectronic Materials & TechnologyJianghan UniversityWuhan430056China
| | - Jingnan Wu
- Department of Chemistry and Chemical EngineeringChalmers University of TechnologyGöteborg41296Sweden
| | - Yuda Li
- Key Laboratory of Novel Biomass‐based Environmental and Energy Materials in Petroleum and Chemical IndustrySchool of Chemical Engineering and PharmacyWuhan Institute of TechnologyWuhan430205China
| | - Huimin Xiang
- Key Laboratory of Optoelectronic Chemical Materials and Devices (Ministry of Education), School of Optoelectronic Materials & TechnologyJianghan UniversityWuhan430056China
| | - Ergang Wang
- Department of Chemistry and Chemical EngineeringChalmers University of TechnologyGöteborg41296Sweden
| | - Xunchang Wang
- Key Laboratory of Optoelectronic Chemical Materials and Devices (Ministry of Education), School of Optoelectronic Materials & TechnologyJianghan UniversityWuhan430056China
| | - Renqiang Yang
- Key Laboratory of Optoelectronic Chemical Materials and Devices (Ministry of Education), School of Optoelectronic Materials & TechnologyJianghan UniversityWuhan430056China
| |
Collapse
|
2
|
Crociani L. The Double-Cross of Benzotriazole-Based Polymers as Donors and Acceptors in Non-Fullerene Organic Solar Cells. Molecules 2024; 29:3625. [PMID: 39125030 PMCID: PMC11313701 DOI: 10.3390/molecules29153625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Organic solar cells (OSCs) are considered a very promising technology to convert solar energy to electricity and a feasible option for the energy market because of the advantages of light weight, flexibility, and roll-to-roll manufacturing. They are mainly characterized by a bulk heterojunction structure where a polymer donor is blended with an electron acceptor. Their performance is highly affected by the design of donor-acceptor conjugated polymers and the choice of suitable acceptor. In particular, benzotriazole, a typical electron-deficient penta-heterocycle, has been combined with various donors to provide wide bandgap donor polymers, which have received a great deal of attention with the development of non-fullerene acceptors (NFAs) because of their suitable matching to provide devices with relevant power conversion efficiency (PCE). Moreover, different benzotriazole-based polymers are gaining more and more interest because they are considered promising acceptors in OSCs. Since the development of a suitable method to choose generally a donor/acceptor material is a challenging issue, this review is meant to be useful especially for organic chemical scientists to understand all the progress achieved with benzotriazole-based polymers used as donors with NFAs and as acceptors with different donors in OSCs, in particular referring to the PCE.
Collapse
Affiliation(s)
- Laura Crociani
- Institute of Condensed Matter Chemistry and Energy Technologies, ICMATE, National Research Council of Italy, CNR, Corso Stati Uniti 4, 35127 Padua, Italy
| |
Collapse
|
3
|
Xu S, Wang W, Liu H, Yu X, Qin F, Luo H, Zhou Y, Li Z. A New Diazabenzo[k]fluoranthene-based D-A Conjugated Polymer Donor for Efficient Organic Solar Cells. Macromol Rapid Commun 2022; 43:e2200276. [PMID: 35567333 DOI: 10.1002/marc.202200276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/29/2022] [Indexed: 11/08/2022]
Abstract
The development of wide-bandgap polymer donors having complementary absorption and compatible energy levels with near-infared (NIR) absorbing nonfullerene acceptors is highly important for realizing high-performance organic solar cells (OSCs). Herein, a new thiophene-fused diazabenzo[k]fluoranthene derivative has been successfully synthesized as the electron-deficient unit to construct an efficient donor-acceptor (D-A) type alternating copolymer donor, namely PABF-Cl, using the chlorinated benzo[1,2-b:4,5-b']dithiophene as the copolymerization unit. PABF-Cl exhibits a wide optical bandgap of 1.93 eV, a deep highest occupied molecular level of -5.36 eV, and efficient hole transport. As a result, OSCs with the best power conversion efficiency of 11.8% has been successfully obtained by using PABF-Cl as the donor to blend with a NIR absorbing BTP-eC9 acceptor. Our work thus provides a new design of electron-deficient unit for constructing high performance D-A type polymer donors. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Shaoheng Xu
- Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China.,Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Wen Wang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Hongtao Liu
- Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Xinyu Yu
- Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Fei Qin
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Hao Luo
- Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Yinhua Zhou
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Zhong'an Li
- Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
4
|
Li X, Li Y, Zhang Y, Sun Y. Recent Progress of Benzodifuran‐Based Polymer Donors for High‐Performance Organic Photovoltaics. SMALL SCIENCE 2022. [DOI: 10.1002/smsc.202200006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Xiaoming Li
- School of Chemistry Beihang University Beijing 100191 P. R. China
| | - Yan Li
- School of Chemistry Beihang University Beijing 100191 P. R. China
| | - Yong Zhang
- School of Materials Science and Engineering Harbin Institute of Technology Harbin 150001 P. R. China
| | - Yanming Sun
- School of Chemistry Beihang University Beijing 100191 P. R. China
| |
Collapse
|
5
|
Zhou Y, Li M, Yu N, Shen S, Song J, Ma Z, Bo Z. Simple Tricyclic-Based A-π-D-π-A-Type Nonfullerene Acceptors for High-Efficiency Organic Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2022; 14:6039-6047. [PMID: 35061346 DOI: 10.1021/acsami.1c22520] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nonfused-ring electron acceptors have attracted much attention in recent years due to their advantages of simple synthetic routes, high yields, low costs, reasonable power conversion efficiencies (PCEs), and so on. Herein, three simple A-π-D-π-A-type acceptors (DTC-BO-4F, DTS-BO-4F, and DTP-BO-4F) comprising a tricyclic fused-ring core, two 2,5-bis(alkyloxy)phenylene spacers, and two difluorinated terminal groups (DF-IC) were developed. Compared with DTS-BO-4F, DTC-BO-4F and DTP-BO-4F exhibit higher molar extinction coefficients, stronger crystallinity, and more orderly stacking. The PBDB-T:DTC-BO-4F-based blend film shows suitable phase separation and higher and more balanced charge mobilities. Finally, the photovoltaic devices based on DTC-BO-4F give an outstanding PCE of 13.26% with a small nonradiative voltage loss of 0.23 eV.
Collapse
Affiliation(s)
- Yuanyuan Zhou
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China
- Engineering Research Center for Nanomaterials, Henan University, Kaifeng 475004, China
| | - Miao Li
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Na Yu
- Center for Advanced Low-Dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 201620 Shanghai, China
| | - Shuaishuai Shen
- Engineering Research Center for Nanomaterials, Henan University, Kaifeng 475004, China
| | - Jinsheng Song
- Engineering Research Center for Nanomaterials, Henan University, Kaifeng 475004, China
| | - Zaifei Ma
- Center for Advanced Low-Dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 201620 Shanghai, China
| | - Zhishan Bo
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
6
|
Liu Y, Li S, Jing Y, Xiao L, Zhou H. Research Progress in Degradation Mechanism of Organic Solar Cells. ACTA CHIMICA SINICA 2022. [DOI: 10.6023/a22020081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Dai T, Lei P, Zhang B, Zhou J, Tang A, Geng Y, Zeng Q, Zhou E. Tricyclic or Pentacyclic D Units: Design of D-π-A-Type Copolymers for High VOC Organic Photovoltaic Cells. ACS APPLIED MATERIALS & INTERFACES 2021; 13:30756-30765. [PMID: 34180228 DOI: 10.1021/acsami.1c08487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Although there are several electron-donating (D) units, only the classic benzo[1,2-b:4,5-b']dithiophenes (BDT) unit was utilized to develop D-π-A-type copolymers for high-voltage organic photovoltaic (OPV) cells. Hence, in this work, we chose two tricyclic D units, BDT and benzo[1,2-b:4,5-b']difurans (BDF), together with one pentacyclic ring, dithieno[2,3-d;2',3'-d']benzo[1,2-b;4,5-b']dithiophenes (DTBDT), to comprehensively study the effect of different D units on the optoelectronic properties and photovoltaic performance. By copolymerized with the benzo[1,2,3]triazole (BTA) electron-accepting unit, the final copolymers J52-Cl, F11, and PE52 were combined with a nonfullerene acceptor (NFA) F-BTA3 according to the "Same-A-Strategy." As we preconceived, all the three single-junction OPV cells can obtain high open-circuit voltage (VOC) over 1.10 V. Although the tricyclic D unit of BDF exhibits a slightly lower VOC of 1.12 V because of its mildly larger energy loss of 0.698 eV, its higher carrier mobilities and exciton dissociation efficiency strikingly boost the short-circuit current (JSC) and fill factor, which contribute to a comparable PCE of 10.04% with J52-Cl (10.10%). However, the DTBDT-based polymer PE52 shows the worst performance with a PCE of 6.78% and a VOC of 1.14 V, owing to the higher bimolecular recombination and disordered molecular stacking. Our results indicate that tricyclic D units should be a better choice for constructing D-π-A-type polymers for high-voltage photovoltaic materials than the pentacyclic analogues.
Collapse
Affiliation(s)
- Tingting Dai
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng Lei
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bao Zhang
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450003, China
| | - Jialing Zhou
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ailing Tang
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Yanfang Geng
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Qingdao Zeng
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Erjun Zhou
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
Prete M, Ogliani E, Bregnhøj M, Lissau JS, Dastidar S, Rubahn HG, Engmann S, Skov AL, Brook MA, Ogilby PR, Printz A, Turkovic V, Madsen M. Synergistic effect of carotenoid and silicone-based additives for photooxidatively stable organic solar cells with enhanced elasticity. JOURNAL OF MATERIALS CHEMISTRY. C 2021; 35:10.1039/D1TC01544C. [PMID: 37056473 PMCID: PMC10091296 DOI: 10.1039/d1tc01544c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Photochemical and mechanical stability are critical in the production and application of organic solar cells. While these factors can individually be improved using different additives, there is no example of studies on the combined effects of such additive-assisted stabilization. In this study, the properties of PTB7:[70]PCBM organic solar cells are studied upon implementation of two additives: the carotenoid astaxanthin (AX) for photochemical stability and the silicone polydimethylsiloxane (PDMS) for improved mechanical properties. A newly designed additive, AXcPDMS, based on astaxanthin covalently bonded to PDMS was also examined. Lifetime tests, produced in ISOS-L-2 conditions, reveal an improvement in the accumulated power generation (APG) of 10% with pure AX, of 90% when AX is paired with PDMS, and of 140% when AXcPDMS is added in the active layer blend, as compared to the control devices. Singlet oxygen phosphorescence measurements are utilized to study the ability of AX and AXcPDMS to quench singlet oxygen and its precursors in the films. The data are consistent with the strong stabilization effect of the carotenoids. While AX and AXcPDMS are both efficient photochemical stabilizers, the improvement in device stability observed in the presence of AXcPDMS is likely due to a more favorable localization of the stabilizer within the blend. The mechanical properties of the active layers were investigated by tensile testing and cohesive fracture measurements, showing a joint improvement of the photooxidative stability and the mechanical properties, thus yielding organic solar cell devices that are promising for flexible photovoltaic applications.
Collapse
Affiliation(s)
- Michela Prete
- SDU NanoSYD, Mads Clausen Institute, University of Southern Denmark, Alsion 2, 6400 Sønderborg, Denmark
| | - Elisa Ogliani
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Søltofts Plads, 2800, Kgs. Lyngby, Denmark
| | - Mikkel Bregnhøj
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus, Denmark
| | - Jonas Sandby Lissau
- SDU NanoSYD, Mads Clausen Institute, University of Southern Denmark, Alsion 2, 6400 Sønderborg, Denmark
| | - Subham Dastidar
- Department of Chemical and Environmental Engineering, The University of Arizona, 1133 E. James E. Rogers, Tucson, Arizona, 85721, USA
| | - Horst-Günter Rubahn
- SDU NanoSYD, Mads Clausen Institute, University of Southern Denmark, Alsion 2, 6400 Sønderborg, Denmark
| | - Sebastian Engmann
- Nanoscale Device Characterization Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland, 20899, USA
- Theiss Research, La Jolla, California, 92037, USA
| | - Anne Ladegaard Skov
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Søltofts Plads, 2800, Kgs. Lyngby, Denmark
| | - Michael A Brook
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main St. W., Hamilton, Ontario L8S 4M1, Canada
| | - Peter R Ogilby
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus, Denmark
| | - Adam Printz
- Department of Chemical and Environmental Engineering, The University of Arizona, 1133 E. James E. Rogers, Tucson, Arizona, 85721, USA
| | - Vida Turkovic
- SDU NanoSYD, Mads Clausen Institute, University of Southern Denmark, Alsion 2, 6400 Sønderborg, Denmark
| | - Morten Madsen
- SDU NanoSYD, Mads Clausen Institute, University of Southern Denmark, Alsion 2, 6400 Sønderborg, Denmark
| |
Collapse
|