1
|
Shi G, Huang N, Qiao J, Zhang X, Hu F, Hu H, Zhang X, Shang J. Recent Progress in Two-Dimensional Magnetic Materials. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1759. [PMID: 39513839 PMCID: PMC11548008 DOI: 10.3390/nano14211759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
The giant magnetoresistance effect in two-dimensional (2D) magnetic materials has sparked substantial interest in various fields; including sensing; data storage; electronics; and spintronics. Their unique 2D layered structures allow for the manifestation of distinctive physical properties and precise performance regulation under different conditions. In this review, we present an overview of this rapidly developing research area. Firstly, these 2D magnetic materials are catalogued according to magnetic coupling types. Then, several vital effects in 2D magnets are highlighted together with theoretical investigation, such as magnetic circular dichroism, magneto-optical Kerr effect, and anomalous Hall effect. After that, we forecast the potential applications of 2D magnetic materials for spintronic devices. Lastly, research advances in the attracting magnons, skyrmions and other spin textures in 2D magnets are discussed.
Collapse
Affiliation(s)
- Guangchao Shi
- Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi’an 710072, China; (G.S.); (J.Q.); (X.Z.); (F.H.); (H.H.); (X.Z.)
| | - Nan Huang
- Fifth Research Institute, China Electronics Technology Group Corporation, 524 Zhongshan East Road, Nanjing 210016, China
| | - Jingyuan Qiao
- Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi’an 710072, China; (G.S.); (J.Q.); (X.Z.); (F.H.); (H.H.); (X.Z.)
| | - Xuewen Zhang
- Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi’an 710072, China; (G.S.); (J.Q.); (X.Z.); (F.H.); (H.H.); (X.Z.)
| | - Fulong Hu
- Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi’an 710072, China; (G.S.); (J.Q.); (X.Z.); (F.H.); (H.H.); (X.Z.)
| | - Hanwei Hu
- Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi’an 710072, China; (G.S.); (J.Q.); (X.Z.); (F.H.); (H.H.); (X.Z.)
| | - Xinyu Zhang
- Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi’an 710072, China; (G.S.); (J.Q.); (X.Z.); (F.H.); (H.H.); (X.Z.)
| | - Jingzhi Shang
- Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi’an 710072, China; (G.S.); (J.Q.); (X.Z.); (F.H.); (H.H.); (X.Z.)
| |
Collapse
|
2
|
Yang B, Bhujel B, Chica DG, Telford EJ, Roy X, Ibrahim F, Chshiev M, Cosset-Chéneau M, Wees BJV. Electrostatically controlled spin polarization in Graphene-CrSBr magnetic proximity heterostructures. Nat Commun 2024; 15:4459. [PMID: 38796433 PMCID: PMC11128003 DOI: 10.1038/s41467-024-48809-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 05/15/2024] [Indexed: 05/28/2024] Open
Abstract
The magnetic proximity effect can induce a spin dependent exchange shift in the band structure of graphene. This produces a magnetization and a spin polarization of the electron/hole carriers in this material, paving the way for its use as an active component in spintronics devices. The electrostatic control of this spin polarization in graphene has however never been demonstrated so far. We show that interfacing graphene with the van der Waals antiferromagnet CrSBr results in an unconventional manifestation of the quantum Hall effect, which can be attributed to the presence of counterflowing spin-polarized edge channels originating from the spin-dependent exchange shift in graphene. We extract an exchange shift ranging from 27 - 32 meV, and show that it also produces an electrostatically tunable spin polarization of the electron/hole carriers in graphene ranging from - 50% to + 69% in the absence of a magnetic field. This proof of principle provides a starting point for the use of graphene as an electrostatically tunable source of spin current and could allow this system to generate a large magnetoresistance in gate tunable spin valve devices.
Collapse
Affiliation(s)
- Boxuan Yang
- Zernike Institute for Advanced Materials, University of Groningen, 9747, AG, Groningen, The Netherlands.
| | - Bibek Bhujel
- Zernike Institute for Advanced Materials, University of Groningen, 9747, AG, Groningen, The Netherlands
| | - Daniel G Chica
- Department of Chemistry, Columbia University, New York, NY, 10027, USA
| | - Evan J Telford
- Department of Chemistry, Columbia University, New York, NY, 10027, USA
- Department of Physics, Columbia University, New York, NY, 10027, USA
| | - Xavier Roy
- Department of Chemistry, Columbia University, New York, NY, 10027, USA
| | - Fatima Ibrahim
- Univ. Grenoble Alpes, CEA, CNRS, Spintec, Grenoble, 38000, France
| | - Mairbek Chshiev
- Univ. Grenoble Alpes, CEA, CNRS, Spintec, Grenoble, 38000, France
- Institut Universitaire de France (IUF), Paris, 75231, France
| | - Maxen Cosset-Chéneau
- Zernike Institute for Advanced Materials, University of Groningen, 9747, AG, Groningen, The Netherlands.
| | - Bart J van Wees
- Zernike Institute for Advanced Materials, University of Groningen, 9747, AG, Groningen, The Netherlands
| |
Collapse
|
3
|
Arguello Cruz E, Ducos P, Gao Z, Johnson ATC, Niebieskikwiat D. Exchange Coupling Effects on the Magnetotransport Properties of Ni-Nanoparticle-Decorated Graphene. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1861. [PMID: 37368291 DOI: 10.3390/nano13121861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/05/2023] [Accepted: 06/09/2023] [Indexed: 06/28/2023]
Abstract
We characterize the effect of ferromagnetic nickel nanoparticles (size ∼6 nm) on the magnetotransport properties of chemical-vapor-deposited (CVD) graphene. The nanoparticles were formed by thermal annealing of a thin Ni film evaporated on top of a graphene ribbon. The magnetoresistance was measured while sweeping the magnetic field at different temperatures, and compared against measurements performed on pristine graphene. Our results show that, in the presence of Ni nanoparticles, the usually observed zero-field peak of resistivity produced by weak localization is widely suppressed (by a factor of ∼3), most likely due to the reduction of the dephasing time as a consequence of the increase in magnetic scattering. On the other hand, the high-field magnetoresistance is amplified by the contribution of a large effective interaction field. The results are discussed in terms of a local exchange coupling, J∼6 meV, between the graphene π electrons and the 3d magnetic moment of nickel. Interestingly, this magnetic coupling does not affect the intrinsic transport parameters of graphene, such as the mobility and transport scattering rate, which remain the same with and without Ni nanoparticles, indicating that the changes in the magnetotransport properties have a purely magnetic origin.
Collapse
Affiliation(s)
- Erick Arguello Cruz
- Departamento de Fisica, Colegio de Ciencias e Ingenierias, Universidad San Francisco de Quito, Quito 170901, Ecuador
| | - Pedro Ducos
- Departamento de Fisica, Colegio de Ciencias e Ingenierias, Universidad San Francisco de Quito, Quito 170901, Ecuador
| | - Zhaoli Gao
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alan T Charlie Johnson
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Dario Niebieskikwiat
- Departamento de Fisica, Colegio de Ciencias e Ingenierias, Universidad San Francisco de Quito, Quito 170901, Ecuador
| |
Collapse
|
4
|
Gogoi L, Gao W, Ajayan PM, Deb P. Quantum magnetic phenomena in engineered heterointerface of low-dimensional van der Waals and non-van der Waals materials. Phys Chem Chem Phys 2023; 25:1430-1456. [PMID: 36601788 DOI: 10.1039/d2cp05228h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Investigating magnetic phenomena at the microscopic level has emerged as an indispensable research domain in the field of low-dimensional magnetic materials. Understanding quantum phenomena that mediate the magnetic interactions in dimensionally confined materials is crucial from the perspective of designing cheaper, compact, and energy-efficient next-generation spintronic devices. The infrequent occurrence of intrinsic long-range magnetic order in dimensionally confined materials hinders the advancement of this domain. Hence, introducing and controlling the ferromagnetic character in two-dimensional materials is important for further prospective studies. The interface in a heterostructure significantly contributes to modulating its collective magnetic properties. Quantum phenomena occurring at the interface of engineered heterostructures can enhance or suppress magnetization of the system and introduce magnetic character to a native non-magnetic system. Considering most 2D magnetic materials are used as stacks with other materials in nanoscale devices, the methods to control the magnetism in a heterostructure and understanding the corresponding mechanism are crucial for promising spintronic and other functional applications. This review highlights the effect of electric polarization of the adjacent layer, changed structural configuration at the vicinity of the interface, natural strain induced by lattice mismatch, and exchange interaction in the interfacial region in modulating the magnetism of heterostructures of van der Waals and non-van der Waals materials. Further, prospects of interface-engineered magnetism in spin-dependent device applications are also discussed.
Collapse
Affiliation(s)
- Liyenda Gogoi
- Advanced Functional Materials Laboratory, Department of Physics, Tezpur University (Central University), Tezpur, 784028, India.
| | - Weibo Gao
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Pulickel M Ajayan
- Benjamin M. and Mary Greenwood Anderson Professor of Engineering, Department of Materials Science and NanoEngineering, Rice University, 6100 Main Street, Houston, Texas 77005, USA.
| | - Pritam Deb
- Advanced Functional Materials Laboratory, Department of Physics, Tezpur University (Central University), Tezpur, 784028, India.
| |
Collapse
|
5
|
Tseng CC, Song T, Jiang Q, Lin Z, Wang C, Suh J, Watanabe K, Taniguchi T, McGuire MA, Xiao D, Chu JH, Cobden DH, Xu X, Yankowitz M. Gate-Tunable Proximity Effects in Graphene on Layered Magnetic Insulators. NANO LETTERS 2022; 22:8495-8501. [PMID: 36279401 DOI: 10.1021/acs.nanolett.2c02931] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The extreme versatility of van der Waals materials originates from their ability to exhibit new electronic properties when assembled in close proximity to dissimilar crystals. For example, although graphene is inherently nonmagnetic, recent work has reported a magnetic proximity effect in graphene interfaced with magnetic substrates, potentially enabling a pathway toward achieving a high-temperature quantum anomalous Hall effect. Here, we investigate heterostructures of graphene and chromium trihalide magnetic insulators (CrI3, CrBr3, and CrCl3). Surprisingly, we are unable to detect a magnetic exchange field in the graphene but instead discover proximity effects featuring unprecedented gate tunability. The graphene becomes highly hole-doped due to charge transfer from the neighboring magnetic insulator and further exhibits a variety of atypical gate-dependent transport features. The charge transfer can additionally be altered upon switching the magnetic states of the nearest CrI3 layers. Our results provide a roadmap for exploiting proximity effects arising in graphene coupled to magnetic insulators.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Michael A McGuire
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee37831, United States
| | - Di Xiao
- Pacific Northwest National Laboratory, Richland, Washington99354, United States
| | | | | | | | | |
Collapse
|
6
|
Tenasini G, Soler-Delgado D, Wang Z, Yao F, Dumcenco D, Giannini E, Watanabe K, Taniguchi T, Moulsdale C, Garcia-Ruiz A, Fal'ko VI, Gutiérrez-Lezama I, Morpurgo AF. Band Gap Opening in Bilayer Graphene-CrCl 3/CrBr 3/CrI 3 van der Waals Interfaces. NANO LETTERS 2022; 22:6760-6766. [PMID: 35930625 DOI: 10.1021/acs.nanolett.2c02369] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
We report experimental investigations of transport through bilayer graphene (BLG)/chromium trihalide (CrX3; X = Cl, Br, I) van der Waals interfaces. In all cases, a large charge transfer from BLG to CrX3 takes place (reaching densities in excess of 1013 cm-2), and generates an electric field perpendicular to the interface that opens a band gap in BLG. We determine the gap from the activation energy of the conductivity and find excellent agreement with the latest theory accounting for the contribution of the σ bands to the BLG dielectric susceptibility. We further show that for BLG/CrCl3 and BLG/CrBr3 the band gap can be extracted from the gate voltage dependence of the low-temperature conductivity, and use this finding to refine the gap dependence on the magnetic field. Our results allow a quantitative comparison of the electronic properties of BLG with theoretical predictions and indicate that electrons occupying the CrX3 conduction band are correlated.
Collapse
Affiliation(s)
| | | | - Zhe Wang
- MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, Shaanxi Province Key Laboratory of Advanced Materials and Mesoscopic Physics, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | | | | | | | - Kenji Watanabe
- Research Center for Functional Materials, NIMS, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics, NIMS, 1-1 Namiki, Tsukuba 305-0044, Japan
| | | | | | - Vladimir I Fal'ko
- Henry Royce Institute for Advanced Materials, Manchester M13 9PL, U.K
| | | | | |
Collapse
|