1
|
Khalid MAU, Ahamed MA, Dong M, Kshirsagar A, Guan W. Hydrogel interfaced glass nanopore for high-resolution sizing of short DNA fragments. Biosens Bioelectron 2024; 268:116895. [PMID: 39492149 DOI: 10.1016/j.bios.2024.116895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 11/05/2024]
Abstract
Solid-state nanopores, known for their label-free detection and operational simplicity, face challenges in accurately sizing the short nucleic acids due to fast translocation and a lack of enzyme-based control mechanisms as compared to their biological counterparts with sizing resolutions still limited to ≥100 bp. Here, we present a facile polyethylene glycol-dimethacrylate (PEG-DMA) hydrogel interfaced glass nanopore (HIGN) system by inserting glass nanopore into the hydrogel to achieve sub-100 base pair (bp) resolution in short DNA sizing analysis. We systematically investigated the effects of hydrogel mesh size, spatial configurations of glass nanopores about the hydrogel, applied bias voltage, and analyte concentration on the transport dynamics of 200 bp double-stranded DNA (dsDNA). A 7.5 w/v% PEG-DMA hydrogel induced ∼11x increase in the mean dwell times compared with bare solution nanopore system. The insertion locations and depths of the glass nanopore into the hydrogel resulted in 7.16% and 5.28% coefficients of variation (CV) for mean normalized event frequencies. This enhancement of dwell times and invariability in translocation characteristics enables precise sizing of dsDNA fragments under 400 bp using HIGN, with an achieved size resolution of 50 bp with observable mean normalized peak amplitude (ΔI/Io) of ∼0.005. Furthermore, we have demonstrated the capability of HIGN to perform multiplex detection of influenza A virus (IAV) and severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) through reverse transcriptase-polymerase chain reaction (RT-PCR). These results demonstrated the potential of HIGN as a versatile tool in nucleic acid analysis and multiplexed label-free molecular diagnostics.
Collapse
Affiliation(s)
- Muhammad Asad Ullah Khalid
- Department of Electrical Engineering, Pennsylvania State University, University Park, PA, 16802, United States
| | - Md Ahasan Ahamed
- Department of Electrical Engineering, Pennsylvania State University, University Park, PA, 16802, United States
| | - Ming Dong
- Department of Electrical Engineering, Pennsylvania State University, University Park, PA, 16802, United States
| | - Aneesh Kshirsagar
- Department of Electrical Engineering, Pennsylvania State University, University Park, PA, 16802, United States
| | - Weihua Guan
- Department of Electrical Engineering, Pennsylvania State University, University Park, PA, 16802, United States; Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, 16802, United States.
| |
Collapse
|
2
|
Khatri S, Pandey P, Mejia G, Ghimire G, Leng F, He J. Nanoconfinement and Crowding Enhanced Single-Molecule Detection of Small Molecules with Nanopipettes. J Am Chem Soc 2023; 145:28075-28084. [PMID: 37996390 PMCID: PMC11036617 DOI: 10.1021/jacs.3c09311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Glass nanopipettes have gained widespread use as a versatile single-entity detector in chemical and biological sensing, analysis, and imaging. Its advantages include low cost, easy accessibility, simplicity of use, and high versatility. However, conventional nanopipettes based on the volume exclusion mechanism have limitations in detecting small biomolecules due to their small volume and high mobility in aqueous solution. To overcome this challenge, we have employed a novel approach by capitalizing on the strong nanoconfinement effect of nanopipettes. This is achieved by utilizing both the hard confinement provided by the long taper nanopipette tip at the cis side and the soft confinement offered by the hydrogel at the trans side. Through this approach, we have effectively slowed down the exit motion of small molecules, allowing us to enrich and jam them at the nanopipette tip. Consequently, we have achieved high throughput detection of small biomolecules with sizes as small as 1 nm, including nucleoside triphosphates, short peptides, and small proteins with excellent signal-to-noise ratios. Furthermore, molecular complex formation through specific intermolecular interactions, such as hydrogen bonding between closely spaced nucleotides in the jam-packed nanopipette tip, has been detected based on the unique ionic current changes.
Collapse
Affiliation(s)
- Santosh Khatri
- Physics Department, Florida International University, Miami, Florida, 33199, USA
| | - Popular Pandey
- Physics Department, Florida International University, Miami, Florida, 33199, USA
| | - German Mejia
- Chemistry and Biochemistry Department, Florida International University, Miami, Florida, 33199, USA
- Biomolecular Science Institute, Florida International University, Miami, Florida, 33199, USA
| | - Govinda Ghimire
- Physics Department, Florida International University, Miami, Florida, 33199, USA
| | - Fenfei Leng
- Chemistry and Biochemistry Department, Florida International University, Miami, Florida, 33199, USA
- Biomolecular Science Institute, Florida International University, Miami, Florida, 33199, USA
| | - Jin He
- Physics Department, Florida International University, Miami, Florida, 33199, USA
- Biomolecular Science Institute, Florida International University, Miami, Florida, 33199, USA
| |
Collapse
|
3
|
Wang XY, Lv J, Wu X, Hong Q, Qian RC. The Modification and Applications of Nanopipettes in Electrochemical Analysis. Chempluschem 2023; 88:e202300100. [PMID: 37442793 DOI: 10.1002/cplu.202300100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/31/2023] [Indexed: 07/15/2023]
Abstract
Nanopipette, which is fabricated by glasses and possesses a nanoscale pore in the tip, has been proven to be immensely useful in electrochemical analysis. Numerous nanopipette-based sensors have emerged with improved sensitivity, selectivity, ease of use, and miniaturization. In this minireview, we provide an overview of the recent developments of nanopipette-based electrochemical sensors based on different types of nanopipettes, including single-nanopipettes, self-referenced nanopipettes, dual-nanopipettes, and double-barrel nanopipettes. Several important modification materials for nanopipette functionalization are highlighted, such as conductive materials, macromolecular materials, and functional molecules. These materials can improve the sensing performance and targeting specificities of nanopipettes. We also discuss examples of related applications and the future development of nanopipette-based strategies.
Collapse
Affiliation(s)
- Xiao-Yuan Wang
- Key Laboratory for Advanced Materials &, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 200237, Shanghai, P. R. China
| | - Jian Lv
- Key Laboratory for Advanced Materials &, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 200237, Shanghai, P. R. China
| | - Xue Wu
- Key Laboratory for Advanced Materials &, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 200237, Shanghai, P. R. China
| | - Qin Hong
- Key Laboratory for Advanced Materials &, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 200237, Shanghai, P. R. China
| | - Ruo-Can Qian
- Key Laboratory for Advanced Materials &, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 200237, Shanghai, P. R. China
| |
Collapse
|
4
|
Li H, Li Y, Gui C, Chen D, Chen L, Luo L, Huang G, Yuan Y, He R, Xia F, Wang J. Bare glassy nanopore for length-resolution reading of PCR amplicons from various pathogenic bacteria and viruses. Talanta 2023; 256:124275. [PMID: 36701856 DOI: 10.1016/j.talanta.2023.124275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/16/2022] [Accepted: 01/14/2023] [Indexed: 01/18/2023]
Abstract
In this study, it is confirmed that without addition of organic solvent and embedding polymer hydrogel into glass nanopore, bare glass nanopore can faithfully measure various lengths of DNA duplexes from 200 to 3000 base pairs with 200 base pairs resolution, showing well-separated peak amplitudes of blockage currents. Furthermore, motivated by this readout capability of duplex DNA, amplicons from Polymerase Chain Reaction (PCR) amplification are straightforwardly discriminated by bare glassy nanopore without fluorescent labeling. Except simultaneous discrimination of up to 7 different segments of the same lambda genome, various pathogenic bacteria and viruses including SARS-CoV-2 and its mutants in clinical samples can be discriminated at high resolution. Moreover, quantitative measurement of PCR amplicons is obtained with detection range spanning from 0.75 aM to 7.5 pM and detection limit of 7.5 aM, which reveals that bare glass nanopore can faithfully disclose PCR results without any extra labeling.
Collapse
Affiliation(s)
- Huizhen Li
- School of Chemistry and Chemical Engineering, School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou, Guangdong, 510006, China
| | - Yunhui Li
- School of Chemistry and Chemical Engineering, School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou, Guangdong, 510006, China
| | - Cenlin Gui
- School of Chemistry and Chemical Engineering, School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou, Guangdong, 510006, China
| | - Daqi Chen
- School of Chemistry and Chemical Engineering, School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou, Guangdong, 510006, China
| | - Lanfang Chen
- School of Chemistry and Chemical Engineering, School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou, Guangdong, 510006, China
| | - Le Luo
- School of Chemistry and Chemical Engineering, School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou, Guangdong, 510006, China
| | - Guobao Huang
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, Yulin, Guangxi, 537000, China
| | - Yang Yuan
- School of Chemistry and Chemical Engineering, School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou, Guangdong, 510006, China
| | - Rong He
- Guangzhou Center for Disease Control and Prevention, Guangzhou, Guangdong, 510440, China.
| | - Fan Xia
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, Hubei, 430074, China.
| | - Jiahai Wang
- School of Chemistry and Chemical Engineering, School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou, Guangdong, 510006, China.
| |
Collapse
|
5
|
Wang J, Chen L, Gui C, Zhu J, Zhu B, Zhu Z, Li Y, Chen D. A nanopore counter for highly sensitive evaluation of DNA methylation and its application in in vitro diagnostics. Analyst 2023; 148:1492-1499. [PMID: 36880569 DOI: 10.1039/d3an00035d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
DNA methylation has been considered an essential epigenetic biomarker for diagnosing various diseases, such as cancer. A simple and sensitive way for DNA methylation level detection is necessary. Inspired by the label-free and ultra-high sensitivity of solid-state nanopores to double-stranded DNA (dsDNA), we proposed a nanopore counter for evaluating DNA methylation by integrating a dual-restriction endonuclease digestion strategy coupled with polymerase chain reaction (PCR) amplification. Simultaneous application of BstUI/HhaI endonucleases can ensure the full digestion of the unmethylated target DNA but shows no effect on the methylated ones. Therefore, only the methylated DNA remains intact and can trigger the subsequent PCR reaction, producing a large quantity of fixed-length PCR amplicons, which can be directly detected through glassy nanopores. By simply counting the event rate of the translocation signals, the concentration of methylated DNA can be determined to range from 1 aM to 0.1 nM, with the detection limit as low as 0.61 aM. Moreover, a 0.01% DNA methylation level was successfully distinguished. The strategy of using the nanopore counter for highly sensitive DNA methylation evaluation would be a low-cost but reliable alternative in the analysis of DNA methylation.
Collapse
Affiliation(s)
- Jiahai Wang
- School of Chemistry and Chemical Engineering, School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou, 510006, China.
| | - Lanfang Chen
- School of Chemistry and Chemical Engineering, School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou, 510006, China.
| | - Cenlin Gui
- School of Chemistry and Chemical Engineering, School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou, 510006, China.
| | - Jianji Zhu
- School of Chemistry and Chemical Engineering, School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou, 510006, China.
| | - Baian Zhu
- School of Chemistry and Chemical Engineering, School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou, 510006, China.
| | - Zhuobin Zhu
- School of Chemistry and Chemical Engineering, School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou, 510006, China.
| | - Yunhui Li
- School of Chemistry and Chemical Engineering, School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou, 510006, China.
| | - Daqi Chen
- School of Chemistry and Chemical Engineering, School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou, 510006, China.
| |
Collapse
|
6
|
Chau C, Marcuccio F, Soulias D, Edwards MA, Tuplin A, Radford SE, Hewitt E, Actis P. Probing RNA Conformations Using a Polymer-Electrolyte Solid-State Nanopore. ACS NANO 2022; 16:20075-20085. [PMID: 36279181 PMCID: PMC9798860 DOI: 10.1021/acsnano.2c08312] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Nanopore systems have emerged as a leading platform for the analysis of biomolecular complexes with single-molecule resolution. The conformation of biomolecules, such as RNA, is highly dependent on the electrolyte composition, but solid-state nanopore systems often require high salt concentration to operate, precluding analysis of macromolecular conformations under physiologically relevant conditions. Here, we report the implementation of a polymer-electrolyte solid-state nanopore system based on alkali metal halide salts dissolved in 50% w/v poly(ethylene) glycol (PEG) to augment the performance of our system. We show that polymer-electrolyte bath governs the translocation dynamics of the analyte which correlates with the physical properties of the salt used in the bath. This allowed us to identify CsBr as the optimal salt to complement PEG to generate the largest signal enhancement. Harnessing the effects of the polymer-electrolyte, we probed the conformations of the Chikungunya virus (CHIKV) RNA genome fragments under physiologically relevant conditions. Our system was able to fingerprint CHIKV RNA fragments ranging from ∼300 to ∼2000 nt length and subsequently distinguish conformations between the co-transcriptionally folded and the natively refolded ∼2000 nt CHIKV RNA. We envision that the polymer-electrolyte solid-state nanopore system will further enable structural and conformational analyses of individual biomolecules under physiologically relevant conditions.
Collapse
Affiliation(s)
- Chalmers Chau
- School
of Molecular and Cellular Biology and Astbury Centre for Structural
Molecular Biology, University of Leeds, Leeds LS2 9JT, U.K.
- School
of Electronic and Electrical Engineering and Pollard Institute, University of Leeds, Leeds LS2 9JT, U.K.
- Bragg
Centre for Materials Research, University
of Leeds, Leeds LS2 9JT, U.K.
| | - Fabio Marcuccio
- School
of Electronic and Electrical Engineering and Pollard Institute, University of Leeds, Leeds LS2 9JT, U.K.
- Bragg
Centre for Materials Research, University
of Leeds, Leeds LS2 9JT, U.K.
| | - Dimitrios Soulias
- School
of Electronic and Electrical Engineering and Pollard Institute, University of Leeds, Leeds LS2 9JT, U.K.
- Bragg
Centre for Materials Research, University
of Leeds, Leeds LS2 9JT, U.K.
| | - Martin Andrew Edwards
- Department
of Chemistry & Biochemistry, University
of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Andrew Tuplin
- School
of Molecular and Cellular Biology and Astbury Centre for Structural
Molecular Biology, University of Leeds, Leeds LS2 9JT, U.K.
| | - Sheena E. Radford
- School
of Molecular and Cellular Biology and Astbury Centre for Structural
Molecular Biology, University of Leeds, Leeds LS2 9JT, U.K.
| | - Eric Hewitt
- School
of Molecular and Cellular Biology and Astbury Centre for Structural
Molecular Biology, University of Leeds, Leeds LS2 9JT, U.K.
| | - Paolo Actis
- School
of Electronic and Electrical Engineering and Pollard Institute, University of Leeds, Leeds LS2 9JT, U.K.
- Bragg
Centre for Materials Research, University
of Leeds, Leeds LS2 9JT, U.K.
| |
Collapse
|
7
|
Plasma Cell-Free DNA as a Novel Biomarker for the Diagnosis and Monitoring of Atherosclerosis. Cells 2022; 11:cells11203248. [PMID: 36291116 PMCID: PMC9600586 DOI: 10.3390/cells11203248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 11/25/2022] Open
Abstract
Atherosclerosis (AS) is the leading cause of cardiovascular diseases (CVDs) with a high rate of mortality worldwide. Plasma cell-free DNA (cfDNA), mainly originating from apoptosis, necrosis, and active secretion, has been recognized as a promising biomarker for the diagnosis and prognosis of multiple cancers, whereas there are no reports about cfDNA in CVDs. Here, we found an increased quantity and decreased integrity of cfDNA (cfDI) in the serum from AS patients compared with normal controls. Moreover, the reduced cfDI is inversely correlated with serum LDL levels, carotid plaque size, and carotid plaque thickness in the progression of AS. Consistently, in vivo experiments confirmed that the release and cleavage of cfDNA were increased concomitantly with the development and progression of AS in ApoE−/− mice. Our study sheds light on the potential of cfDNA and cfDI as molecular biomarkers for detecting and monitoring AS.
Collapse
|
8
|
Xie ZP, Liu SM, Zhai YM. Study on the Self-assembly and Signal Amplification Ability of Nucleic Acid Nanostructure with the Nanopipette. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|