1
|
Zhang K, Li S, Li J, Zhou X, Qin Y, Wu L, Ling J. Ultra-pH-sensitive nanoplatform for precise tumor therapy. Biomaterials 2025; 314:122858. [PMID: 39366182 DOI: 10.1016/j.biomaterials.2024.122858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/16/2024] [Accepted: 09/26/2024] [Indexed: 10/06/2024]
Abstract
The emergence of precision cancer treatment has triggered a paradigm shift in the field of oncology, facilitating the implementation of more effective and personalized therapeutic approaches that enhance patient outcomes. The pH of the tumor microenvironment (TME) plays a pivotal role in both the initiation and progression of cancer, thus emerging as a promising focal point for precision cancer treatment. By specifically targeting the acidic conditions inherent to the tumor microenvironment, innovative therapeutic interventions have been proposed, exhibiting significant potential in augmenting treatment efficacy and ameliorating patient prognosis. The concept of ultra-pH-sensitive (UPS) nanoplatform was proposed several years ago, demonstrating exceptional pH sensitivity and an adjustable pH transition point. Subsequently, diverse UPS nanoplatforms have been actively explored for biomedical applications, enabling the loading of fluorophores, therapeutic drugs, and photosensitizers. This review aims to elucidate the design strategy and response mechanism of the UPS nanoplatform, with a specific emphasis on its applications in surgical therapy, immunotherapy, drug delivery, photodynamic therapy, and photothermal therapy. The potential and challenges of translating in the clinic on UPS nanoplatforms are finally explored. Thanks to its responsive and easily modifiable nature, the integration of multiple functional units within a UPS nanoplatform holds great promise for future advancements in tumor precision theranositcs.
Collapse
Affiliation(s)
- Ke Zhang
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, China
| | - Shijie Li
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, China
| | - Jiaying Li
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, China
| | - Xiaobo Zhou
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, China.
| | - Yuling Qin
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, China
| | - Li Wu
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, China; School of Life Sciences, Nantong University, Nantong, Jiangsu, 226019, China.
| | - Jue Ling
- Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.
| |
Collapse
|
2
|
Li J, Bian S, Liu T, Li H, Li J, Ren H, Zhang W, Lee CS, Zheng X, Liu W, Wang P. Near-infrared AIE chemiluminescence probe for monitoring and evaluating singlet oxygen in vivo. Biosens Bioelectron 2025; 270:116978. [PMID: 39603213 DOI: 10.1016/j.bios.2024.116978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/12/2024] [Accepted: 11/19/2024] [Indexed: 11/29/2024]
Abstract
The incorporation a "singlet oxygen (1O2) battery" into photodynamic therapy (PDT) could overcome the deficiency of tumor hypoxia in PDT and enhance its effect. However, real-time monitoring the 1O2 release efficiency of the 1O2 battery still presents a significant challenge in vivo. To address this issue, we have developed a bright aggregation-induced emission (AIE) chemiluminescence (CL) probe (DTLum), which conjugates a luminol unit with a donor-acceptor structured diketopyrrolopyrrole fluorophore, for the specific detection of 1O2. Subsequently, the DTLum nanoparticles (DTLum NPs) were prepared using PEO100-PPO65-PEO100 (Pluronic F127) as the surfactant. The DTLum NPs can detect 1O2 in aqueous solution with a bright near-infrared (NIR) CL signal (651 nm) and great tissue penetration (12.5 mm), making them suitable for the detection of 1O2 both in vitro (quantitative) and in vivo (qualitative). Notably, by utilizing the DTLum NPs, the process of 1O2 release in 1O2 batteries with different release rates can be visually monitored in cells and in vivo. This NIR CL probe provides a powerful platform for real-time monitoring and evaluating the release efficiency of 1O2 battery.
Collapse
Affiliation(s)
- Jihao Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuaishuai Bian
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tian Liu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hongxue Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haohui Ren
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenjun Zhang
- Center of Super-Diamond and Advanced Films (COSDAF) & Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Chun-Sing Lee
- Center of Super-Diamond and Advanced Films (COSDAF) & Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Xiuli Zheng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Weimin Liu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Pengfei Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
3
|
Xiao B, Liao Y, Zhang J, Chen K, Feng G, Feng J, Zhang C. Tetramethyl Cucurbit[6]uril-Porphyrin Supramolecular Polymer Enhances Photosensitization. Int J Mol Sci 2024; 25:13037. [PMID: 39684748 DOI: 10.3390/ijms252313037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
Porphyrins serve as photosensitizers (PS) in the realm of cancer photodynamic therapy (PDT). Upon excitation by laser light, porphyrins are capable of converting molecular oxygen into highly cytotoxic singlet oxygen (1O2). However, the rigid π-conjugated structure of porphyrins frequently results in the formation of aggregates in aqueous solutions, which leads to the self-quenching of the excited state. Cucurbit[n]urils exhibit the capacity to stably bind with porphyrins via host-guest interactions, effectively inhibiting their aggregation and potentially enhancing the therapeutic efficacy of PDT. In this study, water-soluble tetramethyl cucurbit[6]uril (TMeQ[6]) was selected as the host, while four propionic acid group-appended porphyrin cationic (TPPOR) was utilized as guests to construct a supramolecular photosensitizer (TPPOR-2TMeQ[6]) in a molar ratio of 2:1. Further experimental findings demonstrate that the presence of TMeQ[6] inhibits the aggregation of TPPOR through non-covalent interactions. This inhibition reduces the energy difference between the excited singlet and triplet states, thereby enhancing the conversion efficiency of 1O2. Moreover, TPPOR-2TMeQ[6] exhibits favorable biocompatibility and minimal dark toxicity against breast cancer cells (4T1). Upon intracellular excitation, the levels of reactive oxygen species (ROS) significantly increase, inducing oxidative stress in 4T1 cells and leading to apoptosis. Consequently, the findings of this study suggest that the enhanced photosensitization achieved through this supramolecular approach is likely to promote the anticancer therapeutic effects of PDT, thereby broadening the application prospects of porphyrins within PDT systems.
Collapse
Affiliation(s)
- Bo Xiao
- School of Basic Medical Sciences/School of Medical Humanities, Guizhou Medical University, Guiyang 550025, China
| | - Yueyue Liao
- School of Basic Medical Sciences/School of Medical Humanities, Guizhou Medical University, Guiyang 550025, China
| | - Jinyu Zhang
- School of Basic Medical Sciences/School of Medical Humanities, Guizhou Medical University, Guiyang 550025, China
| | - Ke Chen
- School of Basic Medical Sciences/School of Medical Humanities, Guizhou Medical University, Guiyang 550025, China
| | - Guangwei Feng
- School of Basic Medical Sciences/School of Medical Humanities, Guizhou Medical University, Guiyang 550025, China
| | - Jian Feng
- School of Basic Medical Sciences/School of Medical Humanities, Guizhou Medical University, Guiyang 550025, China
| | - Chunlin Zhang
- School of Basic Medical Sciences/School of Medical Humanities, Guizhou Medical University, Guiyang 550025, China
| |
Collapse
|
4
|
Deng WQ, Chen JT, Chen SS, Wang ZQ, Mao GJ, Hu L, Ouyang J, Li CY. ATP-responsive copper(II)-doped ZIF-nanoparticles for synergistic cancer therapy: combining cuproptosis and chemo/chemodynamic therapy. J Mater Chem B 2024; 12:11414-11425. [PMID: 39380332 DOI: 10.1039/d4tb01574f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Cancer, a pressing global health challenge, is characterized by its rapid onset and high mortality rates. Conventional treatment methods prove insufficient in achieving the desired therapeutic outcomes, underscoring the critical need to identify an effective and safe approach for cancer treatment. In this study, a copper-doped nanoparticle known as Cu2+-DOX@ZIF-90 is designed by incorporating copper(II) (Cu(II)) and encapsulating doxorubicin (DOX) within ZIF-90. Leveraging the elevated ATP levels in cancer cells relative to normal cells, Cu2+-DOX@ZIF-90 undergoes intracellular degradation, leading to the release of DOX and Cu(II). DOX, a traditional chemotherapy drug for clinical use, induces apoptosis in cancer cells. Cu(II) interacts with glutathione (GSH) to generate Cu(I), catalyzing H2O2 to produce ˙OH, thereby prompting apoptosis in cancer cells. Concurrently, the reduction of GSH enhances the therapeutic effect of chemodynamic therapy (CDT). Furthermore, Cu(II) triggers the aggregation of lipoylated mitochondrial proteins, leading to the formation of DLAT oligomers and ultimately promoting cuproptosis in cancer cells. In vivo experimental findings demonstrate that Cu2+-DOX@ZIF-90 does not cause damage to normal tissues and organs in tumor-bearing mice, with a notable tumor inhibition rate of 86.18%. This synergistic approach, combining chemotherapy, CDT, and cuproptosis, holds significant promise for the effective and safe treatment of cancer.
Collapse
Affiliation(s)
- Wei-Qun Deng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China.
| | - Jun-Tao Chen
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China.
| | - Si-Si Chen
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China.
| | - Zhi-Qing Wang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China.
| | - Guo-Jiang Mao
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, P. R. China
| | - Liufang Hu
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China.
| | - Juan Ouyang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China.
| | - Chun-Yan Li
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China.
| |
Collapse
|
5
|
Yang B, Cao L, Ge K, Lv C, Zhao Z, Zheng T, Gao S, Zhang J, Wang T, Jiang J, Qin Y. FeSA‐Ir/Metallene Nanozymes Induce Sequential Ferroptosis‐Pyroptosis for Multi‐Immunogenic Responses Against Lung Metastasis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401110. [PMID: 38874051 DOI: 10.1002/smll.202401110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/01/2024] [Indexed: 06/15/2024]
Abstract
For cancer metastasis inhibition, the combining of nanozymes with immune checkpoint blockade (ICB) therapy remains the major challenge in controllable reactive oxygen species (ROS) generation for creating effective immunogenicity. Herein, new nanozymes with light-controlled ROS production in terms of quantity and variety are developed by conjugating supramolecular-wrapped Fe single atom on iridium metallene with lattice-strained nanoislands (FeSA-Ir@PF NSs). The Fenton-like catalysis of FeSA-Ir@PF NSs effectively produced •OH radicals in dark, which induced ferroptosis and apoptosis of cancer cells. While under second near-infrared (NIR-II) light irradiation, FeSA-Ir@PF NSs showed ultrahigh photothermal conversion efficiency (𝜂, 75.29%), cooperative robust •OH generation, photocatalytic O2 and 1O2 generation, and caused significant pyroptosis of cancer cells. The controllable ROS generation, sequential cancer cells ferroptosis and pyroptosis, led 99.1% primary tumor inhibition and multi-immunogenic responses in vivo. Most importantly, the inhibition of cancer lung metastasis is completely achieved by FeSA-Ir@PF NSs with immune checkpoint inhibitors, as demonstrated in different mice lung metastasis models, including circulating tumor cells (CTCs) model. This work provided new inspiration for developing nanozymes for cancer treatments and metastasis inhibition.
Collapse
Affiliation(s)
- Baochan Yang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- School of Biomedical Engineering, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, 510260, China
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing, 100101, China
| | - Lingzhi Cao
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, College of Chemistry and Materials Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding, Hebei, 071002, China
| | - Kun Ge
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, College of Chemistry and Materials Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding, Hebei, 071002, China
| | - Chaofan Lv
- School of Biomedical Engineering, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, 510260, China
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing, 100101, China
| | - Zunling Zhao
- School of Biomedical Engineering, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, 510260, China
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing, 100101, China
| | - Tianyu Zheng
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Shutao Gao
- College of Science, Hebei Agricultural University, Baoding, 071001, China
| | - Jinchao Zhang
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, College of Chemistry and Materials Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding, Hebei, 071002, China
| | - Tianyu Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Jianzhuang Jiang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yan Qin
- School of Biomedical Engineering, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, 510260, China
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing, 100101, China
| |
Collapse
|
6
|
Shi R, Qiao J, Sun Q, Hou B, Li B, Zheng J, Zhang Z, Peng Z, Zhou J, Shen B, Deng J, Zhang X. Self-assembly of PEG-PPS polymers and LL-37 peptide nanomicelles improves the oxidative microenvironment and promotes angiogenesis to facilitate chronic wound healing. Bioeng Transl Med 2024; 9:e10619. [PMID: 38435813 PMCID: PMC10905545 DOI: 10.1002/btm2.10619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 10/11/2023] [Accepted: 10/15/2023] [Indexed: 03/05/2024] Open
Abstract
Refractory diabetic wounds are associated with high incidence, mortality, and recurrence rates and are a devastating and rapidly growing clinical problem. However, treating these wounds is difficult owing to uncontrolled inflammatory microenvironments and defective angiogenesis in the affected areas, with no established effective treatment to the best of our knowledge. Herein, we optimized a dual functional therapeutic agent based on the assembly of LL-37 peptides and diblock copolymer poly(ethylene glycol)-poly(propylene sulfide) (PEG-PPS). The incorporation of PEG-PPS enabled responsive or controlled LL-37 peptide release in the presence of reactive oxygen species (ROS). LL-37@PEG-PPS nanomicelles not only scavenged excessive ROS to improve the microenvironment for angiogenesis but also released LL-37 peptides and protected them from degradation, thereby robustly increasing angiogenesis. Diabetic wounds treated with LL-37@PEG-PPS exhibited accelerated and high-quality wound healing in vivo. This study shows that LL-37@PEG-PPS can restore beneficial angiogenesis in the wound microenvironment by continuously providing angiogenesis-promoting signals. Thus, it may be a promising drug for improving chronic refractory wound healing.
Collapse
Affiliation(s)
- Rong Shi
- Department of Plastic SurgeryLanzhou University Second HospitalLanzhouGansuChina
- Department of Breast SurgeryGansu Provincial HospitalLanzhouGansuChina
| | - Jianxiong Qiao
- Department of Plastic SurgeryLanzhou University Second HospitalLanzhouGansuChina
| | - Quanwu Sun
- Department of Breast SurgeryGansu Provincial HospitalLanzhouGansuChina
| | - Biao Hou
- Department of Joint Surgery and Sports MedicineCenter for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third Affiliated Hospital of Southern Medical UniversityGuangzhouGuangdongChina
| | - Bo Li
- Department of Joint Surgery and Sports MedicineCenter for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third Affiliated Hospital of Southern Medical UniversityGuangzhouGuangdongChina
| | - Ji Zheng
- Department of UrologyXinqiao Hospital, Third Military Medical University (Army Medical University)ChongqingChina
| | - Zhenzhen Zhang
- Department of Plastic SurgeryLanzhou University Second HospitalLanzhouGansuChina
| | - Zhenxue Peng
- Department of Plastic SurgeryLanzhou University Second HospitalLanzhouGansuChina
| | - Jing Zhou
- Department of Plastic SurgeryLanzhou University Second HospitalLanzhouGansuChina
| | - Bingbing Shen
- Department of NephrologyChongqing University Central Hospital, Chongqing Emergency Medical CenterChongqingChina
| | - Jun Deng
- Institute of Burn Research, State Key Lab of Trauma, Burn, and Combined Injury, Chongqing Key Laboratory for Disease ProteomicsSouthwest Hospital, Third Military Medical University (Army Medical University)ChongqingChina
| | - Xuanfen Zhang
- Department of Plastic SurgeryLanzhou University Second HospitalLanzhouGansuChina
| |
Collapse
|
7
|
Sobhanan J, Ono K, Okamoto T, Sawada M, Weiss PS, Biju V. Photosensitizer-singlet oxygen sensor conjugated silica nanoparticles for photodynamic therapy and bioimaging. Chem Sci 2024; 15:2007-2018. [PMID: 38332815 PMCID: PMC10848760 DOI: 10.1039/d3sc03877g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 12/10/2023] [Indexed: 02/10/2024] Open
Abstract
Intracellular singlet oxygen (1O2) generation and detection help optimize the outcome of photodynamic therapy (PDT). Theranostics programmed for on-demand phototriggered 1O2 release and bioimaging have great potential to transform PDT. We demonstrate an ultrasensitive fluorescence turn-on sensor-sensitizer-RGD peptide-silica nanoarchitecture and its 1O2 generation-releasing-storing-sensing properties at the single-particle level or in living cells. The sensor and sensitizer in the nanoarchitecture are an aminomethyl anthracene (AMA)-coumarin dyad and a porphyrin or CdSe/ZnS quantum dots (QDs), respectively. The AMA in the dyad quantitatively quenches the fluorescence of coumarin by intramolecular electron transfer, the porphyrin or QD moiety generates 1O2, and the RGD peptide facilitates intracellular delivery. The small size, below 200 nm, as verified by scanning electron microscopy and differential light scattering measurements, of the architecture within the 1O2 diffusion length enables fast and efficient intracellular fluorescence switching by the tandem ultraviolet (UV)-visible or visible-near-infrared (NIR) photo-triggering. While the red emission and 1O2 generation by the porphyrin are continually turned on, the blue emission of coumarin is uncaged into 230-fold intensity enhancement by on-demand photo-triggering. The 1O2 production and release by the nanoarchitecture enable spectro-temporally controlled cell imaging and apoptotic cell death; the latter is verified from cytotoxic data under dark and phototriggering conditions. Furthermore, the bioimaging potential of the TCPP-based nanoarchitecture is examined in vivo in B6 mice.
Collapse
Affiliation(s)
- Jeladhara Sobhanan
- Graduate School of Environmental Science, Hokkaido University Sapporo Hokkaido 060-0810 Japan
- Department of Chemistry, Rice University Houston Texas 77005 USA
| | - Kenji Ono
- Research Institute of Environmental Medicine, Nagoya University Nagoya 464-8601 Japan
| | - Takuya Okamoto
- Graduate School of Environmental Science, Hokkaido University Sapporo Hokkaido 060-0810 Japan
- Research Institute for Electronic Science, Hokkaido University Sapporo Hokkaido 001-0020 Japan
| | - Makoto Sawada
- Research Institute of Environmental Medicine, Nagoya University Nagoya 464-8601 Japan
| | - Paul S Weiss
- California NanoSystems Institute and the Departments of Chemistry and Biochemistry, Bioengineering, and Materials Science and Engineering, University of California Los Angeles CA 90095-1487 USA
| | - Vasudevanpillai Biju
- Graduate School of Environmental Science, Hokkaido University Sapporo Hokkaido 060-0810 Japan
- Research Institute for Electronic Science, Hokkaido University Sapporo Hokkaido 001-0020 Japan
| |
Collapse
|
8
|
Huang Y, Song B, Chen K, Kong D, Yuan J. Time-gated luminescent probes for lysosomal singlet oxygen: Synthesis, characterizations and bioimaging applications. Anal Chim Acta 2024; 1287:342063. [PMID: 38182371 DOI: 10.1016/j.aca.2023.342063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/05/2023] [Accepted: 11/21/2023] [Indexed: 01/07/2024]
Abstract
BACKGROUD Single oxygen (1O2), the molecular oxygen at its excited state, plays a crucial role in the photodynamic therapy (PDT) of some diseases owing to its strong oxidizing property to destroy malignant cells. Although the fluorescent probe technique has proven its powerful application abilities for detection of 1O2 in biological systems, most of the reported fluorescent probes suffered from the interference of background autofluorescence of biological samples. It is clear that the real-time and in situ, background-free fluorescent detection of 1O2 generated in live cells, especially in some organelles, is of great significance for understanding the action mechanism of PDT drugs. RESULTS By introducing a lysosome-anchoring motif, a morpholine moiety, into a 1O2-specifically-reactive terpyridine polyacid ligand, [4'-(9-anthryl)-2,2':6',2″-terpyridine-6,6″-diyl] bis(methylenenitrilo) tetrakis (acetic acid) (ATTA), and chelating with lanthanide ions (Eu3+ or Tb3+), two lanthanide complex-based "turn-on" luminescent probes that can be used for the background-free time-gated luminescent (TGL) detection of lysosomal 1O2, Lyso-ATTA-Eu3+ and Lyso-ATTA-Tb3+, have been developed. The probes exhibit fast luminescence responses (within 2.5 min) towards 1O2 with high selectivity and sensitivity (<0.75 μM) in a wide pH range (4-11). And the excellent lysosome-localization performance of the probes allowed them to be used for the monitoring of endogenous 1O2 in lysosomes, which enabled the variability of lysosomal-1O2 concentrations induced by different photosensitizers to be successfully discriminated. Furthermore, by doping Lyso-ATTA-Eu3+ into the polyethylene glycol (PEG) hydrogel, the smart luminescent sensor film, PEG-Lyso-ATTA-Eu3+, was prepared, and successfully used for the detection of the on-site 1O2 production during the PDT process of psoriatic disease in model mice. SIGNIFICANT Two lysosome-targetable background-free TGL probes for 1O2 were firstly reported. The developed smart luminescent sensor film could be a powerful tool for the clinical monitoring of PDT on skin diseases without using sophisticated and expensive instruments.
Collapse
Affiliation(s)
- Yundi Huang
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Bo Song
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China.
| | - Kaiwen Chen
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Deshu Kong
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Jingli Yuan
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China.
| |
Collapse
|
9
|
Yang Z, Wang J, Li A, Wang C, Ji W, Pires E, Yang W, Jing S. Ferrocenylselenoether and its cuprous cluster modified TiO 2 as visible-light photocatalyst for the synergistic transformation of N-cyclic organics and Cr(vi). RSC Adv 2024; 14:1488-1500. [PMID: 38174284 PMCID: PMC10763662 DOI: 10.1039/d3ra07390d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/20/2023] [Indexed: 01/05/2024] Open
Abstract
In this study, fcSe@TiO2 and [Cu2I2(fcSe)2]n@TiO2 nanosystems based on ferrocenylselenoether and its cuprous cluster were developed and characterized by X-ray photoelectron spectroscopy (XPS), high-resolution transmission electron microscopy (HR-TEM), energy dispersive X-ray spectroscopy (EDX), and electron paramagnetic resonance (EPR). Under optimized conditions, 0.2 g L-1 catalyst, 20 mM H2O2, and initial pH 7, good synergistic visible light photocatalytic tetracycline degradation and Cr(vi) reduction were achieved, with 92.1% of tetracycline and 64.5% of Cr(vi) removal efficiency within 30 minutes. Mechanistic studies revealed that the reactive species ˙OH, ˙O2-, and h+ were produced in both systems through the mutual promotion of Fenton reactions and photogenerated charge separation. The [Cu2I2(fcSe)2]n@TiO2 system additionally produced 1O2 from Cu+ and ˙O2-. The advantages of the developed nanosystems include an acidic surface microenvironment provided by Se⋯H+, resourceful product formation, tolerance of complex environments, and excellent adaptability in refractory N-cyclic organics.
Collapse
Affiliation(s)
- Zhuo Yang
- School of Chemistry and Molecular Engineering, Nanjing Tech University Nanjing 211816 China
| | - Jinshan Wang
- School of Chemistry and Molecular Engineering, Nanjing Tech University Nanjing 211816 China
| | - Aimin Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University Nanjing 210023 China
| | - Chao Wang
- School of Chemistry and Molecular Engineering, Nanjing Tech University Nanjing 211816 China
- Instituto de Síntesis Química y Catálisis Homogénea, CSIC-Universidad de Zaragoza Pedro Cerbuna 12 E-50009 Zaragoza Spain
| | - Wei Ji
- School of Chemistry and Molecular Engineering, Nanjing Tech University Nanjing 211816 China
| | - Elísabet Pires
- Instituto de Síntesis Química y Catálisis Homogénea, CSIC-Universidad de Zaragoza Pedro Cerbuna 12 E-50009 Zaragoza Spain
| | - Wenzhong Yang
- School of Chemistry and Molecular Engineering, Nanjing Tech University Nanjing 211816 China
| | - Su Jing
- School of Chemistry and Molecular Engineering, Nanjing Tech University Nanjing 211816 China
| |
Collapse
|
10
|
Li X, Lin Y, Yang Z, Guan L, Wang Z, Liu A, Yang B, Tang L, Lin Q. Cancer cell membrane biomimetic nanosystem for homologous targeted dual-mode imaging and combined therapy. J Colloid Interface Sci 2023; 652:770-779. [PMID: 37619256 DOI: 10.1016/j.jcis.2023.08.109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/07/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023]
Abstract
HYPOTHESIS The use of tumor cell membrane-camouflaged nanoparticles, specifically the multifunctional biomimetic core-shell nanosystem MPCONPs, can enhance the targeting ability and immune escape functionality of traditional chemotherapy, leading to more precise drug delivery and improved treatment outcomes. EXPERIMENTS Preparation of MPCONPs: Autologous tumor cell membrane (CM) fragments are collected and used to create a shell for the nanoparticles. A trypsin-sensitive cationic polylysine framework is synthesized and embedded with oxaliplatin (l-OHP) and Ce6-AuNDs (a singlet oxygen generator). The MPCONPs are formed by assembling these components. FINDINGS MPCONPs, as nanoparticles camouflaged with tumor CM, have enhanced cellular uptake in cancer cells and improved the efficacy of photodynamic therapy (PDT) and chemotherapy (CT). This offers great potential for their use as individualized therapeutic agents for clinical oncology treatment.
Collapse
Affiliation(s)
- Xingchen Li
- State Key Laboratory of Supramolecular Structure and Material, College of Chemistry, Jilin University, Changchun 130012, China
| | - Yangliu Lin
- State Key Laboratory of Supramolecular Structure and Material, College of Chemistry, Jilin University, Changchun 130012, China
| | - Zhe Yang
- State Key Laboratory of Supramolecular Structure and Material, College of Chemistry, Jilin University, Changchun 130012, China
| | - Lin Guan
- State Key Laboratory of Supramolecular Structure and Material, College of Chemistry, Jilin University, Changchun 130012, China
| | - Ze Wang
- State Key Laboratory of Supramolecular Structure and Material, College of Chemistry, Jilin University, Changchun 130012, China
| | - Annan Liu
- State Key Laboratory of Supramolecular Structure and Material, College of Chemistry, Jilin University, Changchun 130012, China
| | - Bai Yang
- State Key Laboratory of Supramolecular Structure and Material, College of Chemistry, Jilin University, Changchun 130012, China
| | - Lu Tang
- Breast Surgery Department, China- Japan Union hospital of Jilin University, China.
| | - Quan Lin
- State Key Laboratory of Supramolecular Structure and Material, College of Chemistry, Jilin University, Changchun 130012, China.
| |
Collapse
|
11
|
Hao Y, Li H, Guo J, Wang D, Zhang J, Liu J, Yang C, Zhang Y, Li G, Liu J. Bio-Inspired Antioxidant Heparin-Mimetic Peptide Hydrogel for Radiation-Induced Skin Injury Repair. Adv Healthc Mater 2023; 12:e2203387. [PMID: 36934301 DOI: 10.1002/adhm.202203387] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/23/2023] [Indexed: 03/20/2023]
Abstract
Radiotherapy is one of the most important means of cancer treatment, however, radiation can also cause adverse reactions and even serious injuries to the skin. Radiation-induced excess reactive oxygen species (ROS) production and inflammatory infiltration make skin wounds difficult to heal compared to normal skin injuries. Herein, an antioxidant heparin-mimetic peptide hydrogel (K16, KYKYEYEYAGEGDSS-4Sa) is designed for radiation-induced skin injury (RISI) repair. First, the K16 peptide can self-assemble into a hydrogel with a 3D mesh-like porous nanofiber structure, which can provide certain physical support for skin repair like extracellular matrix (ECM). Then, K16 hydrogel not only scavenges ROS and prevents radiation damage to cellular DNA, but also promotes cell proliferation, migration, and angiogenesis. Meanwhile, 4-sulfobenzoic acid (4Sa) modified at the N-terminal end of the K16 peptide can adsorb inflammatory cytokines, thus acting to eliminate inflammation at the wound site. In vivo experiments showed that K16 hydrogel can inhibit early wound degradation, reduce inflammatory infiltration, and promote angiogenesis and collagen deposition, thus promoting wound healing. Therefore, the K16 hydrogel designed in this study has good potential for application in the field of radiation-induced skin injury repair.
Collapse
Affiliation(s)
- Yusen Hao
- Lab of Functional and Biomedical Nanomaterials, College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Hui Li
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
| | - Jiajun Guo
- Lab of Functional and Biomedical Nanomaterials, College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Dan Wang
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
| | - Jiamin Zhang
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
| | - Jinjian Liu
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
| | - Cuihong Yang
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
| | - Yumin Zhang
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
| | - Guoliang Li
- Lab of Functional and Biomedical Nanomaterials, College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Jianfeng Liu
- Lab of Functional and Biomedical Nanomaterials, College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
| |
Collapse
|
12
|
Fujii J, Soma Y, Matsuda Y. Biological Action of Singlet Molecular Oxygen from the Standpoint of Cell Signaling, Injury and Death. Molecules 2023; 28:molecules28104085. [PMID: 37241826 DOI: 10.3390/molecules28104085] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Energy transfer to ground state triplet molecular oxygen results in the generation of singlet molecular oxygen (1O2), which has potent oxidizing ability. Irradiation of light, notably ultraviolet A, to a photosensitizing molecule results in the generation of 1O2, which is thought to play a role in causing skin damage and aging. It should also be noted that 1O2 is a dominant tumoricidal component that is generated during the photodynamic therapy (PDT). While type II photodynamic action generates not only 1O2 but also other reactive species, endoperoxides release pure 1O2 upon mild exposure to heat and, hence, are considered to be beneficial compounds for research purposes. Concerning target molecules, 1O2 preferentially reacts with unsaturated fatty acids to produce lipid peroxidation. Enzymes that contain a reactive cysteine group at the catalytic center are vulnerable to 1O2 exposure. Guanine base in nucleic acids is also susceptible to oxidative modification, and cells carrying DNA with oxidized guanine units may experience mutations. Since 1O2 is produced in various physiological reactions in addition to photodynamic reactions, overcoming technical challenges related to its detection and methods used for its generation would allow its potential functions in biological systems to be better understood.
Collapse
Affiliation(s)
- Junichi Fujii
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, Yamagata 990-9585, Japan
| | - Yuya Soma
- Graduate School of Nursing, Yamagata University Faculty of Medicine, Yamagata 990-9585, Japan
| | - Yumi Matsuda
- Graduate School of Nursing, Yamagata University Faculty of Medicine, Yamagata 990-9585, Japan
| |
Collapse
|
13
|
Yang Y, Li N, Zhu Y, Li J, Li S, Hou X. Ratiometric singlet oxygen self-detecting and oxygen self-supplying nanosensor for real-time photodynamic therapy feedback and therapeutic effect enhancement. Talanta 2023; 259:124493. [PMID: 37004397 DOI: 10.1016/j.talanta.2023.124493] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/19/2023] [Accepted: 03/26/2023] [Indexed: 03/31/2023]
Abstract
Integration of singlet oxygen (1O2) detection that provides necessary therapeutic feedback into nanotheranostics for hypoxic tumor photodynamic therapy (PDT) is desirable but still challenging. Herein, we report a nanosensor (denominated PAPD) by combining dual-channel ratiometric sensing and oxygen-augmenting strategies, which synergistically realizes real-time 1O2 self-detection, O2 self-supply and enhanced phototherapy. PAPD nanosensor is constructed by encapsulating anthracene-based 1O2 sensitive fluorophore (DPA) into porphyrin metal-organic frameworks (PCN-224), decorating gold nanoparticles (AuNPs) as nanoenzymes, and coating polyethylene glycol thiol (PEG-SH) by the Au-S bond. PCN-224 serves as 1O2 reference fluorescence (FL) agent and photosensitizer. Once PCN-224-induced 1O2 is synthesized, the dual-channel ratiometric FL signal of PAPD actualizes sensitive, accurate and dynamic 1O2 visualization and gives real-time therapeutic information correlated with the therapeutic progression. Additionally, the catalase-like activity of PAPD possesses in situ O2 production via intracellular H2O2 decomposition and accelerates 1O2 yields for amplifying the tumor cell killing efficiency. Moreover, the ratiometric 1O2 self-detection affords the capacity to evaluate the O2 self-supplying effect in tumor 4T1 cells. Consequently, the rational-designed nanosensor PAPD provides a paradigm for real-time therapeutic evaluation and precise hypoxic tumor treatment clinically.
Collapse
|
14
|
Murotomi K, Umeno A, Shichiri M, Tanito M, Yoshida Y. Significance of Singlet Oxygen Molecule in Pathologies. Int J Mol Sci 2023; 24:ijms24032739. [PMID: 36769060 PMCID: PMC9917472 DOI: 10.3390/ijms24032739] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/22/2023] [Accepted: 01/26/2023] [Indexed: 02/04/2023] Open
Abstract
Reactive oxygen species, including singlet oxygen, play an important role in the onset and progression of disease, as well as in aging. Singlet oxygen can be formed non-enzymatically by chemical, photochemical, and electron transfer reactions, or as a byproduct of endogenous enzymatic reactions in phagocytosis during inflammation. The imbalance of antioxidant enzymes and antioxidant networks with the generation of singlet oxygen increases oxidative stress, resulting in the undesirable oxidation and modification of biomolecules, such as proteins, DNA, and lipids. This review describes the molecular mechanisms of singlet oxygen production in vivo and methods for the evaluation of damage induced by singlet oxygen. The involvement of singlet oxygen in the pathogenesis of skin and eye diseases is also discussed from the biomolecular perspective. We also present our findings on lipid oxidation products derived from singlet oxygen-mediated oxidation in glaucoma, early diabetes patients, and a mouse model of bronchial asthma. Even in these diseases, oxidation products due to singlet oxygen have not been measured clinically. This review discusses their potential as biomarkers for diagnosis. Recent developments in singlet oxygen scavengers such as carotenoids, which can be utilized to prevent the onset and progression of disease, are also described.
Collapse
Affiliation(s)
- Kazutoshi Murotomi
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8566, Japan
| | - Aya Umeno
- Department of Ophthalmology, Shimane University Faculty of Medicine, Izumo 693-8501, Japan
| | - Mototada Shichiri
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ikeda 563-8577, Japan
- Correspondence: ; Tel.: +81-72-751-8234
| | - Masaki Tanito
- Department of Ophthalmology, Shimane University Faculty of Medicine, Izumo 693-8501, Japan
| | | |
Collapse
|
15
|
Wang Y, Xia H, Chen B, Wang Y. Rethinking nanoparticulate polymer-drug conjugates for cancer theranostics. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1828. [PMID: 35734967 DOI: 10.1002/wnan.1828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 01/31/2023]
Abstract
Polymer-drug conjugates (PDCs) fabricated as nanoparticles have hogged the limelight in cancer theranostics in the past decade. Many researchers have devoted to developing novel and efficient polymeric drug delivery system since the first generation of poly(N-[2-hydroxypropyl]methacrylamide) copolymer-drug conjugates. However, none of them has been approved for chemotherapy in clinic. An ideal PDC nanoparticle for cancer theranostics should possess several properties, including prolonged circulation in blood, sufficient accumulation and internalization in tumors, and efficient drug release in target sites. To achieve these goals, it is important to rationally design the nanoparticulate PDCs based on circulation, accumulation, penetration, internalization, and drug release (CAPIR) cascade. Specifically, CAPIR cascades are divided into five steps: (1) circulation in the vascular compartment without burst release, (2) accumulation in tumors via enhanced permeability and retention effect, (3) subsequent penetration into the deep regions of tumors, (4) internalization into tumor cells, and (5) release of drugs as free molecules to exert their pharmacological effects. In this review, we focus on the development and novel approaches of nanoparticulate PDCs based on CAPIR cascade, and provide an outlook on future clinical application. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Yaoqi Wang
- School of Pharmaceutical Sciences, Capital Medical University, Beijing, China.,Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing, China.,Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Beijing, China
| | - Heming Xia
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Binlong Chen
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Yiguang Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| |
Collapse
|
16
|
Lyu J, Cheng M, Liu J, Lv J. An Aggregation-Induced Emission Nanosensor for Real-Time Chemiluminescent Sensing of Light-Independent Intracellular Singlet Oxygen. ACS APPLIED MATERIALS & INTERFACES 2022; 14:54081-54089. [PMID: 36398932 DOI: 10.1021/acsami.2c14685] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Characterizing the transient ultratrace light-independent intracellular singlet oxygen (1O2), which plays a vital role in multiple biological processes in living organisms, brings about tremendous help for understanding the nature of 1O2-mediated or related bioevents. Nevertheless, an approach to detect the light-independent intracellular 1O2 is hard to find. Herein, we developed a chemiluminescent nanosensor by compacting a great number of TPE-N(Ph)-DBT-PH molecules in one nanostructure via autoaggregation. Taking advantage of the aggregation-induced emission property, this TPE-N(Ph)-DBT-PH nanosensor is highly fluorescent and promises a bright red-light CL and the convenience of mapping in vivo sensor distribution. Experiments demonstrate the nanosensor's unprecedented selectivity toward 1O2 against other reactive oxygen species. The 3.7 nmol L-1 limit of detection renders this nanosensor with the best-known sensitivity of 1O2 chemical sensors. Meanwhile, fluorescence confocal microscope imaging results suggest that our nanosensor simultaneously targets mitochondria and lysosomes in RAW 264.7 cells via the energy-dependent endocytosis pathway, thereby implying an attractive potential for the detection of intracellular 1O2. Such a potential is demonstrated by detecting 1O2 in RAW 264.7 cells during a lipopolysaccharide and phorbol myristate acetate stimulated respiration burst. This study represents the first approach to detect light-independent intracellular 1O2 during cell bioregulation. Thus, our nanosensor provides an effective tool for investigating the 1O2-related bioprocesses and pathological processes.
Collapse
Affiliation(s)
- Jitong Lyu
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Shaanxi Normal University, Xi'an 710119, People's Republic of China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516007, People's Republic of China
| | - Mengqi Cheng
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Shaanxi Normal University, Xi'an 710119, People's Republic of China
| | - Jing Liu
- Shaanxi Zhengze Biotechnology Co., Ltd, Xi'an 710018, People's Republic of China
| | - Jiagen Lv
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Shaanxi Normal University, Xi'an 710119, People's Republic of China
| |
Collapse
|
17
|
Huang K, Yao H, Yan M, Zhang H, Yuan G, Wang Q, Xue J, Li J, Chen J. A MCL-1-targeted photosensitizer to combat triple-negative breast cancer with enhanced photodynamic efficacy, sensitization to ROS-induced damage, and immune response. J Inorg Biochem 2022; 237:111997. [PMID: 36137402 DOI: 10.1016/j.jinorgbio.2022.111997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/05/2022] [Accepted: 09/12/2022] [Indexed: 01/18/2023]
Abstract
As growth factor receptor-2 (HER-2), progesterone receptor (PR) and estrogen receptor (ER) are scarce in triple-negative breast cancer (TNBC), it is a great challenge to combat TNBC with high tumor specificity and therapeutic efficacy. Most traditional treatments including surgical resection, chemotherapy, and radiotherapy would more or less cause serious side effects and drug resistance. Photodynamic therapy (PDT) has huge potential in the treatment of TNBC for minimal invasiveness, low toxicity, less drug resistance and high spatiotemporal selectivity. Inspired by the advantages of small-molecule-targeted PDT and the sensitization effect of myeloid cell leukemia-1 (MCL-1) inhibitor, a novel photosensitizer BC-Pc was designed by conjugating MCL-1 inhibitor with zinc phthalocyanines. Owning to 3-chloro-6-methyl-1-benzothiophene-2-carboxylic acid (BC) moiety, BC-Pc exhibits the high affinity towards MCL-1 and reduce its self-aggregation in TNBC cells. Therefore, MCL-1 targeted BC-Pc showed remarkable intracellular fluorescence and ROS generation in TNBC cells. Additionally, BC-Pc can selectively sensitize TNBC cells to ROS-induced damage, resulting in improved therapeutic effect to TNBC cells and negligible toxicity to normal cells. More importantly, BC-Pc can effectively inhibit the migration and invasion of TNBC cells, and enhance immune response, all of which will be beneficial to eradicate TNBC. To the best of our knowledge, BC-Pc is the novel MCL-targeted photosensitizer, which owns the amplified ROS-induced lethality and anticancer immune response for TNBC. Overall, our study provides a promising strategy to achieve targeting and highly efficient therapy of TNBC.
Collapse
Affiliation(s)
- Kunshan Huang
- National and Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, College of Chemistry, Fuzhou University, Fuzhou 350116, Fujian, China
| | - Huiqiao Yao
- National and Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, College of Chemistry, Fuzhou University, Fuzhou 350116, Fujian, China
| | - Meiqi Yan
- National and Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, College of Chemistry, Fuzhou University, Fuzhou 350116, Fujian, China
| | - Han Zhang
- National and Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, College of Chemistry, Fuzhou University, Fuzhou 350116, Fujian, China
| | - Gankun Yuan
- National and Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, College of Chemistry, Fuzhou University, Fuzhou 350116, Fujian, China
| | - Qilu Wang
- National and Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, College of Chemistry, Fuzhou University, Fuzhou 350116, Fujian, China
| | - Jinping Xue
- National and Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, College of Chemistry, Fuzhou University, Fuzhou 350116, Fujian, China
| | - Jinyu Li
- National and Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, College of Chemistry, Fuzhou University, Fuzhou 350116, Fujian, China; Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen 361005, Fujian, China.
| | - Juanjuan Chen
- National and Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, College of Chemistry, Fuzhou University, Fuzhou 350116, Fujian, China.
| |
Collapse
|
18
|
Yan Y, Chen B, Yin Q, Wang Z, Yang Y, Wan F, Wang Y, Tang M, Xia H, Chen M, Liu J, Wang S, Zhang Q, Wang Y. Dissecting extracellular and intracellular distribution of nanoparticles and their contribution to therapeutic response by monochromatic ratiometric imaging. Nat Commun 2022; 13:2004. [PMID: 35422063 PMCID: PMC9010411 DOI: 10.1038/s41467-022-29679-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 03/21/2022] [Indexed: 12/16/2022] Open
Abstract
Efficient delivery of payload to intracellular targets has been identified as the central principle for nanomedicine development, while the extracellular targets are equally important for cancer treatment. Notably, the contribution of extracellularly distributed nanoparticles to therapeutic outcome is far from being understood. Herein, we develop a pH/light dual-responsive monochromatic ratiometric imaging nanoparticle (MRIN), which functions through sequentially lighting up the intracellular and extracellular fluorescence signals by acidic endocytic pH and near-infrared light. Enabled by MRIN nanotechnology, we accurately quantify the extracellular and intracellular distribution of nanoparticles in several tumor models, which account for 65-80% and 20-35% of total tumor exposure, respectively. Given that the majority of nanoparticles are trapped in extracellular regions, we successfully dissect the contribution of extracellularly distributed nanophotosensitizer to therapeutic efficacy, thereby maximize the treatment outcome. Our study provides key strategies to precisely quantify nanocarrier microdistribtion and engineer multifunctional nanomedicines for efficient theranostics.
Collapse
Affiliation(s)
- Yue Yan
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Binlong Chen
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Qingqing Yin
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Zenghui Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Ye Yang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Fangjie Wan
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Yaoqi Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Mingmei Tang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Heming Xia
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Meifang Chen
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Jianxiong Liu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Siling Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Qiang Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Yiguang Wang
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China.
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
| |
Collapse
|
19
|
Michelis S, Danglot L, Vauchelles R, Klymchenko AS, Collot M. Imaging and Measuring Vesicular Acidification with a Plasma Membrane-Targeted Ratiometric pH Probe. Anal Chem 2022; 94:5996-6003. [PMID: 35377610 DOI: 10.1021/acs.analchem.2c00574] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Tracking the pH variation of intracellular vesicles throughout the endocytosis pathway is of prior importance to better assess the cell trafficking and metabolism of cells. Small molecular fluorescent pH probes are valuable tools in bioimaging but are generally not targeted to intracellular vesicles or are directly targeted to acidic lysosomes, thus not allowing the dynamic observation of the vesicular acidification. Herein, we designed Mem-pH, a fluorogenic ratiometric pH probe based on chromenoquinoline with appealing photophysical properties, which targets the plasma membrane (PM) of cells and further accumulates in the intracellular vesicles by endocytosis. The exposition of Mem-pH toward the vesicle's lumen allowed to monitor the acidification of the vesicles throughout the endocytic pathway and enabled the measurement of their pH via ratiometric imaging.
Collapse
Affiliation(s)
- Sophie Michelis
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, CNRS/Université de Strasbourg, 74 route du Rhin, 67401 Illkirch-Graffenstaden, France
| | - Lydia Danglot
- Université de Paris, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, Membrane Traffic in Healthy & Diseased Brain, 75014 Paris, France
| | - Romain Vauchelles
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, CNRS/Université de Strasbourg, 74 route du Rhin, 67401 Illkirch-Graffenstaden, France
| | - Andrey S Klymchenko
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, CNRS/Université de Strasbourg, 74 route du Rhin, 67401 Illkirch-Graffenstaden, France
| | - Mayeul Collot
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, CNRS/Université de Strasbourg, 74 route du Rhin, 67401 Illkirch-Graffenstaden, France
| |
Collapse
|
20
|
Rehman MU, Khan A, Imtiyaz Z, Ali S, Makeen HA, Rashid S, Arafah A. Current Nano-therapeutic Approaches Ameliorating Inflammation in Cancer Progression. Semin Cancer Biol 2022; 86:886-908. [DOI: 10.1016/j.semcancer.2022.02.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 01/22/2022] [Accepted: 02/03/2022] [Indexed: 12/12/2022]
|
21
|
Huang H, Chen B, Li L, Wang Y, Shen Z, Wang Y, Li X. A two-photon fluorescence probe with endoplasmic reticulum targeting ability for turn-on sensing photosensitized singlet oxygen in living cells and brain tissues. Talanta 2022; 237:122963. [PMID: 34736688 DOI: 10.1016/j.talanta.2021.122963] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/03/2021] [Accepted: 10/10/2021] [Indexed: 10/20/2022]
Abstract
Endoplasmic reticulum (ER) is an indispensable organelle responsible for protein synthesis, transportation, and maintenance of Ca2+ homeostasis in eukaryotic cells. Recent studies highlighted that ER-targeted photosensitizers with high yield of singlet oxygen (1O2) are effective in selectively disrupting ER function and are promising candidates for anticancer therapy. Unfortunately, no ER targetable fluorescent probes for determining 1O2 photosensitized in this photodynamic therapy process is available. In this work, we synthesized an ER-targetable, two-photon fluorescence probe, ER-1O2, for fluorescence turn-on sensing of 1O2. ER-1O2 demonstrated high sensitivity to 1O2 sensing with a wide detection range (0-2.75 μM) and a low detection limit (0.11 μM). ER-1O2 also displayed excellent selectivity toward 1O2 out of other ROS and metal ions. Notably, ER-1O2 exhibited low cytotoxicity but with specific ER targetable capability. On account of these advantageous features, fluctuations of 1O2 in living cells and brain tissues were effectively visualized by ER-1O2.
Collapse
Affiliation(s)
- Hong Huang
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, 314001, China
| | - Biyun Chen
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, 314001, China
| | - Lifen Li
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, 314001, China
| | - Yuan Wang
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, 314001, China
| | - Zhangfeng Shen
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, 314001, China
| | - Yangang Wang
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, 314001, China.
| | - Xi Li
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, 314001, China.
| |
Collapse
|