1
|
Legat T, Mairesse F, Dok AR, de Coene Y, Thielemans W, Champagne B, Van Cleuvenbergen S. First hyperpolarizability of cellulose nanocrystals: an experimental and theoretical investigation. J Mater Chem B 2025; 13:1024-1036. [PMID: 39629673 DOI: 10.1039/d4tb02088j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Cellulose nanocrystals (CNCs) have attracted considerable interest due to their optical properties, though their nonlinear optical behavior remains largely unexplored. In this paper, we investigate the second-order nonlinear optical (SONLO) response of CNCs through both experimental and theoretical investigations. Hyper-Rayleigh scattering (HRS) experiments revealed values comparable to well-known nonlinear optical biomaterials, such as collagen, and on par with inorganic reference materials like KDP. The strong response in CNCs can be attributed to the well-ordered structure of the cellulose chains, which enhances the overall susceptibility of the nanoparticles. Quantum chemical modeling using density functional theory (DFT) was employed to simulate the molecular hyperpolarizability of CNCs. The study reduced the complex first hyperpolarizability tensor of the CNCs to two key components, βzzz and βzyy. An electrostatic model was applied to account for the CNCs' shape and dielectric properties, leading to strong agreement with the experimental data. Our findings highlight the potential of CNCs for optoelectronic applications and provide valuable insights for characterizing CNC-based mesomaterials through two-photon microscopy.
Collapse
Affiliation(s)
- Thibaut Legat
- Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Campus Kulak Kortrijk, Etienne Sabbelaan 53, 8500 Kortrijk, Belgium.
- Sustainable Materials Lab, Department of Chemical Engineering, KU Leuven, Campus Kulak Kortrijk, Etienne Sabbelaan 53, 8500 Kortrijk, Belgium
| | - François Mairesse
- Theoretical Chemistry Laboratory, Unit of Theoretical and Structural Physical Chemistry, NISM (Namur Institute of Structured Matter), University of Namur (UNamur), B-5000 Namur, Belgium.
| | - Ahmet R Dok
- Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Campus Kulak Kortrijk, Etienne Sabbelaan 53, 8500 Kortrijk, Belgium.
| | - Yovan de Coene
- Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnlaan 200D, 3001 Heverlee, Belgium
| | - Wim Thielemans
- Sustainable Materials Lab, Department of Chemical Engineering, KU Leuven, Campus Kulak Kortrijk, Etienne Sabbelaan 53, 8500 Kortrijk, Belgium
| | - Benoît Champagne
- Theoretical Chemistry Laboratory, Unit of Theoretical and Structural Physical Chemistry, NISM (Namur Institute of Structured Matter), University of Namur (UNamur), B-5000 Namur, Belgium.
| | - Stijn Van Cleuvenbergen
- Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Campus Kulak Kortrijk, Etienne Sabbelaan 53, 8500 Kortrijk, Belgium.
| |
Collapse
|
2
|
Li K, Li ZG, Chen YQ, Li W. B-site substitution effects on the mechanical properties of halide perovskites [C 4H 12N 2][BCl 3]·H 2O (B = NH 4+; K +). Dalton Trans 2024; 53:14451-14456. [PMID: 39145540 DOI: 10.1039/d4dt01795a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
The mechanical properties of halide perovskites have been attracting ever-increasing interest for their significant importance in future industrial applications. However, studies focused on the effect of B-site substitution of molecular perovskites on their mechanical properties are rare, which makes it favorable to shed light on their fundamental structure-mechanical property relationships. Here, using isostructural halide perovskites, [C4H12N2][BCl3]·H2O (B = NH4+; K+), constructed by ionic bonds and hydrogen bonds, respectively, as the model systems, we investigate their mechanical properties through high-pressure synchrotron X-ray diffraction experiments and density functional theory calculations. Owing to the similar sizes of NH4+ and K+, the two compounds possess almost identical cell parameters and frameworks. Upon compression, the two perovskites exhibit analogous behavior except for slight differences in the shrinkage ratio of principal axes and the onset pressure of amorphization. The fitted bulk moduli of [C4H12N2][KCl3]·H2O and [C4H12N2][NH4Cl3]·H2O are 43.89 and 27.28 GPa, respectively. These results demonstrate that the simple replacement of K+ by NH4+ can significantly reduce the structural rigidity of the corresponding compounds, which is ascribed to the weaker strength of NH4⋯Cl hydrogen bonds than that of K-Cl bonds.
Collapse
Affiliation(s)
- Kai Li
- Department of Chemistry and Chemical Engineering, Jinzhong University, Jinzhong, Shanxi 030619, China.
| | - Zhi-Gang Li
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University & TKL of Metal and Molecule Based Material Chemistry, Tianjin 300350, China
| | - Yong-Qiang Chen
- Department of Chemistry and Chemical Engineering, Jinzhong University, Jinzhong, Shanxi 030619, China.
| | - Wei Li
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University & TKL of Metal and Molecule Based Material Chemistry, Tianjin 300350, China
| |
Collapse
|
3
|
Pan Q, Gu ZX, Zhou RJ, Feng ZJ, Xiong YA, Sha TT, You YM, Xiong RG. The past 10 years of molecular ferroelectrics: structures, design, and properties. Chem Soc Rev 2024; 53:5781-5861. [PMID: 38690681 DOI: 10.1039/d3cs00262d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Ferroelectricity, which has diverse important applications such as memory elements, capacitors, and sensors, was first discovered in a molecular compound, Rochelle salt, in 1920 by Valasek. Owing to their superiorities of lightweight, biocompatibility, structural tunability, mechanical flexibility, etc., the past decade has witnessed the renaissance of molecular ferroelectrics as promising complementary materials to commercial inorganic ferroelectrics. Thus, on the 100th anniversary of ferroelectricity, it is an opportune time to look into the future, specifically into how to push the boundaries of material design in molecular ferroelectric systems and finally overcome the hurdles to their commercialization. Herein, we present a comprehensive and accessible review of the appealing development of molecular ferroelectrics over the past 10 years, with an emphasis on their structural diversity, chemical design, exceptional properties, and potential applications. We believe that it will inspire intense, combined research efforts to enrich the family of high-performance molecular ferroelectrics and attract widespread interest from physicists and chemists to better understand the structure-function relationships governing improved applied functional device engineering.
Collapse
Affiliation(s)
- Qiang Pan
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, P. R. China.
| | - Zhu-Xiao Gu
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, P. R. China.
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210008, P. R. China.
| | - Ru-Jie Zhou
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, P. R. China.
| | - Zi-Jie Feng
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, P. R. China.
| | - Yu-An Xiong
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, P. R. China.
| | - Tai-Ting Sha
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, P. R. China.
| | - Yu-Meng You
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, P. R. China.
| | - Ren-Gen Xiong
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, P. R. China.
| |
Collapse
|
4
|
Choi HS, Lin J, Wang G, Wong WPD, Park IH, Lin F, Yin J, Leng K, Lin J, Loh KP. Molecularly thin, two-dimensional all-organic perovskites. Science 2024; 384:60-66. [PMID: 38574140 DOI: 10.1126/science.adk8912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/22/2024] [Indexed: 04/06/2024]
Abstract
Recently, the emergence of all-organic perovskites with three-dimensional (3D) structures has expanded the potential applications of perovskite materials. However, the synthesis and utilization of all-organic perovskites in 2D form remain largely unexplored because the design principle has not been developed. We present the successful synthesis of a metal-free 2D layered perovskite, denoted as the Choi-Loh van der Waals phase (CL-v phase), with the chemical formula A2B2X4, where A represents a larger-sized cation compared to B and X denotes an anion. The CL-v phase exhibits a van der Waals gap enabled by interlayer hydrogen bonding and can be exfoliated or grown as molecularly thin 2D organic crystals. The dielectric constants of the CL-v phase range from 4.8 to 5.5 and we demonstrate their potential as gate dielectrics for thin-film transistors.
Collapse
Affiliation(s)
- Hwa Seob Choi
- Department of Applied Physics, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Jun Lin
- Department of Applied Physics, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Gang Wang
- Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Walter P D Wong
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - In-Hyeok Park
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon 34134, Republic of Korea
| | - Fang Lin
- College of Electronic Engineering, South China Agricultural University, Guangzhou 510642, China
| | - Jun Yin
- Department of Applied Physics, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Kai Leng
- Department of Applied Physics, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China
| | - Junhao Lin
- Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
- Quantum Science Center of Guangdong-Hong Kong-Macao Greater Bay Area (Guangdong), Shenzhen 518045, China
| | - Kian Ping Loh
- Department of Applied Physics, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| |
Collapse
|
5
|
Gallop N, Sirbu D, Walker D, Lloyd-Hughes J, Docampo P, Milot RL. Terahertz Emission via Optical Rectification in a Metal-Free Perovskite Crystal. ACS PHOTONICS 2023; 10:4022-4030. [PMID: 38027252 PMCID: PMC10655262 DOI: 10.1021/acsphotonics.3c00918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Indexed: 12/01/2023]
Abstract
We report on the emission of high-intensity pulsed terahertz radiation from the metal-free halide perovskite single crystal methyl-DABCO ammonium iodide (MDNI) under femtosecond illumination. The power and angular dependence of the THz output implicate optical rectification of the 800 nm pump as the mechanism of THz generation. Further characterization finds that, for certain crystal orientations, the angular dependence of THz emission is modulated by phonon resonances attributable to the motion of the methyl-DABCO moiety. At maximum, the THz emission spectrum of MDNI is free from significant phonon resonances, resulting in THz pulses with a temporal width of <900 fs and a peak-to-peak electric field strength of approximately 0.8 kV cm-1-2 orders of magnitude higher than any other reported halide perovskite emitters. Our results point toward metal-free perovskites as a promising new class of THz emitters that brings to bear many of the advantages enjoyed by other halide perovskite materials. In particular, the broad tunability of optoelectronic properties and ease of fabrication of perovskite materials opens up the possibility of further optimizing the THz emission properties within this material class.
Collapse
Affiliation(s)
| | - Dumitru Sirbu
- School
of Mathematics, Statistics and Physics, Newcastle University, Newcastle
upon Tyne NE1 7RU, U.K.
| | - David Walker
- Department
of Physics, University of Warwick, Coventry CV4 7AL, U.K.
| | | | - Pablo Docampo
- School
of Mathematics, Statistics and Physics, Newcastle University, Newcastle
upon Tyne NE1 7RU, U.K.
- School
of Chemistry, University of Glasgow, Glasgow G12 8QQ, U.K.
| | - Rebecca L. Milot
- Department
of Physics, University of Warwick, Coventry CV4 7AL, U.K.
| |
Collapse
|
6
|
Wu Y, Li Z, Lei Y, Jin Z. Metal-Free Perovskites for X-Ray Detection. Chemistry 2023; 29:e202301536. [PMID: 37427493 DOI: 10.1002/chem.202301536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/07/2023] [Accepted: 07/08/2023] [Indexed: 07/11/2023]
Abstract
Metal-free perovskites are a promising class of materials for X-ray detection due to their unique structural, optical, and electrical properties. Here, we first delve into the stoichiometry and geometric argument of metal-free perovskites. Followed, the alternative A/B/X ions and hydrogen-bonding are clearly introduced to further optimize the materials' stability and properties. Finally, we provide a comprehensive overview of their potential applications for flexible X-ray images and prospects for metal-free perovskite development. In conclusion, metal-free perovskite is a promising material for X-ray detection. Its stoichiometric and geometric parameters, ion, and hydrogen bond selection, and application prospects are worthy of further study.
Collapse
Affiliation(s)
- Yujiang Wu
- School of Materials and Energy School of Physical Science and Technolog Lanzhou Center for Theoretical Physics Key Laboratory of Theoretical Physics of Gansu Province, Lanzhou University, Lanzhou, 730000, China
| | - Zhizai Li
- School of Materials and Energy School of Physical Science and Technolog Lanzhou Center for Theoretical Physics Key Laboratory of Theoretical Physics of Gansu Province, Lanzhou University, Lanzhou, 730000, China
| | - Yutian Lei
- School of Materials and Energy School of Physical Science and Technolog Lanzhou Center for Theoretical Physics Key Laboratory of Theoretical Physics of Gansu Province, Lanzhou University, Lanzhou, 730000, China
| | - Zhiwen Jin
- School of Materials and Energy School of Physical Science and Technolog Lanzhou Center for Theoretical Physics Key Laboratory of Theoretical Physics of Gansu Province, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
7
|
Budzianowski A, Petřiček V, Katrusiak A. Metal-free enantiomorphic perovskite [dabcoH 2] 2+[H 3O] +Br - 3 and its one-dimensional polar polymorph. IUCRJ 2022; 9:544-550. [PMID: 36071811 PMCID: PMC9438492 DOI: 10.1107/s2052252522006406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
The structure and stoichiometry of a new metal-free and ammonium-free compound [dabcoH2]2+H3O+Br- 3 (where [dabcoH2]2+ = 1,4-di-aza-bicyclo-[2.2.2]octane dication) correspond to the general formula ABX 3 characteristic of perovskites. In enantiomorphic trigonal polymorph α of [dabcoH2]2+H3O+Br- 3, the corner-sharing [H3O]Br6 octahedra combine into a 3D framework embedding [dabcoH2]2+ dications in pseudo-cubic cages. In the more dense polymorph β, the face-sharing [H3O]Br6 octahedra form 1D polyanionic columns separated by [dabcoH2]2+ dications. These different topologies correlate with different crystal fields around the cations and their different disorder types: orientational disorders of [dabcoH2]2+ dications and H3O+ cations in polymorph α and positional disorder of [H3O]+ cations in polymorph β. The orientational disorder increases the lengths of OH⋯Br hydrogen bonds in polymorph α, but NH⋯Br distances of ordered dabcoH2 dications are longer in polymorph β. The presence of polar [H3O]+ cations in [dabcoH2]2+H3O+Br- 3 polymorphs offers additional polarizability of the centres compared with analogous metal-free [dabcoH2]2+[NH4]+Br- 3 perovskite.
Collapse
Affiliation(s)
- Armand Budzianowski
- National Centre for Nuclear Research, Andrzeja Sołtana 7, Otwock, Świerk 05-400, Poland
| | - Vaclav Petřiček
- Institute of Physics; Department of Structure Analysis, Academy of Sciences of the Czech Republic, Cukrovarnicka 10, Prague 6 16253, Czech Republic
| | - Andrzej Katrusiak
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Umultowska 89 b, Poznań 61-614, Poland
| |
Collapse
|
8
|
Chen K, Wu J, Hu Q, Lu Z, Sun X, Wang Z, Tang G, Hu H, Xue D. Omni-functional crystal: Advanced methods to characterize the composition and homogeneity of lithium niobate melts and crystals. EXPLORATION (BEIJING, CHINA) 2022; 2:20220059. [PMID: 37325602 PMCID: PMC10191049 DOI: 10.1002/exp.20220059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/16/2022] [Indexed: 06/17/2023]
Abstract
Lithium niobate (LN) is a type of multifunctional dielectric and ferroelectric crystal that is widely used in acoustic, optical, and optoelectronic devices. The performance of pure and doped LN strongly depends on various factors, including its composition, microstructure, defects, domain, and homogeneity. The structure and composition homogeneity can affect both the chemical and physical properties of LN crystals, including their density, Curie temperature, refractive index, and piezoelectric and mechanical properties. In terms of practical demands, both the composition and microstructure characterizations these crystals must range from the nanometer scale up to the millimeter and wafer scales. Therefore, LN crystals require different characterization technologies when verifying their quality for various device applications. Optical, electrical, and acoustic technologies have been developed, including x-ray diffraction, Raman spectroscopy, electron microscopy, and interferometry. To obtain detailed structural information, advanced sub-nanometer technologies are required. For general industrial demands, fast and non-destructive technologies are preferable. This review outlines the advanced methods used to characterize both the composition and homogeneity of LN melts and crystals from the micro- to wafer scale.
Collapse
Affiliation(s)
- Kunfeng Chen
- Institute of Novel SemiconductorsState Key Laboratory of Crystal MaterialsShandong UniversityJinanChina
| | - Ji'an Wu
- Institute of Novel SemiconductorsState Key Laboratory of Crystal MaterialsShandong UniversityJinanChina
| | - Qianyu Hu
- Institute of Novel SemiconductorsState Key Laboratory of Crystal MaterialsShandong UniversityJinanChina
| | - Zheng Lu
- Institute of Novel SemiconductorsState Key Laboratory of Crystal MaterialsShandong UniversityJinanChina
| | - Xiangfei Sun
- Institute of Novel SemiconductorsState Key Laboratory of Crystal MaterialsShandong UniversityJinanChina
| | - Zhiqiang Wang
- Institute of Novel SemiconductorsState Key Laboratory of Crystal MaterialsShandong UniversityJinanChina
| | - Gongbin Tang
- Institute of Novel SemiconductorsState Key Laboratory of Crystal MaterialsShandong UniversityJinanChina
| | - Hui Hu
- School of PhysicsState Key Laboratory of Crystal MaterialsShandong UniversityJinanChina
| | - Dongfeng Xue
- Multiscale Crystal Materials Research CenterShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenChina
| |
Collapse
|
9
|
Cui Q, Liu SF, Zhao K. Structural and Functional Insights into Metal-Free Perovskites. J Phys Chem Lett 2022; 13:5168-5178. [PMID: 35658509 DOI: 10.1021/acs.jpclett.2c01044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In the past three years, metal-free perovskites have garnered significant interest as promising candidates for utilization in next-generation wearable electronics. A variety of different molecular structures for these perovskites have been designed for different applications. However, there is still no systematic understanding that can elucidate the relationship between the structural details and properties of perovskites. This would provide a helpful guide for designing a metal-free perovskite with the desired packing structure and properties. Herein, we summarize recently reported structural and functional insights into metal-free perovskites. The underlying design of the molecular structure and its role in the packing structure and resulting properties are explained. In addition, important factors and challenges in the design of a molecular structure that will be useful for future applications are discussed. This information will help enrich the library of potential structures and future applications of metal-free perovskites, which is believed to be much larger than is currently known.
Collapse
Affiliation(s)
- Qingyue Cui
- Department of Chemical Physics; Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China (USTC), Hefei 230026, P.R. China
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education; Shaanxi Key Laboratory for Advanced Energy Devices; Shaanxi Engineering Lab for Advanced Energy Technology; Institute for Advanced Energy Materials; School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, P.R. China
- Dalian National Laboratory for Clean Energy; iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P.R. China
| | - Shengzhong Frank Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education; Shaanxi Key Laboratory for Advanced Energy Devices; Shaanxi Engineering Lab for Advanced Energy Technology; Institute for Advanced Energy Materials; School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, P.R. China
- Dalian National Laboratory for Clean Energy; iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Kui Zhao
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education; Shaanxi Key Laboratory for Advanced Energy Devices; Shaanxi Engineering Lab for Advanced Energy Technology; Institute for Advanced Energy Materials; School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, P.R. China
| |
Collapse
|
10
|
Lyu F, Chen Z, Shi R, Yu J, Lin BL. Solid phase synthesis of metal-free perovskite crystalline materials. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.122548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|