1
|
Wen C, Li RS, Guan Y, Chang X, Li N. A Two-Photon-Active Zr-Based Metal-Organic Framework-Based Orthogonal Nanoprobe for Recognition of Cellular Senescence. Anal Chem 2024; 96:16170-16178. [PMID: 39358945 DOI: 10.1021/acs.analchem.4c02758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
A luminescent nanoprobe capable of orthogonal sensing of two independent events is highly significant for unbiased disease-related detection such as the detection of senescent cells. Moreover, it is invaluable that the nanoprobe possesses a two-photon excitable characteristic that is highly suitable for imaging living cells and tissues. Herein, we present a two-photon-excitable multiluminescent orthogonal-sensing nanoprobe (OS nanoprobe) capable of detecting both pH elevation and β-galactosidase (β-gal) overexpression in senescent cells. In the design, Zr-based dual-emissive metal-organic frameworks prepared from two mixed amino linkers, referred to as NH2-MU, were used as the component for the ratiometric sensing of pH; additionally, fluorogenic resorufin-β-d-galactopyranoside, linked to the NH2-MU framework, enables β-gal detection. In the OS nanoprobe, the signals for pH and β-gal sensing remain independent while maintaining high colocalization. The two-photon excitable organic linkers of NH2-MU impart the OS nanoprobe with a bioimaging capability, allowing for the differentiation of senescent human foreskin fibroblast (HFF) cells from younger HFF cells or LacZ positive cells with the 800 nm laser excitation. This study marks the first instance of achieving the multiplexed orthogonal fluorescent sensing of cellular senescence using a two-photon excitation strategy, suggesting the potential of using versatile metal-organic framework (MOFs)-based fluorophores to realize the orthogonal multiplexing of disease-related biomarkers through multiphoton excitation.
Collapse
Affiliation(s)
- Cong Wen
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Rong Sheng Li
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education (Yunnan University), School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Yan Guan
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Xiaoxia Chang
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Na Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| |
Collapse
|
2
|
Zhang YY, Chen ZY, Li QG, Jin XX, Cao M, Sun R, Wang BW, Li P, Sui Q. Metal Ion Modulated Electron Transfer in Metalloviologen Compounds: Photochromism and Differentiable Amine Detection. Inorg Chem 2024; 63:16274-16283. [PMID: 39154358 DOI: 10.1021/acs.inorgchem.4c02210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Different types of electron transfers (ETs) underlie the versatile use of various solid viologen-derived compounds, which is still insufficiently understood and difficult to control. Here, we demonstrate an effective strategy for modulating the key ET process in crystalline metalloviologen compounds (MVCs). By adjusting the coordinated transition metal ions bearing different electronic structures (e.g., d5, d7, d10), three MVCs (i.e., Mn-1, Co-2, and Cd-3) with highly consistent coordination environments have been synthesized successfully. Surprisingly, whether the photochromism (energy-induced ET mechanism) or the specific analyte recognition (molecule-induced ET mechanism), compound Cd-3 exhibits obvious photochromic behavior and differential dimethylamine detection. Combined detailed structural analysis with theoretical calculations, such unique ion-dependent properties, were correlated to the fine modulation of the electron density of the bipyridinium cores by metal ions. Additionally, thanks to the delicate recognition of dimethylamine vapor, a convenient test strip Cd-3-PAN was prepared as a sensitive biogenic amine sensor for evaluating the real-time freshness of seafood.
Collapse
Affiliation(s)
- Yan-Yan Zhang
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Ze-Yao Chen
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Qian-Ge Li
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Xin-Xin Jin
- Beijing National Laboratory for Molecular Science, Beijing Key Laboratory for Magnetoelectric Materials and Devices, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Miao Cao
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Rong Sun
- Beijing National Laboratory for Molecular Science, Beijing Key Laboratory for Magnetoelectric Materials and Devices, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Bing-Wu Wang
- Beijing National Laboratory for Molecular Science, Beijing Key Laboratory for Magnetoelectric Materials and Devices, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Peng Li
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Qi Sui
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| |
Collapse
|
3
|
Xia DX, Xu CY, Ye MF, Lin RL, Liu JX. Photochromism, Thermochromism, and Electrochromism in Solid-State Host-Guest Inclusion Complexes of β-Cyclodextrin with Dialkylcarboxyl-Substituted Viologens. ACS APPLIED MATERIALS & INTERFACES 2024; 16:45745-45753. [PMID: 39151415 DOI: 10.1021/acsami.4c09782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/19/2024]
Abstract
Multi-stimuli-responsive chromic materials have immense potential for utilization. Herein, two supramolecular inclusion complexes were prepared by self-assembly of β-cyclodextrin (β-CD) with dialkylcarboxyl-substituted viologens, N,N'-di(3-carboxy-propyl)-4,4'-bipyridinium dichloride (CPV·Cl2) and N,N'-di(6-carboxy-hexyl)-4,4'-bipyridinium dibromide (CHV·Br2). The self-assembled inclusion complexes CPV2+@β-CD and CHV2+@β-CD2 in the solid-state exhibited naked-eye photochromism, thermochromism, and electrochromism in response to multiple external stimuli including light, temperature, and electric field, respectively. Solid-state UV-vis diffuse reflectance and electron spin resonance (ESR) spectroscopy revealed that the observed photochromism, thermochromism and electrochromism are attributed to the formation of viologen free radicals induced by electron transfer under external stimuli. The excellent stimuli-response chromic properties of the title inclusion complexes support their practical utility in visual display, multiple anticounterfeiting, and multilevel information encryption.
Collapse
Affiliation(s)
- Dong-Xue Xia
- College of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan 243002, China
| | - Chen-Yan Xu
- College of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan 243002, China
| | - Ming-Fu Ye
- College of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan 243002, China
| | - Rui-Lian Lin
- College of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan 243002, China
| | - Jing-Xin Liu
- College of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan 243002, China
| |
Collapse
|
4
|
Cuza E, Patriarche G, Serre C, Tissot A. New Architecture Based on Metal-Organic Frameworks and Spin Crossover Complexes to Detect Volatile Organic Compounds. Chemistry 2024; 30:e202400463. [PMID: 38699868 DOI: 10.1002/chem.202400463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/12/2024] [Accepted: 05/03/2024] [Indexed: 05/05/2024]
Abstract
We present here the encapsulation of a spin crossover complex C1 [FeII(L)] (L: 4-amino-, 2-(2-pyridinylmethylene)hydrazide) inside MOF-808(Zr), a chemically robust Metal-Organic Framework. The compound C1⊂MOF-808 retains its crystallinity as well as a partial porosity compared to pristine MOF and shows solvatochromism under Volatile Organic compounds (VOCs) sorption associated to a spin state change of the guest complex. More specifically, this compound shows an interesting reversible color change under formaldehyde and formic acid vapor sorption and can therefore be considered as a new kind of optical VOCs chemosensor, opening new doors for developing a broad range of VOCs optical sensors.
Collapse
Affiliation(s)
- Emmelyne Cuza
- Institut des Matériaux Poreux de Paris, Ecole Normale Supérieure, ESPCI Paris, CNRS, PSL University, 75005, Paris, France
| | - Gilles Patriarche
- Centre de Nanosciences et de Nanotechnologies, Université Paris-Saclay, CNRS, 91120, Palaiseau, France
| | - Christian Serre
- Institut des Matériaux Poreux de Paris, Ecole Normale Supérieure, ESPCI Paris, CNRS, PSL University, 75005, Paris, France
| | - Antoine Tissot
- Institut des Matériaux Poreux de Paris, Ecole Normale Supérieure, ESPCI Paris, CNRS, PSL University, 75005, Paris, France
| |
Collapse
|
5
|
Cai DG, Zheng TF, Liu SJ, Wen HR. Fluorescence sensing and device fabrication with luminescent metal-organic frameworks. Dalton Trans 2024; 53:394-409. [PMID: 38047400 DOI: 10.1039/d3dt03223j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Metal-organic frameworks (MOFs) are a novel class of hybrid porous multi-functional materials consisting of metal ions/clusters and organic ligands. MOFs have exclusive benefits due to their tunable structure and diverse properties. Luminescent MOFs (LMOFs) exhibit both porosity and light emission. They display abundant host and guest responses, making them conducive to sensing. Currently, LMOF sensing research is gaining more depth, with attention given to their device and practical applications. This work reviews recent advancements and device applications of LMOFs as chemical sensors toward ions, volatile organic compounds, biomolecules, and environmental toxins. Furthermore, the detection mechanism and the correlation between material properties and structure are elaborated. This analysis serves as a valuable reference for the preparation and efficient application of targeted LMOFs.
Collapse
Affiliation(s)
- Ding-Gui Cai
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China.
| | - Teng-Fei Zheng
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China.
| | - Sui-Jun Liu
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China.
| | - He-Rui Wen
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China.
| |
Collapse
|
6
|
Huo R, Zeng G, Wang C, Wang YF, Xing YH, Bai FY. Smart Stimulation Response of a Pyrene-Based Lanthanide(III) MOF: Fluorescence Enhancement to HX (F and Cl) or R-COOH and Artificial Applicable Film on HCl Vapor Sensing. ACS APPLIED MATERIALS & INTERFACES 2023; 15:50275-50289. [PMID: 37862575 DOI: 10.1021/acsami.3c11385] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2023]
Abstract
Toxic acids produced by industries are major hazards to the environment and human health, and luminescent pyrene-based crystalline metal-organic frameworks (MOFs) demonstrate promising performance in the detection of toxic acids. Herein, two novel isostructural 3D porous lanthanide MOFs, H3O·[Ln3(TBAPy)2(μ2-H2O)2(OH)2]·2DMA·2Diox·6.5H2O (Ln = Pr (1) and Ce (2); H4TBAPy (1,3,6,8-tetrakis(p-benzoic acid)pyrene); and DMA: N,N-dimethylacetamide) were synthesized, which showed alb topology. Based on the protonation and hydrogen bond mechanism, complex 1 could be used as a fluorescence recognition sensor for HX (X = F, Cl, Br, and I) acid solutions with different luminescence behaviors. It is worth noting that complex 1 exhibited high sensitivity in the fluorescence enhancement sensing of hydrofluoric acid, oxalic acid, and trichloroacetic acid. In particular, complex 1 had a low limit of detection (LOD) for OA (0.1 μM) and was applied to real monitoring of orange fruit samples. In addition, the PVA@1 film could selectively, sensitively, and quantitatively respond to hydrochloric acid (HCl) vapor through fluorescent quenching; due to its protonation and adsorption capacity, the LOD was 0.18 ppm. Therefore, the portable optical device, the PVA@1 film, can detect HCl gas in trace amounts, achieving the ultimate goal of real-time and rapid detection, which has potential application value for industrial production safety.
Collapse
Affiliation(s)
- Rong Huo
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian City 116029, P. R. China
| | - Guang Zeng
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, P. R. China
| | - Chen Wang
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian City 116029, P. R. China
| | - Yu Fei Wang
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian City 116029, P. R. China
| | - Yong Heng Xing
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian City 116029, P. R. China
| | - Feng Ying Bai
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian City 116029, P. R. China
| |
Collapse
|
7
|
Luo Y, Liu JP, Li LK, Zang SQ. Multi-Stimuli-Responsive Chromic Behaviors of an All-in-One Viologen-Based Cd(II) Complex. Inorg Chem 2023; 62:14385-14392. [PMID: 37607345 DOI: 10.1021/acs.inorgchem.3c02070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
A one-dimensional Cd(II) chain coordination polymer constructed by an electron-deficient viologen-anchored carboxylate ligand was successfully synthesized. Owing to the favorable stimuli-chromic properties of viologen, the title compound shows reversible photochromism, thermochromism, electrochromism, and naked-eye-detectable differentiable vapochromic response to different volatile amines. The chromic behaviors of it are ascribed to the formation of viologen radicals triggered by external stimuli. And the differentiated response to volatile amines is attributed to the size effect of the amines as well as the steric hindrance effect of forming α/β Cv-H···Namines interactions of the viologen unit to further affect the occurrence of electron transfer. Such an all-in-one crystalline material might have more practical applications in photoelectric, erasable inkless printing, light printing, and volatile amine detection fields.
Collapse
Affiliation(s)
- Yun Luo
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Jia-Pei Liu
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Lin-Ke Li
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Shuang-Quan Zang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
8
|
Roychowdhury P, Samanta S, Tan H, Powers DC. N-Amino Pyridinium Salts in Organic Synthesis. Org Chem Front 2023; 10:2563-2580. [PMID: 37840843 PMCID: PMC10569450 DOI: 10.1039/d3qo00190c] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
C-N bond forming reactions hold immense significance to synthetic organic chemistry. In pursuit of efficient methods for the introduction of nitrogen in organic small molecules, myriad synthetic methods have been developed, and methods based on both nucleophilic and electrophilic aminating reagents have received sustained research effort. In response to continued challenges - the need for substrate prefunctionalization, the requirement for vestigial N-activating groups, and the need to incorporate nitrogen in ever more complex molecular settings - the development of novel aminating reagents remains a central challenge in method development. N-aminopyridinums and their derivatives have recently emerged as a class of bifunctional aminating reagents, which combine N-centered nucleophilicity with latent electrophilic or radical reactivity by virtue of the reducible N-N bond, with broad synthetic potential. Here, we summarize the synthesis and reactivity of N-aminopyridinium salts relevant to organic synthesis. The preparation and application of these reagents in photocatalyzed and metal-catalyzed transformations is discussed, showcasing the reactivity in the context of bifunctional platform and its potential for innovation in the field.
Collapse
Affiliation(s)
- Pritam Roychowdhury
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA
| | - Samya Samanta
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA
| | - Hao Tan
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA
| | - David C Powers
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA
| |
Collapse
|
9
|
Wen C, Li R, Chang X, Li N. Metal-Organic Frameworks-Based Optical Nanosensors for Analytical and Bioanalytical Applications. BIOSENSORS 2023; 13:128. [PMID: 36671963 PMCID: PMC9855937 DOI: 10.3390/bios13010128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Metal-organic frameworks (MOFs)-based optical nanoprobes for luminescence and surface-enhanced Raman spectroscopy (SERS) applications have been receiving tremendous attention. Every element in the MOF structure, including the metal nodes, the organic linkers, and the guest molecules, can be used as a source to build single/multi-emission signals for the intended analytical purposes. For SERS applications, the MOF can not only be used directly as a SERS substrate, but can also improve the stability and reproducibility of the metal-based substrates. Additionally, the porosity and large specific surface area give MOF a sieving effect and target molecule enrichment ability, both of which are helpful for improving detection selectivity and sensitivity. This mini-review summarizes the advances of MOF-based optical detection methods, including luminescence and SERS, and also provides perspectives on future efforts.
Collapse
Affiliation(s)
- Cong Wen
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Rongsheng Li
- National Demonstration Center for Experimental Chemistry and Chemical Engineering Education (Yunnan University), School of Chemical Science and Engineering, Yunnan University, Kunming 650091, China
| | - Xiaoxia Chang
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Na Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
10
|
Li X, Qu H, Wang Y, Zhang X, Bai L, Wang Z. Fluorescent probe for detection of formaldehyde based on UiO-66-NH2. J SOLID STATE CHEM 2023. [DOI: 10.1016/j.jssc.2022.123672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
11
|
Shen Y, Tissot A, Serre C. Recent progress on MOF-based optical sensors for VOC sensing. Chem Sci 2022; 13:13978-14007. [PMID: 36540831 PMCID: PMC9728564 DOI: 10.1039/d2sc04314a] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/04/2022] [Indexed: 08/16/2023] Open
Abstract
The raising apprehension of volatile organic compound (VOC) exposures urges the exploration of advanced monitoring platforms. Metal-organic frameworks (MOFs) provide many attractive features including tailorable porosity, high surface areas, good chemical/thermal stability, and various host-guest interactions, making them appealing candidates for VOC capture and sensing. To comprehensively exploit the potential of MOFs as sensing materials, great efforts have been dedicated to the shaping and patterning of MOFs for next-level device integration. Among different types of sensors (chemiresistive sensors, gravimetric sensors, optical sensors, etc.), MOFs coupled with optical sensors feature distinctive strength. This review summarized the latest advancements in MOF-based optical sensors with a particular focus on VOC sensing. The subject is discussed by different mechanisms: colorimetry, luminescence, and sensors based on optical index modulations. Critical analysis for each system highlighting practical aspects was also deliberated.
Collapse
Affiliation(s)
- Yuwei Shen
- Institut des Matériaux Poreux de Paris, Ecole Normale Supérieure, ESPCI Paris, CNRS, PSL University 75005 Paris France
| | - Antoine Tissot
- Institut des Matériaux Poreux de Paris, Ecole Normale Supérieure, ESPCI Paris, CNRS, PSL University 75005 Paris France
| | - Christian Serre
- Institut des Matériaux Poreux de Paris, Ecole Normale Supérieure, ESPCI Paris, CNRS, PSL University 75005 Paris France
| |
Collapse
|
12
|
Cai DG, Qiu CQ, Zhu ZH, Zheng TF, Wei WJ, Chen JL, Liu SJ, Wen HR. Fabrication and DFT Calculation of Amine-Functionalized Metal-Organic Framework as a Turn-On Fluorescence Sensor for Fe 3+ and Al 3+ Ions. Inorg Chem 2022; 61:14770-14777. [PMID: 36070603 DOI: 10.1021/acs.inorgchem.2c02195] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Due to their important role in biological systems, it is urgent to develop a material that can rapidly and sensitively detect the concentration of Fe3+ and Al3+ ions. In this work, a brand-new CdII-based metal-organic framework [Cd(BTBD)2(AIC)]n (JXUST-18, BTBD = 4,7-bis(1H-1,2,4-triazol-1-yl)-2,1,3-benzothiadiazole and H2AIC = 5-aminoisophthalic acid) with a 4-connected sql topology was designed and synthesized. The symmetrical CdII centers are linked by AIC2- ligands with μ3-η1:η1:η1:η1 coordination mode to form a [Cd2(COO)2] secondary building unit (SBU). The contiguous SBUs are further connected by BTBD ligands to form a two-dimensional (2D) layer structure. JXUST-18 can remain stable in aqueous solutions with pH values of 3-12 or in boiling water. Luminescent experiments suggest that JXUST-18 displays more than eightfold fluorescence enhancement in the presence of Fe3+ and Al3+ ions, and the detection limits for Fe3+ and Al3+ ions are 0.196 and 0.184 μM, respectively. Furthermore, the change in luminescence color is uncomplicatedly distinguishable with the naked eye under ultraviolet light at 365 nm. In addition, a series of devices based on JXUST-18 including fluorescence test strips, lamp beads, and composite films were developed to detect metal ions via visual changes in luminescence color. Significantly, JXUST-18 is a rare MOF-based turn-on fluorescence sensor for the detection of Fe3+ ions. The theoretical calculation suggests that the complexation of Fe3+/Al3+ ions and the -NH2 group contributes to fluorescence enhancement.
Collapse
Affiliation(s)
- Ding-Gui Cai
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, P. R. China
| | - Cheng-Qiang Qiu
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, P. R. China
| | - Zi-Hao Zhu
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, P. R. China
| | - Teng-Fei Zheng
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, P. R. China
| | - Wen-Juan Wei
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, P. R. China
| | - Jing-Lin Chen
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, P. R. China
| | - Sui-Jun Liu
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, P. R. China
| | - He-Rui Wen
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, P. R. China
| |
Collapse
|
13
|
Yang S, Zhou S, Li H, Nie Y, Xu H, Liu W, Miao J, Li Y, Gao G, You J, Jiang X. Multistimuli-Responsive Squaraine Dyad Exhibiting Concentration-Controlled Vapochromic Luminescence. ACS APPLIED MATERIALS & INTERFACES 2022; 14:16611-16620. [PMID: 35349256 DOI: 10.1021/acsami.2c00468] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Stimuli-responsive organic materials with controllable luminescence are of enormous importance because of their potential applications in sensing, data security, and display devices. In this study, a multistimuli-responsive squaraine dyad (SQ-d) composed of two rigid squaraine moieties and a flexible ethylene linker was rationally designed and synthesized. SQ-d exhibits polymorphic luminescence, which can be reversibly switched by various external stimuli, including solvent vapor exposure, heat, and shear force. Unexpectedly, the weakly luminescent phase (O1) of SQ-d exhibits concentration-controlled vapochromic behavior. Film O1 can convert to a highly green-emissive phase (G1) under a low concentration of CHCl3 vapor and convert to a highly yellow-emissive phase (Y) under a high concentration of CHCl3 vapor; these originate from two distinct crystallization-induced emission enhancement processes. To the best of our knowledge, this is the first investigation of the effect of vapor concentration on the phase transitions of organic vapochromic luminophores. By analyzing the single-crystal structures and photophysical properties of SQ-d, we concluded that the green and yellow emissions probably originated from a zigzag stacking mode and an H-type π-π stacking mode, respectively. Finally, two prototypes based on SQ-d for applications in information encryption and vapor sensing were successfully demonstrated.
Collapse
Affiliation(s)
- Shuaijun Yang
- Institute for Smart Materials & Engineering, University of Jinan, No. 336 Nanxinzhuang West Road, 250022 Jinan, P.R. China
| | - Shaoxin Zhou
- Institute for Smart Materials & Engineering, University of Jinan, No. 336 Nanxinzhuang West Road, 250022 Jinan, P.R. China
| | - Hui Li
- Institute for Smart Materials & Engineering, University of Jinan, No. 336 Nanxinzhuang West Road, 250022 Jinan, P.R. China
| | - Yong Nie
- Institute for Smart Materials & Engineering, University of Jinan, No. 336 Nanxinzhuang West Road, 250022 Jinan, P.R. China
| | - Huiyan Xu
- Institute for Smart Materials & Engineering, University of Jinan, No. 336 Nanxinzhuang West Road, 250022 Jinan, P.R. China
| | - Wei Liu
- Institute for Smart Materials & Engineering, University of Jinan, No. 336 Nanxinzhuang West Road, 250022 Jinan, P.R. China
| | - Jinling Miao
- School of Chemistry and Chemical Engineering, University of Jinan, No. 336 Nanxinzhuang West Road, 250022 Jinan, P.R. China
| | - Yexin Li
- School of Chemistry and Chemical Engineering, University of Jinan, No. 336 Nanxinzhuang West Road, 250022 Jinan, P.R. China
| | - Ge Gao
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P.R. China
| | - Jingsong You
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P.R. China
| | - Xuchuan Jiang
- Institute for Smart Materials & Engineering, University of Jinan, No. 336 Nanxinzhuang West Road, 250022 Jinan, P.R. China
| |
Collapse
|
14
|
Duan Z, Shi XR, Sun C, Lin W, Huang S, Zhang X, Huang M, Yang Z, Xu S. Interface engineered hollow Co3O4@CoNi2S4 nanostructure for high efficiency supercapacitor and hydrogen evolution. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140139] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
15
|
Zhao L, Bian R, Chen H. Therapeutic and protective effect of two luminescent 3D Cd(II) compounds on heart failure via high-intensity focused ultrasound. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
16
|
Slyusarchuk VD, Hawes CS. Fecht's acid revisited: a spirocyclic dicarboxylate for non-aromatic MOFs. CrystEngComm 2022. [DOI: 10.1039/d1ce01542g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The first of a new class of spiroalkane-derived MOF linkers shows aromaticity is not a prerequisite for ligand design in porous materials.
Collapse
Affiliation(s)
| | - Chris S. Hawes
- School of Chemical and Physical Sciences, Keele University, Keele ST5 5BG, UK
| |
Collapse
|
17
|
Guo MY, Li G, Yang SL, Bu R, Piao XQ, Gao EQ. Metal-Organic Frameworks with Novel Catenane-like Interlocking: Metal-Determined Photoresponse and Uranyl Sensing. Chemistry 2021; 27:16415-16421. [PMID: 34599532 DOI: 10.1002/chem.202102413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Indexed: 12/20/2022]
Abstract
The assembly of two tripyridinium-tricarboxylate ligands and different metal ions leads to seven isostructural MOFs, which show novel 2D→2D supramolecular entanglement featuring catenane-like interlocking of tricyclic cages. The MOFs show tripyridinium-afforded and metal-modulated photoresponsive properties. The MOFs with d10 metal centers (1-Cd, 1-Zn, 2-Cd, 2-Zn) show fast and reversible photochromism and concomitant fluorescence quenching, 1-Ni displays slower photochromism but does not fluoresce, and 1-Co and 2-Co are neither photochromic nor fluorescent. It is shown here that the network entanglement dictates donor-acceptor close contacts, which enable fluorescence originated from interligand charge transfer. The contacts also allow photoinduced electron transfer, which underlies photochromism and concomitant fluorescence response. The metal dependence in fluorescence and photochromism can be related to energy transfer through metal-centered d-d transitions. In addition, 1-Cd is demonstrated to be a potential fluorescence sensor for sensitive and selective detection of UO2 2+ in water.
Collapse
Affiliation(s)
- Meng-Yue Guo
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, P. R. China
- Engineering Research Center for Nanophotonics and Advanced Instrument, School of Physics and Electronic Science, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, P. R. China
| | - Gen Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, P. R. China
| | - Shuai-Liang Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, P. R. China
| | - Ran Bu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, P. R. China
| | - Xian-Qing Piao
- Engineering Research Center for Nanophotonics and Advanced Instrument, School of Physics and Electronic Science, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, P. R. China
| | - En-Qing Gao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, P. R. China
| |
Collapse
|
18
|
He L, Wang RD, Wang S, Zhu RR, Li Z, Wu YY, Ma J, Du L, Zhao QH. An AIE material with time-dependent luminescence conversion obtained by 2D coordination polymer modification via covalent post-synthetic modification. Dalton Trans 2021; 50:16685-16693. [PMID: 34758054 DOI: 10.1039/d1dt03044b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In this study, we reported the covalent post-synthetic modification (PSM) of a luminescent complex to achieve aggregation-induced emission (AIE), prepared using the Schiff base reaction of TPE-CHO and HLC-NH2, denoted by HLC-NH2-TPE. HLC-NH2 formed a 2D luminescent complex which was constructed using 4,4'-diamino-[1,1'-biphenyl]-2,2'-dicarboxylic acid and zinc ions via a solvothermal reaction. HLC-NH2-TPE inherited the luminescence properties of HLC-NH2 and exhibited noticeable AIE properties in response to environmental viscosities and temperature changes. Interestingly, HLC-NH2-TPE displayed a time-dependent luminescence conversion phenomenon in a mixed solution of DMF/H2O (v : v/1 : 9).
Collapse
Affiliation(s)
- Liancheng He
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, People's Republic of China.
| | - Rui-Dong Wang
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, People's Republic of China.
| | - Shuyu Wang
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, People's Republic of China.
| | - Rong-Rong Zhu
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, People's Republic of China.
| | - Zhihao Li
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, People's Republic of China.
| | - Yuan-Yuan Wu
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, People's Republic of China.
| | - Jie Ma
- School of Materials and Chemical Engineering, Anhui Jianzhu University, Hefei 230601, People's Republic of China
| | - Lin Du
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, People's Republic of China. .,Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Research & Development Center for Natural Products, Yunnan University, Kunming 650091, People's Republic of China
| | - Qi-Hua Zhao
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, People's Republic of China. .,Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Research & Development Center for Natural Products, Yunnan University, Kunming 650091, People's Republic of China
| |
Collapse
|
19
|
Sun XY, Zhang HJ, Zhao XY, Sun Q, Wang YY, Gao EQ. Dual functions of pH-sensitive cation Zr-MOF for 5-Fu: large drug-loading capacity and high-sensitivity fluorescence detection. Dalton Trans 2021; 50:10524-10532. [PMID: 34259672 DOI: 10.1039/d1dt01772a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nanomaterials, as carriers of small molecular drugs, have been a focal point in recent years. In this work, a carbazolyl functionalized metal-organic framework, UiO-67-CDC, was successfully synthesized employing the ligand 9H-carbazole-2,7-dicarboxylic acid (9H-2,7-CDC). Postsynthetic approaches targeted the cationization and replacement of the Lewis base carbazole site with two methyl groups, resulting in the positively charged skeleton, which has proven to be a promising carrier for the anticancer drug 5-fluorouracil (5-Fu). The prepared cationic framework UiO-67-CDC-(CH3)2 showed moderately high surface area, hierarchical pore structures, and positive surface characteristics, which effectively and selectivity encapsulated the electron-rich 5-Fu molecules through electrostatic attraction, with a relatively high loading of up to 56.5% (wt%). The drug delivery in simulated blood environment (pH = 7.4) exhibited a more effective release, demonstrating a physiological pH-responsive sustained release. Significantly, the electron-deficient Zr-MOF itself, as a kind of high-sensitivity fluorescence detector, has a unique fluorescence "turn-on" effect with 5-Fu. These results pave the way towards designing surface-engineered MOF materials of interest in drug delivery and fluorescent sensing applications.
Collapse
Affiliation(s)
- Xi-Yu Sun
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China.
| | - Hong-Jing Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China.
| | - Xiao-Yang Zhao
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China.
| | - Qian Sun
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China.
| | - Yuan-Yuan Wang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China.
| | - En-Qing Gao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| |
Collapse
|
20
|
Li G, Yang SL, Liu WS, Guo MY, Liu XY, Bu R, Gao EQ. Photoinduced versus spontaneous host–guest electron transfer within a MOF and chromic/luminescent response. Inorg Chem Front 2021. [DOI: 10.1039/d1qi01079d] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The MOF shows charge-transfer sensitized Eu(iii) emission and spontaneous/photoinduced guest-to-host electron transfer, which allow chromic and luminescent sensing of NH3 (luminescence turn-off) and O2 (luminescence turn-on).
Collapse
Affiliation(s)
- Gen Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Shuai-Liang Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Wan-Shan Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Meng-Yue Guo
- Engineering Research Center for Nanophotonics and Advanced Instrument, School of Physics and Electronic Science, East China Normal University, Shanghai, 200062, China
| | - Xiao-Yan Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Ran Bu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - En-Qing Gao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| |
Collapse
|