1
|
Li H, Lin J, Lin S, Zhong H, Jiang B, Liu X, Wu W, Li W, Iranmanesh E, Zhou Z, Li W, Wang K. A bioinspired tactile scanner for computer haptics. Nat Commun 2024; 15:7632. [PMID: 39223115 PMCID: PMC11369279 DOI: 10.1038/s41467-024-51674-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024] Open
Abstract
Computer haptics (CH) is about integration of tactile sensation and rendering in Metaverse. However, unlike computer vision (CV) where both hardware infrastructure and software programs are well developed, a generic tactile data capturing device that serves the same role as what a camera does for CV, is missing. Bioinspired by electrophysiological processes in human tactile somatosensory nervous system, here we propose a tactile scanner along with a neuromorphically-engineered system, in which a closed-loop tactile acquisition and rendering (re-creation) are preliminarily achieved. Based on the architecture of afferent nerves and intelligent functions of mechano-gating and leaky integrate-and-fire models, such a tactile scanner is designed and developed by using piezoelectric transducers as axon neurons and thin film transistor (TFT)-based neuromorphic circuits to mimic synaptic behaviours and neural functions. As an example, the neuron-like tactile information of surface textures is captured and further used to render the texture friction of a virtual surface for "recreating" a "true" feeling of touch.
Collapse
Affiliation(s)
- Huimin Li
- Guangdong Province Key Laboratory of Display Material and Technology, State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology (School of Microelectronics), Sun Yat-sen University, Guangzhou, 510275, China
| | - Jianle Lin
- Guangdong Province Key Laboratory of Display Material and Technology, State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology (School of Microelectronics), Sun Yat-sen University, Guangzhou, 510275, China
| | - Shuxin Lin
- Guangdong Province Key Laboratory of Display Material and Technology, State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology (School of Microelectronics), Sun Yat-sen University, Guangzhou, 510275, China
| | - Haojie Zhong
- Guangdong Province Key Laboratory of Display Material and Technology, State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology (School of Microelectronics), Sun Yat-sen University, Guangzhou, 510275, China
| | - Bowei Jiang
- Guangdong Province Key Laboratory of Display Material and Technology, State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology (School of Microelectronics), Sun Yat-sen University, Guangzhou, 510275, China
| | - Xinghui Liu
- Shenzhen Chipwey Innovation Technologies Co. Ltd., Shenzhen, 518100, China
| | - Weisheng Wu
- Guangdong Province Key Laboratory of Display Material and Technology, State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology (School of Microelectronics), Sun Yat-sen University, Guangzhou, 510275, China
| | - Weiwei Li
- State Key Laboratory of Microelectronic Devices & Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 100029, China
| | - Emad Iranmanesh
- Guangdong Province Key Laboratory of Display Material and Technology, State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology (School of Microelectronics), Sun Yat-sen University, Guangzhou, 510275, China
| | - Zhongyi Zhou
- Shenzhen Chipwey Innovation Technologies Co. Ltd., Shenzhen, 518100, China
| | - Wenjun Li
- School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Kai Wang
- Guangdong Province Key Laboratory of Display Material and Technology, State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology (School of Microelectronics), Sun Yat-sen University, Guangzhou, 510275, China.
| |
Collapse
|
2
|
Yang Z, Zhao Y, Lan Y, Xiang M, Wu G, Zang J, Zhang Z, Xue C, Gao L. Screen-Printable Iontronic Pressure Sensor with Thermal Expansion Microspheres for Pulse Monitoring. ACS APPLIED MATERIALS & INTERFACES 2024; 16:39561-39571. [PMID: 39039805 DOI: 10.1021/acsami.4c05688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Constructing microstructures to improve the sensitivity of flexible pressure sensors is an effective approach. However, the preparation of microstructures usually involves inverted molds or subtractive manufacturing methods, which are difficult in large-scale (e.g., in screen printing) preparation. To solve this problem, we introduced thermally expandable microspheres for screen printing to fabricate flexible sensors. Thermally expandable microspheres can be constructed into microstructures by simple heating after printing, which simplifies the microstructure fabrication step. In addition, the added microspheres can also be used as ionic liquid reservoir materials to further increase the capacitance change and improve the sensitivity. The prepared sensors exhibited superior performance, including ultrahigh sensitivity (Smax = 49999.5 kPa-1) and wide detection range (0-350 kPa). Even after 30,000 cycles at a high pressure of 300 kPa and a low pressure of 30 kPa, the sensor showed minimal signal degradation, demonstrating long-term cycling stability. In order to verify the practical potential of the sensors, we performed human radial artery beat detection experiments using these sensors. The variations in the intensity of the 3D radial artery pulse wave can be observed very clearly, which is important for human health monitoring. The above demonstrates that our strategy can provide an effective approach for the large-scale preparation of high-performance flexible pressure sensors.
Collapse
Affiliation(s)
- Zekun Yang
- Key Laboratory of Instrumentation Science and Dynamic Measurement Ministry of Education, North University of China, Taiyuan 030051, China
| | - Yunlong Zhao
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, and Discipline of Intelligent Instrument and Equipment, Xiamen University, Xiamen 361102, China
- Shenzhen Research institute of Xiamen University, Xiamen University, Shenzhen 518000, China
| | - Yihui Lan
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, and Discipline of Intelligent Instrument and Equipment, Xiamen University, Xiamen 361102, China
- Shenzhen Research institute of Xiamen University, Xiamen University, Shenzhen 518000, China
| | - Menghui Xiang
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, and Discipline of Intelligent Instrument and Equipment, Xiamen University, Xiamen 361102, China
- Shenzhen Research institute of Xiamen University, Xiamen University, Shenzhen 518000, China
| | - Guirong Wu
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, and Discipline of Intelligent Instrument and Equipment, Xiamen University, Xiamen 361102, China
- Shenzhen Research institute of Xiamen University, Xiamen University, Shenzhen 518000, China
| | - Junbin Zang
- Key Laboratory of Instrumentation Science and Dynamic Measurement Ministry of Education, North University of China, Taiyuan 030051, China
| | - Zhidong Zhang
- Key Laboratory of Instrumentation Science and Dynamic Measurement Ministry of Education, North University of China, Taiyuan 030051, China
| | - Chenyang Xue
- Key Laboratory of Instrumentation Science and Dynamic Measurement Ministry of Education, North University of China, Taiyuan 030051, China
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, and Discipline of Intelligent Instrument and Equipment, Xiamen University, Xiamen 361102, China
| | - Libo Gao
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, and Discipline of Intelligent Instrument and Equipment, Xiamen University, Xiamen 361102, China
- Shenzhen Research institute of Xiamen University, Xiamen University, Shenzhen 518000, China
| |
Collapse
|
3
|
Yanwari MI, Okamoto S. Healing Function for Abraded Fingerprint Ridges in Tactile Texture Sensors. SENSORS (BASEL, SWITZERLAND) 2024; 24:4078. [PMID: 39000857 PMCID: PMC11244287 DOI: 10.3390/s24134078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/04/2024] [Accepted: 06/19/2024] [Indexed: 07/16/2024]
Abstract
Tactile texture sensors are designed to evaluate the sensations felt when a human touches an object. Prior studies have demonstrated the necessity for these sensors to have compliant ridges on their surfaces that mimic human fingerprints. These features enable the simulation of contact phenomena, especially friction and vibration, between human fingertips and objects, enhancing the tactile sensation evaluation. However, the ridges on tactile sensors are susceptible to abrasion damage from repeated use. To date, the healing function of abraded ridges has not been proposed, and its effectiveness needs to be demonstrated. In this study, we investigated whether the signal detection capabilities of a sensor with abraded epidermal ridges could be restored by healing the ridges using polyvinyl chloride plastisol as the sensor material. We developed a prototype tactile sensor with an embedded strain gauge, which was used to repeatedly scan roughness specimens. After more than 1000 measurements, we observed significant deterioration in the sensor's output signal level. The ridges were then reshaped using a mold with a heating function, allowing the sensor to partially regain its original signal levels. This method shows potential for extending the operational lifespan of tactile texture sensors with compliant ridges.
Collapse
Affiliation(s)
- Muhammad Irwan Yanwari
- Department of Computer Science, Tokyo Metropolitan University, Tokyo 191-0065, Japan;
- Department of Electrical Engineering, Politeknik Negeri Semarang, Kota Semarang 50275, Indonesia
| | - Shogo Okamoto
- Department of Computer Science, Tokyo Metropolitan University, Tokyo 191-0065, Japan;
| |
Collapse
|
4
|
Liu LF, Li T, Lai QT, Tang G, Sun QJ. Recent Advances in Self-Powered Tactile Sensing for Wearable Electronics. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2493. [PMID: 38893757 PMCID: PMC11172942 DOI: 10.3390/ma17112493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024]
Abstract
With the arrival of the Internet of Things era, the demand for tactile sensors continues to grow. However, traditional sensors mostly require an external power supply to meet real-time monitoring, which brings many drawbacks such as short service life, environmental pollution, and difficulty in replacement, which greatly limits their practical applications. Therefore, the development of a passive self-power supply of tactile sensors has become a research hotspot in academia and the industry. In this review, the development of self-powered tactile sensors in the past several years is introduced and discussed. First, the sensing principle of self-powered tactile sensors is introduced. After that, the main performance parameters of the tactile sensors are briefly discussed. Finally, the potential application prospects of the tactile sensors are discussed in detail.
Collapse
Affiliation(s)
| | | | | | | | - Qi-Jun Sun
- School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, China (G.T.)
| |
Collapse
|
5
|
Liu F, Bai D, Xie D, Lv F, Shen L, Tian Z, Zhao J. Additive Manufacturing of Stretchable Multi-Walled Carbon Nanotubes/Thermoplastic Polyurethanes Conducting Polymers for Strain Sensing. 3D PRINTING AND ADDITIVE MANUFACTURING 2024; 11:e698-e708. [PMID: 39246677 PMCID: PMC11378349 DOI: 10.1089/3dp.2022.0223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
With the development of science and technology, flexible sensors play an indispensable role in body monitoring. Rapid prototyping of high-performance flexible sensors has become an important method to develop flexible sensors. The purpose of this study was to develop a flexible resin with multi-walled carbon nanotubes (MWCNTs) for the rapid fabrication of flexible sensors using digital light processing additive manufacturing. In this study, MWCNTs were mixed in thermoplastic polyurethane (TPU) photosensitive resin to prepare polymer-matrix composites, and a flexible strain sensor was prepared using self-developed additive equipment. The results showed that the 1.2 wt% MWCNTs/TPU composite flexible sensor had high gauge factor of 9.988 with a linearity up to 45% strain and high mechanical durability (1000 cycles). Furthermore, the sensor could be used for gesture recognition and monitoring and has good performance. This method is expected to provide a new idea for the rapid personalized forming of flexible sensors.
Collapse
Affiliation(s)
- Fuxi Liu
- Department of Mechanical Manufacturing and Automation, College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
- JITRI Institute of Precision Manufacturing, Nanjing, China
| | - Dezhi Bai
- Department of Mechanical Manufacturing and Automation, College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Deqiao Xie
- College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Fei Lv
- Laboratory of High Power Fiber Laser Technology, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, China
| | - Lida Shen
- Department of Mechanical Manufacturing and Automation, College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
- Institute of Additive Manufacturing (3D Printing), Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Zongjun Tian
- Department of Mechanical Manufacturing and Automation, College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
- JITRI Institute of Precision Manufacturing, Nanjing, China
- Institute of Additive Manufacturing (3D Printing), Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Jianfeng Zhao
- Department of Mechanical Manufacturing and Automation, College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
- Institute of Additive Manufacturing (3D Printing), Nanjing University of Aeronautics and Astronautics, Nanjing, China
| |
Collapse
|
6
|
Xi J, Yang H, Li X, Wei R, Zhang T, Dong L, Yang Z, Yuan Z, Sun J, Hua Q. Recent Advances in Tactile Sensory Systems: Mechanisms, Fabrication, and Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:465. [PMID: 38470794 DOI: 10.3390/nano14050465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/07/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024]
Abstract
Flexible electronics is a cutting-edge field that has paved the way for artificial tactile systems that mimic biological functions of sensing mechanical stimuli. These systems have an immense potential to enhance human-machine interactions (HMIs). However, tactile sensing still faces formidable challenges in delivering precise and nuanced feedback, such as achieving a high sensitivity to emulate human touch, coping with environmental variability, and devising algorithms that can effectively interpret tactile data for meaningful interactions in diverse contexts. In this review, we summarize the recent advances of tactile sensory systems, such as piezoresistive, capacitive, piezoelectric, and triboelectric tactile sensors. We also review the state-of-the-art fabrication techniques for artificial tactile sensors. Next, we focus on the potential applications of HMIs, such as intelligent robotics, wearable devices, prosthetics, and medical healthcare. Finally, we conclude with the challenges and future development trends of tactile sensors.
Collapse
Affiliation(s)
- Jianguo Xi
- School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing 100081, China
| | - Huaiwen Yang
- School of Integrated Circuit Science and Engineering, Beihang University, Beijing 100191, China
| | - Xinyu Li
- School of Integrated Circuit Science and Engineering, Beihang University, Beijing 100191, China
| | - Ruilai Wei
- School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing 100081, China
- Institute of Flexible Electronics, Beijing Institute of Technology, Beijing 102488, China
| | - Taiping Zhang
- Tianfu Xinglong Lake Laboratory, Chengdu 610299, China
| | - Lin Dong
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Materials Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Zhenjun Yang
- Hefei Hospital Affiliated to Anhui Medical University (The Second People's Hospital of Hefei), Hefei 230011, China
| | - Zuqing Yuan
- School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing 100081, China
- Institute of Flexible Electronics, Beijing Institute of Technology, Beijing 102488, China
| | - Junlu Sun
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Materials Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Qilin Hua
- School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing 100081, China
- Institute of Flexible Electronics, Beijing Institute of Technology, Beijing 102488, China
- Guangxi Key Laboratory of Brain-Inspired Computing and Intelligent Chips, Guangxi Normal University, Guilin 541004, China
| |
Collapse
|
7
|
Zhang Y, Wang X, Wen J, Zhu X. WiFi-based non-contact human presence detection technology. Sci Rep 2024; 14:3605. [PMID: 38351067 PMCID: PMC10864388 DOI: 10.1038/s41598-024-54077-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 02/08/2024] [Indexed: 02/16/2024] Open
Abstract
In the swiftly evolving landscape of Internet of Things (IoT) technology, the demand for adaptive non-contact sensing has seen a considerable surge. Traditional human perception technologies, such as vision-based approaches, often grapple with problems including lack of sensor versatility and sub-optimal accuracy. To address these issues, this paper introduces a novel, non-contact method for human presence perception, relying on WiFi. This innovative approach involves a sequential process, beginning with the pre-processing of collected Channel State Information (CSI), followed by feature extraction, and finally, classification. By establishing signal models that correspond to varying states, this method enables the accurate perception and recognition of human presence. Remarkably, this technique exhibits a high level of precision, with sensing accuracy reaching up to 99[Formula: see text]. The potential applications of this approach are extensive, proving to be particularly beneficial in contexts such as smart homes and healthcare, amongst various other everyday scenarios. This underscores the significant role this novel method could play in enhancing the sophistication and effectiveness of human presence detection and recognition systems in the IoT era.
Collapse
Affiliation(s)
- Yang Zhang
- School of Economics and Management, Shanghai Polytechnic University, Shanghai, 201209, China.
| | - Xuechun Wang
- School of Electrical and Electronic Engineering, Hubei University of Technology, Wuhan, 430068, China
| | - Jinghao Wen
- School of Computer Science, Central China Normal University, Wuhan, 430079, China
| | - Xianxun Zhu
- School of Communication and Information Engineering, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
8
|
Hassan MS, Zaman S, Dantzler JZR, Leyva DH, Mahmud MS, Ramirez JM, Gomez SG, Lin Y. 3D Printed Integrated Sensors: From Fabrication to Applications-A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:3148. [PMID: 38133045 PMCID: PMC10745374 DOI: 10.3390/nano13243148] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/08/2023] [Accepted: 12/10/2023] [Indexed: 12/23/2023]
Abstract
The integration of 3D printed sensors into hosting structures has become a growing area of research due to simplified assembly procedures, reduced system complexity, and lower fabrication cost. Embedding 3D printed sensors into structures or bonding the sensors on surfaces are the two techniques for the integration of sensors. This review extensively discusses the fabrication of sensors through different additive manufacturing techniques. Various additive manufacturing techniques dedicated to manufacture sensors as well as their integration techniques during the manufacturing process will be discussed. This review will also discuss the basic sensing mechanisms of integrated sensors and their applications. It has been proven that integrating 3D printed sensors into infrastructures can open new possibilities for research and development in additive manufacturing and sensor materials for smart goods and the Internet of Things.
Collapse
Affiliation(s)
- Md Sahid Hassan
- Department of Aerospace and Mechanical Engineering, The University of Texas at El Paso, El Paso, TX 79968, USA; (S.Z.); (J.Z.R.D.); (D.H.L.); (M.S.M.); (J.M.R.); (S.G.G.)
- Aerospace Center, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Saqlain Zaman
- Department of Aerospace and Mechanical Engineering, The University of Texas at El Paso, El Paso, TX 79968, USA; (S.Z.); (J.Z.R.D.); (D.H.L.); (M.S.M.); (J.M.R.); (S.G.G.)
- Aerospace Center, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Joshua Z. R. Dantzler
- Department of Aerospace and Mechanical Engineering, The University of Texas at El Paso, El Paso, TX 79968, USA; (S.Z.); (J.Z.R.D.); (D.H.L.); (M.S.M.); (J.M.R.); (S.G.G.)
- Aerospace Center, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Diana Hazel Leyva
- Department of Aerospace and Mechanical Engineering, The University of Texas at El Paso, El Paso, TX 79968, USA; (S.Z.); (J.Z.R.D.); (D.H.L.); (M.S.M.); (J.M.R.); (S.G.G.)
- Aerospace Center, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Md Shahjahan Mahmud
- Department of Aerospace and Mechanical Engineering, The University of Texas at El Paso, El Paso, TX 79968, USA; (S.Z.); (J.Z.R.D.); (D.H.L.); (M.S.M.); (J.M.R.); (S.G.G.)
- Aerospace Center, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Jean Montes Ramirez
- Department of Aerospace and Mechanical Engineering, The University of Texas at El Paso, El Paso, TX 79968, USA; (S.Z.); (J.Z.R.D.); (D.H.L.); (M.S.M.); (J.M.R.); (S.G.G.)
- Aerospace Center, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Sofia Gabriela Gomez
- Department of Aerospace and Mechanical Engineering, The University of Texas at El Paso, El Paso, TX 79968, USA; (S.Z.); (J.Z.R.D.); (D.H.L.); (M.S.M.); (J.M.R.); (S.G.G.)
- Aerospace Center, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Yirong Lin
- Department of Aerospace and Mechanical Engineering, The University of Texas at El Paso, El Paso, TX 79968, USA; (S.Z.); (J.Z.R.D.); (D.H.L.); (M.S.M.); (J.M.R.); (S.G.G.)
- Aerospace Center, The University of Texas at El Paso, El Paso, TX 79968, USA
| |
Collapse
|
9
|
Mousavi A, Rahimnejad M, Azimzadeh M, Akbari M, Savoji H. Recent advances in smart wearable sensors as electronic skin. J Mater Chem B 2023; 11:10332-10354. [PMID: 37909384 DOI: 10.1039/d3tb01373a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Flexible and multifunctional electronic devices and soft robots inspired by human organs, such as skin, have many applications. However, the emergence of electronic skins (e-skins) or textiles in biomedical engineering has made a great revolution in a myriad of people's lives who suffer from different types of diseases and problems in which their skin and muscles lose their appropriate functions. In this review, recent advances in the sensory function of the e-skins are described. Furthermore, we have categorized them from the sensory function perspective and highlighted their advantages and limitations. The categories are tactile sensors (including capacitive, piezoresistive, piezoelectric, triboelectric, and optical), temperature, and multi-sensors. In addition, we summarized the most recent advancements in sensors and their particular features. The role of material selection and structure in sensory function and other features of the e-skins are also discussed. Finally, current challenges and future prospects of these systems towards advanced biomedical applications are elaborated.
Collapse
Affiliation(s)
- Ali Mousavi
- Institute of Biomedical Engineering, Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, QC, H3T 1J4, Canada.
- Research Center, Sainte-Justine University Hospital, Montreal, QC, H3T 1C5, Canada
- Montreal TransMedTech Institute, Montreal, QC, H3T 1J4, Canada
| | - Maedeh Rahimnejad
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Mostafa Azimzadeh
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC, V8P 5C2, Canada
| | - Mohsen Akbari
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC, V8P 5C2, Canada
| | - Houman Savoji
- Institute of Biomedical Engineering, Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, QC, H3T 1J4, Canada.
- Research Center, Sainte-Justine University Hospital, Montreal, QC, H3T 1C5, Canada
- Montreal TransMedTech Institute, Montreal, QC, H3T 1J4, Canada
| |
Collapse
|
10
|
Wang G, Zheng M, Liu Z, Wang M. Anisotropic Piezoresistive Sensors Made with Magnetically Induced Vertically Aligned Carbon Nanotubes/Polydimethylsiloxane. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37878539 DOI: 10.1021/acsami.3c09104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
A piezoresistive material consisting of internal vertically aligned carbon nanotubes acting in concert with an external microdome structure is prepared to obtain a flexible piezoresistive sensor with high anisotropy. Here, we first obtained flexible piezoresistive composites (VCP) with anisotropic properties by inducing the vertical alignment of multiwalled carbon nanotubes in the pressure direction under a weak magnetic field of 0.6 T. Then, the composite with a microdome structure on the surface (m-VCP) was fabricated by a mold with a microstructure to further increase the anisotropy of the composite. The m-VCP microstructure was docked with VCP and placed between two layers of copper foil. With the synergistic effect of vertically aligned carbon nanotubes and the microdome structure, the sensitivity of the flexible sensor in the pressure direction was dramatically increased. In the low-strain range (0-6%), the sensitivity of m-VCP (GF = 9.208) is improved by 49% compared to m-CP and by 86% compared to VCP. The sensor has high anisotropy in the piezoresistive direction and retains good fatigue resistance under fatigue testing for 2000 cycles. This means that the sensor can be used in emerging fields such as human health monitoring, wearable electronics, and intelligent human-computer interaction.
Collapse
Affiliation(s)
- Gongdong Wang
- School of Aerospace Engineering, Shenyang Aerospace University, Shenyang 110136, China
- Zhiyuan Research Institute, Hangzhou 310012, China
| | - Mingyang Zheng
- School of Aerospace Engineering, Shenyang Aerospace University, Shenyang 110136, China
| | - Zhendong Liu
- School of Aerospace Engineering, Shenyang Aerospace University, Shenyang 110136, China
| | - Meng Wang
- School of Aerospace Engineering, Shenyang Aerospace University, Shenyang 110136, China
| |
Collapse
|
11
|
Ji J, Zhao W, Wang Y, Li Q, Wang G. Templated Laser-Induced-Graphene-Based Tactile Sensors Enable Wearable Health Monitoring and Texture Recognition via Deep Neural Network. ACS NANO 2023; 17:20153-20166. [PMID: 37801407 DOI: 10.1021/acsnano.3c05838] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2023]
Abstract
Flexible tactile sensors show great potential for portable healthcare and environmental monitoring applications. However, challenges persist in scaling up the manufacturing of stable tactile sensors with real-time feedback. This work demonstrates a robust approach to fabricating templated laser-induced graphene (TLIG)-based tactile sensors via laser scribing, elastomer hot-pressing transfer, and 3D printing of the Ag electrode. With different mesh sandpapers as templates, TLIG sensors with adjustable sensing properties were achieved. The tactile sensor obtains excellent sensitivity (52260.2 kPa-1 at a range of 0-7 kPa), a broad detection range (up to 1000 kPa), a low limit of detection (65 Pa), a rapid response (response/recovery time of 12/46 ms), and excellent working stability (10000 cycles). Benefiting from TLIG's high performance and waterproofness, TLIG sensors can be used as health monitors and even in underwater scenarios. TLIG sensors can also be integrated into arrays acting as receptors of the soft robotic gripper. Furthermore, a deep neural network based on the convolutional neural network was employed for texture recognition via a soft TLIG tactile sensing array, achieving an overall classification rate of 94.51% on objects with varying surface roughness, thus offering high accuracy in real-time practical scenarios.
Collapse
Affiliation(s)
- Jiawen Ji
- CAS Key Laboratory of Space Manufacturing Technology, Technology and Engineering Center for Space Utilization, Chinese Academy of Sciences, Beijing 100094, P. R. China
- University of Chinese Academy of Science, Beijing 100049, P. R. China
| | - Wei Zhao
- CAS Key Laboratory of Space Manufacturing Technology, Technology and Engineering Center for Space Utilization, Chinese Academy of Sciences, Beijing 100094, P. R. China
- University of Chinese Academy of Science, Beijing 100049, P. R. China
| | - Yuliang Wang
- CAS Key Laboratory of Space Manufacturing Technology, Technology and Engineering Center for Space Utilization, Chinese Academy of Sciences, Beijing 100094, P. R. China
| | - Qiushi Li
- CAS Key Laboratory of Space Manufacturing Technology, Technology and Engineering Center for Space Utilization, Chinese Academy of Sciences, Beijing 100094, P. R. China
| | - Gong Wang
- CAS Key Laboratory of Space Manufacturing Technology, Technology and Engineering Center for Space Utilization, Chinese Academy of Sciences, Beijing 100094, P. R. China
- University of Chinese Academy of Science, Beijing 100049, P. R. China
| |
Collapse
|
12
|
Lee J, So H. 3D-printing-assisted flexible pressure sensor with a concentric circle pattern and high sensitivity for health monitoring. MICROSYSTEMS & NANOENGINEERING 2023; 9:44. [PMID: 37033109 PMCID: PMC10076430 DOI: 10.1038/s41378-023-00509-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 01/01/2023] [Accepted: 02/06/2023] [Indexed: 06/19/2023]
Abstract
In this study, a flexible pressure sensor is fabricated using polydimethylsiloxane (PDMS) with a concentric circle pattern (CCP) obtained through a fused deposition modeling (FDM)-type three-dimensional (3D) printer and poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) as the active layer. Through layer-by-layer additive manufacturing, the CCP surface is generated from a thin cone model with a rough surface by the FDM-type 3D printer. A novel compression method is employed to convert the cone shape into a planar microstructure above the glass transition temperature of a polylactic acid (PLA) filament. To endow the CCP surface with conductivity, PDMS is used to replicate the compressed PLA, and PEDOT:PSS is coated by drop-casting. The size of the CCP is controlled by changing the printing layer height (PLH), which is one of the 3D printing parameters. The sensitivity increases as the PLH increases, and the pressure sensor with a 0.16 mm PLH exhibits outstanding sensitivity (160 kPa-1), corresponding to a linear pressure range of 0-0.577 kPa with a good linearity of R 2 = 0.978, compared to other PLHs. This pressure sensor exhibits stable and repeatable operation under various pressures and durability under 6.56 kPa for 4000 cycles. Finally, monitoring of various health signals such as those for the wrist pulse, swallowing, and pronunciation of words is demonstrated as an application. These results support the simple fabrication of a highly sensitive, flexible pressure sensor for human health monitoring.
Collapse
Affiliation(s)
- Jihun Lee
- Department of Mechanical Engineering, Hanyang University, Seoul, 04763 South Korea
| | - Hongyun So
- Department of Mechanical Engineering, Hanyang University, Seoul, 04763 South Korea
- Institute of Nano Science and Technology, Hanyang University, Seoul, 04763 South Korea
| |
Collapse
|
13
|
Qiao Y, Luo J, Cui T, Liu H, Tang H, Zeng Y, Liu C, Li Y, Jian J, Wu J, Tian H, Yang Y, Ren TL, Zhou J. Soft Electronics for Health Monitoring Assisted by Machine Learning. NANO-MICRO LETTERS 2023; 15:66. [PMID: 36918452 PMCID: PMC10014415 DOI: 10.1007/s40820-023-01029-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/05/2023] [Indexed: 06/18/2023]
Abstract
Due to the development of the novel materials, the past two decades have witnessed the rapid advances of soft electronics. The soft electronics have huge potential in the physical sign monitoring and health care. One of the important advantages of soft electronics is forming good interface with skin, which can increase the user scale and improve the signal quality. Therefore, it is easy to build the specific dataset, which is important to improve the performance of machine learning algorithm. At the same time, with the assistance of machine learning algorithm, the soft electronics have become more and more intelligent to realize real-time analysis and diagnosis. The soft electronics and machining learning algorithms complement each other very well. It is indubitable that the soft electronics will bring us to a healthier and more intelligent world in the near future. Therefore, in this review, we will give a careful introduction about the new soft material, physiological signal detected by soft devices, and the soft devices assisted by machine learning algorithm. Some soft materials will be discussed such as two-dimensional material, carbon nanotube, nanowire, nanomesh, and hydrogel. Then, soft sensors will be discussed according to the physiological signal types (pulse, respiration, human motion, intraocular pressure, phonation, etc.). After that, the soft electronics assisted by various algorithms will be reviewed, including some classical algorithms and powerful neural network algorithms. Especially, the soft device assisted by neural network will be introduced carefully. Finally, the outlook, challenge, and conclusion of soft system powered by machine learning algorithm will be discussed.
Collapse
Affiliation(s)
- Yancong Qiao
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, People's Republic of China.
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China.
| | - Jinan Luo
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, People's Republic of China
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Tianrui Cui
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, People's Republic of China
| | - Haidong Liu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, People's Republic of China
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Hao Tang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, People's Republic of China
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Yingfen Zeng
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, People's Republic of China
| | - Chang Liu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, People's Republic of China
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Yuanfang Li
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, People's Republic of China
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Jinming Jian
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, People's Republic of China
| | - Jingzhi Wu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, People's Republic of China
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - He Tian
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, People's Republic of China
| | - Yi Yang
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, People's Republic of China
| | - Tian-Ling Ren
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, People's Republic of China.
| | - Jianhua Zhou
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, People's Republic of China.
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China.
| |
Collapse
|
14
|
Ma X, Song C, Zhang F, Dai Y, He P, Zhang X. Soft, Multifunctional, Robust Film Sensor Using a Ferroelectret with Significant Longitudinal and Transverse Piezoelectric Activity for Biomechanical Monitoring. ACS APPLIED MATERIALS & INTERFACES 2022; 14:51291-51300. [PMID: 36321481 DOI: 10.1021/acsami.2c14378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Soft and intelligent bioelectronics have achieved unprecedented development in both academics and industries over the last few decades, especially as ideal body-worn detectors for continuous human health status monitoring. However, the longstanding functional stability of bioelectronics in multiple environmental conditions of variant temperatures, humidities, and mechanical stimuli or even in some extremes, such as ultraviolet radiation and X-ray radiation, has confined the application of these electronics. Herein, a self-sustainable, multifunctional, robust sensor for biomechanical monitoring is prepared by hybridizing a parallel-tunnel fluorinated poly(ethylene propylene) (FEP) ferroelectret film (sensing layer) and poly(dimethylsiloxane) (PDMS, protection layer). A fast response (80 ms) and a low pressure detection limit (10 Pa) were achieved. Notably, the self-powered sensor can not only sensitively detect the loading of solid objects but also percept liquid water droplets and airflow, which satisfies the diverse needs of wearable devices. Meanwhile, the capability of stable and repeatable operation under a wide temperature range (-26-70 °C), extreme moisture, continuous mechanical stimulus (∼1.08 million cycles), and long-time ultraviolet radiation enabled the extensive and long-term application of such sensors in multiple scenarios. Moreover, the reproducibility of sensing performance after X-ray radiation can be realized through second contact polarization even after encapsulation. Due to the inherent mechanical flexibility, the fabricated sensor was conformally attached to rough and deformed skin and verified the feasibility of wearable biomechanical sensing with high sensitivity from facial smiling to plantar movement. This work provides an efficient strategy for multifunctional sensing, holding great promise for advanced soft bioelectronics in the next generation of wearable intelligent electronic systems.
Collapse
Affiliation(s)
- Xingchen Ma
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
- School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092, China
| | - Chao Song
- School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092, China
| | - Fei Zhang
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
| | - Ying Dai
- School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092, China
| | - Pengfei He
- School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092, China
| | - Xiaoqing Zhang
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
| |
Collapse
|
15
|
Wang E, Chen Z, Shi R, Xiong Z, Xin Z, Wang B, Guo J, Peng R, Wu Y, Li C, Ren H, Li X, Liu K. Humidity-Controlled Dynamic Engineering of Buckling Dimensionality in MoS 2 Thin Films. ACS NANO 2022; 16:14157-14167. [PMID: 36053054 DOI: 10.1021/acsnano.2c04203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Dynamic engineering of buckling deformation is of vital importance as it provides multiphase modulation of thin film devices. In particular, dynamic switch of buckles between one-dimensional (1D) and two-dimensional (2D) configurations in a single film system on rigid substrates is intriguing but very challenging. The current approach to changing buckling configuration is mainly achieved by varying the built-in stress at the film-substrate interface, but it is difficult to realize dynamic engineering on rigid substrates. Herein, we report a dynamic engineering of buckling deformation in MoS2 thin films by humidity-tuned interfacial adhesion. With the change of humidity, the MoS2 thin films deform from 1D telephone-cord buckles to 2D web-like buckles due to the hydrophilic nature of both MoS2 and substrate. Such 1D-to-2D evolution of buckles is attributed to the weakened interfacial adhesion of mixed deformation modes induced by humidity, which is verified by finite-element modeling. These buckled films further find potential applications as patterned templates for liquid condensation and sensing units for tactile sensors. Our work not only demonstrates the humidity-controlled dimensionality engineering of buckles in MoS2 thin films but also sheds light on the functional applications of buckled films based on their profile features.
Collapse
Affiliation(s)
- Enze Wang
- State Key Laboratory of New Ceramics and Fine Processing & Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Zekun Chen
- Center for Advanced Mechanics and Materials, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Run Shi
- State Key Laboratory of New Ceramics and Fine Processing & Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Zixin Xiong
- Center for Advanced Mechanics and Materials, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Zeqin Xin
- State Key Laboratory of New Ceramics and Fine Processing & Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Bolun Wang
- State Key Laboratory of New Ceramics and Fine Processing & Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Jing Guo
- State Key Laboratory of New Ceramics and Fine Processing & Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Ruixuan Peng
- State Key Laboratory of New Ceramics and Fine Processing & Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Yonghuang Wu
- State Key Laboratory of New Ceramics and Fine Processing & Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Chenyu Li
- State Key Laboratory of New Ceramics and Fine Processing & Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Hongtao Ren
- School of Materials Science and Engineering, Liaocheng University, Hunan Road No. 1, Liaocheng 252000, China
| | - Xiaoyan Li
- Center for Advanced Mechanics and Materials, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Kai Liu
- State Key Laboratory of New Ceramics and Fine Processing & Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
16
|
Sun R, Xie J, Meng X, Pang H, Gong C, Zhou F. Polydimethylsiloxane
/carboxylated h
ydroxylated multiwalled carbon nanotubes/polyimide
composite membrane wearable flexible piezoresistive tactile sensor device with microsphere array. J Appl Polym Sci 2022. [DOI: 10.1002/app.52964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ruqian Sun
- College of Mechanical and Electronic Engineering Northwest A&F University Yangling People's Republic of China
| | - Jiaqing Xie
- College of Mechanical and Electronic Engineering Northwest A&F University Yangling People's Republic of China
| | - Xiaoyu Meng
- College of Mechanical and Electronic Engineering Northwest A&F University Yangling People's Republic of China
| | - Haoran Pang
- College of Mechanical and Electronic Engineering Northwest A&F University Yangling People's Republic of China
| | - Chuchu Gong
- College of Mechanical and Electronic Engineering Northwest A&F University Yangling People's Republic of China
| | - Fuyang Zhou
- College of Mechanical and Electronic Engineering Northwest A&F University Yangling People's Republic of China
| |
Collapse
|
17
|
Rheological properties and 3D-printability of cellulose nanocrystals/deep eutectic solvent electroactive ion gels. Carbohydr Polym 2022; 290:119475. [DOI: 10.1016/j.carbpol.2022.119475] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 12/20/2022]
|
18
|
Facile Fabrication of a Highly Sensitive and Robust Flexible Pressure Sensor with Batten Microstructures. MICROMACHINES 2022; 13:mi13081164. [PMID: 35893162 PMCID: PMC9329788 DOI: 10.3390/mi13081164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/21/2022] [Accepted: 07/21/2022] [Indexed: 12/22/2022]
Abstract
As the foremost component of wearable devices, flexible pressure sensors require high sensitivity, wide operating ranges, and great stability. In this paper, a pressure sensor comprising a regular batten microstructure active layer is presented. First, the influences of the dimensional parameters of the microstructures on the performances of the sensors were investigated by the mechanical finite element method (FEM). Then, parameters were optimized and determined based on the results of this investigation. Next, active layers were prepared by molding multiwalled carbon nanotube/polyurethane (MWCNT/PU) conductive composite using a printed circuit board template. Finally, a resistive flexible pressure sensor was fabricated by combining an active layer and an interdigital electrode. With advantages in terms of the structure and materials, the sensor exhibited a sensitivity of up to 46.66 kPa−1 in the range of 0–1.5 kPa and up to 6.67 kPa−1 in the range of 1.5–7.5 kPa. The results of the experiments show that the designed flexible pressure sensor can accurately measure small pressures and realize real-time human physiological monitoring. Furthermore, the preparation method has the advantages of a low cost, simple design, and high consistency. Thus, it has potential to promote the development of flexible sensors, wearable devices, and other related devices.
Collapse
|
19
|
Wu D, Cheng X, Chen Z, Xu Z, Zhu M, Zhao Y, Zhu R, Lin L. A flexible tactile sensor that uses polyimide/graphene oxide nanofiber as dielectric membrane for vertical and lateral force detection. NANOTECHNOLOGY 2022; 33:405205. [PMID: 35617936 DOI: 10.1088/1361-6528/ac73a4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/24/2022] [Indexed: 05/27/2023]
Abstract
Flexible force sensors are of great interest in the fields of healthcare, physiological signals, and aircraft smart skin applications because of their compatibility with curved surfaces. However, the simultaneous detection of multidirectional forces remains an engineering challenge, despite the great progress made in recent years. Herein, we present the development of a flexible capacitive force sensor capable of efficiently distinguishing normal and sliding shear forces. A two-layer electrospun polyimide/graphene oxide (PI/GO) nanofiber membrane is used as the dielectric layer, which is sandwiched between one top electrode and four symmetrically distributed bottom electrodes. This composite membrane has an improved dielectric constant, a reduced friction coefficient, and good compressibility, leading to superior performance that includes high sensitivity over a wide operational range with measured results of 3 MPa-1for 0-242 kPa (0-2.2 N) and 0.92 MPa-1for 242-550 kPa (2.2-5 N) in the normal direction; and better than 1 N-1for 0-3 N in thex- andy-axis directions. The system also has a low detection limit of 10 Pa, fast response and recovery times of 39 ms and 13 ms, respectively, a good cyclic stability of 10,000 cycles at a pressure of 176 kPa, and promising potential for use in high-temperature environments (200 °C). Moreover, a prototype 4 × 4 sensor array has been fabricated and successfully used in a robotic system to grasp objects and operate a wireless toy car. As such, the proposed system could offer superior capabilities in simultaneous multidirectional force sensing for applications such as intelligent robots, human-machine interaction, and smart skin.
Collapse
Affiliation(s)
- Dezhi Wu
- Department of Mechanical and Electrical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China
- Shenzhen Research Institute of Xiamen University, Shenzhen, 518057, People's Republic of China
| | - Xianshu Cheng
- Department of Mechanical and Electrical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China
- Shenzhen Research Institute of Xiamen University, Shenzhen, 518057, People's Republic of China
| | - Zhuo Chen
- Department of Mechanical and Electrical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China
- Shenzhen Research Institute of Xiamen University, Shenzhen, 518057, People's Republic of China
| | - Zhenjin Xu
- Department of Mechanical and Electrical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China
- Shenzhen Research Institute of Xiamen University, Shenzhen, 518057, People's Republic of China
| | - Minjie Zhu
- Sensor and Network Control Center, Instrumentation Technology and Economy Institute, Beijing, People's Republic of China
| | - Yang Zhao
- Department of Mechanical and Electrical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Rui Zhu
- Department of Mechanical and Electrical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Liwei Lin
- Department of Mechanical Engineering, University of California, Berkeley, CA 94720, United States of America
| |
Collapse
|
20
|
Cui X, Huang F, Zhang X, Song P, Zheng H, Chevali V, Wang H, Xu Z. Flexible pressure sensors via engineering microstructures for wearable human-machine interaction and health monitoring applications. iScience 2022; 25:104148. [PMID: 35402860 PMCID: PMC8991382 DOI: 10.1016/j.isci.2022.104148] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Flexible pressure sensors capable of transducing pressure stimuli into electrical signals have drawn extensive attention owing to their potential applications for human-machine interaction and healthcare monitoring. To meet these application demands, engineering microstructures in the pressure sensors are an efficient way to improve key sensing performances, such as sensitivity, linear sensing range, response time, hysteresis, and durability. In this review, we provide an overview of the recent advances in the fabrication and application of high-performance flexible pressure sensors via engineering microstructures. The implementation mechanisms and fabrication strategies of microstructures including micropatterned, porous, fiber-network, and multiple microstructures are systematically summarized. The applications of flexible pressure sensors with microstructures in the fields of wearable human-machine interaction, and ex vivo and in vivo healthcare monitoring are comprehensively discussed. Finally, the outlook and challenges in the future improvement of flexible pressure sensors toward practical applications are presented.
Collapse
Affiliation(s)
- Xihua Cui
- China-Australia Institute for Advanced Materials and Manufacturing, Jiaxing University, Jiaxing 314001, China
| | - Fengli Huang
- College of Information Science and Engineering, Key Laboratory of Medical Electronics and Digital Health of Zhejiang Province, Engineering Research Center of Intelligent Human Health Situation Awareness of Zhejiang Province, Jiaxing University, Jiaxing 314001, China
| | - Xianchao Zhang
- College of Information Science and Engineering, Key Laboratory of Medical Electronics and Digital Health of Zhejiang Province, Engineering Research Center of Intelligent Human Health Situation Awareness of Zhejiang Province, Jiaxing University, Jiaxing 314001, China
| | - Pingan Song
- Centre for Future Materials, University of Southern Queensland, Springfield Central 4300, Australia
- School of Agriculture and Environmental Science, University of Southern Queensland, Springfield Central 4300, Australia
| | - Hua Zheng
- School of Architecture and Energy Engineering, Wenzhou University of Technology, 1 Jingguan Road, Wenzhou University Town, Wenzhou 325035, China
| | - Venkata Chevali
- Centre for Future Materials, University of Southern Queensland, Springfield Central 4300, Australia
| | - Hao Wang
- Centre for Future Materials, University of Southern Queensland, Springfield Central 4300, Australia
| | - Zhiguang Xu
- China-Australia Institute for Advanced Materials and Manufacturing, Jiaxing University, Jiaxing 314001, China
| |
Collapse
|
21
|
Luo M, Zhang Y, Luo Y, Lu J. A Tension/Pressure Integrated Resistive Sensor Comprising of a PDMS-LC-MWCNT Composite. SENSORS 2021; 21:s21186078. [PMID: 34577282 PMCID: PMC8473326 DOI: 10.3390/s21186078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/03/2021] [Accepted: 09/07/2021] [Indexed: 11/16/2022]
Abstract
A flexible strain sensor which integrates both pressure sensing and tension sensing functions is demonstrated with an active layer comprising of polydimethy-lsiloxane (PDMS) elastomer, liquid crystal (LC), and multi-walled carbon nanotubes (MWCNTs). The introduction of LC improves the agglomeration of MWCNTs in PDMS and decreases Young’s modulus of flexible resistive sensors. The tension/pressure integrated resistive sensor not only shows a broad tensile sensing range of 140% strain but also shows a good sensitivity of the gauge factor, 40, with tensile force. Besides, the tension/pressure integrated resistive sensor also shows good linearity and sensitivity under pressure. The resistance of the pressure sensor increases as the applied pressure increases because of the decrease in the cross-sectional area of the path. The sensor also shows good hydrophobic properties which may help it to work under complex environment. The tension/pressure integrated sensor shows great promising applications in electronic skins and wearable devices.
Collapse
|