1
|
Zhang S, Liu S, Cao W, Luo J, Gu Y, Liu X, Tan P, Wang Z, Pan J. Microwave heating-assisted synthesis of ultrathin platinum-based trimetallic nanosheets as highly stable catalysts towards oxygen reduction reaction in acidic medium. J Colloid Interface Sci 2024; 675:1108-1118. [PMID: 39059077 DOI: 10.1016/j.jcis.2024.07.171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/16/2024] [Accepted: 07/20/2024] [Indexed: 07/28/2024]
Abstract
There are currently almost no ternary platinum-based nanosheets used for acidic oxygen reduction reactions (ORR) due to the difficulty in synthesizing ternary nanosheets with high Pt content. In this work, several ultrathin platinum-palladium-copper nanosheets (PtPdCu NSs) with a thickness of around 1.90 nm were prepared via a microwave heating-assisted method. Microwave heating allows a large number of Pt atoms to deposit into PdCu nanosheets, forming Pt-based ternary nanosheets with high Pt content. Among them, Pt38Pd50Cu12 NSs catalyst displays the highest mass activity (MA) measured in 0.1 M HClO4 of 0.932 A/mgPt+Pd which is 8.6 times of that Pt/C. Besides, Pt38Pd50Cu12 NSs catalyst also exhibits excellent stability with an extremely low MA attenuation after 80,000 cycles accelerated durability testing (ADT) tests. In the single cell tests, the Pt38Pd50Cu12 NSs catalyst manifests higher maximum power density of 796 mW cm-2 than Pt/C of 606 mW cm-2. Density functional theory (DFT) calculations indicate the weaker adsorption between Pt and O-species in Pt38Pd50Cu12 NSs leads to a significant enhancement of ORR activity. This study provides a new strategy to design and prepare ultrathin Pt-based trimetallic nanosheets as efficient and durable ORR catalysts.
Collapse
Affiliation(s)
- Shaohui Zhang
- State Key Laboratory of Powder Metallurgy, Central South University, 932 Lushan Road, Changsha 410083, China
| | - Suying Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Wei Cao
- The Institute of Technological Sciences, Wuhan University, Wuhan 430072, China
| | - Juan Luo
- State Key Laboratory of Powder Metallurgy, Central South University, 932 Lushan Road, Changsha 410083, China
| | - Yuke Gu
- State Key Laboratory of Powder Metallurgy, Central South University, 932 Lushan Road, Changsha 410083, China
| | - Xuanzhi Liu
- State Key Laboratory of Powder Metallurgy, Central South University, 932 Lushan Road, Changsha 410083, China
| | - Pengfei Tan
- State Key Laboratory of Powder Metallurgy, Central South University, 932 Lushan Road, Changsha 410083, China.
| | - Ziyu Wang
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China.
| | - Jun Pan
- State Key Laboratory of Powder Metallurgy, Central South University, 932 Lushan Road, Changsha 410083, China.
| |
Collapse
|
2
|
Wang Z, Hu R, Wang L, Zhou S. Enhanced Selective Hydrogenation of Cinnamaldehyde to Cinnamyl Alcohol over Silica-Coated Pt-Co xO y Hybrid Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2024; 16:924-932. [PMID: 38145368 DOI: 10.1021/acsami.3c16737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2023]
Abstract
Selective hydrogenation of cinnamaldehyde (CAL) to cinnamyl alcohol (COL) is difficult due to the intrinsic difficulty with thermodynamically easier hydrogenation of C═C bonds. In this work, Pt-CoxOy hybrid nanoparticles encapsulated in mesoporous silica nanospheres (Pt-CoxOy@mSiO2) were synthesized by a sol-gel method, which showed greatly improved COL selectivity for hydrogenation of CAL. At 80 °C and 1.0 MPa of H2, Pt-CoxOy@mSiO2 achieved a CAL conversion of 98.7% with a COL selectivity of 93.5%. In contrast, Pt@mSiO2 yields 3-phenylpropanol (HCOL) as the major product with HCOL selectivity of 67.2%, while PtCo@mSiO2 yields 3-phenylpropionaldehyde with selectivity of 51.8% under the same conditions. The enhanced catalytic performance of Pt-CoxOy@mSiO2 for hydrogenation of CAL to COL is ascribed to the Pt surface electron deficiency induced by metal-oxide interaction, and the protection of active NPs by silica shells results in good catalytic stability.
Collapse
Affiliation(s)
- Zizhu Wang
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Ru Hu
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Lei Wang
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Shenghu Zhou
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| |
Collapse
|
3
|
Control on Pt-containing ordered honeycomb mesoporous nanostructures via self-assembly of block copolymer. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2022.130392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
4
|
Wang Y, Gu Z, Peng W, Shi G, Zhang X, Cui Z, Fu P, Qiao X, He Y, Liu M, Pang X. Silver Nanocrystal Array with Precise Control via Star-like Copolymer Nanoreactors. J Phys Chem Lett 2022; 13:10823-10829. [PMID: 36382898 DOI: 10.1021/acs.jpclett.2c02370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Silver nanocrystal arrays had attracted much attention due to the unique plasmonic effect of their ordered nanostructure and the synergy among adjacent nanocrystals. Conventional preparation methods had several limitations, such as high cost, harsh preparation conditions, and complicated influencing factors, which could not be employed to fabricate the nanocrystal arrays in highly controlled fashion. To solve these issues, we reported ordered arrays of different Ag nanocrystals with precise control prepared by utilizing amphiphilic star-like poly(4-vinylpyridine)-block-polystyrene diblock copolymers as nanoreactors synthesized by sequential atom transfer radical polymerization. Moreover, this unimolecular nanoreactor method based on star-like copolymers with stable and predesigned nanostructures was proved to be a universal approach to prepare other nanocrystal arrays. This strategy had low cost, simple process flow, wide applicability, and structural stability that could fabricate nanocrystal array with precise control and continuously prepare more complex nanostructure units in a large scale to meet different functions and applications.
Collapse
Affiliation(s)
- Yanan Wang
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Zongheng Gu
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Wenhua Peng
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Ge Shi
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaomeng Zhang
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Zhe Cui
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Peng Fu
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaoguang Qiao
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
- College of Materials Engineering, Henan International Joint Laboratory of Rare Earth Composite Materials, Henan University of Engineering, Zhengzhou 451191, P. R. China
| | - Yanjie He
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Minying Liu
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Xinchang Pang
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
5
|
Yang Y, Wang Z, Liang Z, Shen L, Guo C, Shi Y, Tan H, Lu Z, Yan C. Insight into the Evolution of Ordered Mesoporous sp 2 Carbonaceous Material Derived from Self-Assembly of a Block Copolymer. ACS APPLIED MATERIALS & INTERFACES 2022; 14:43690-43700. [PMID: 36112494 DOI: 10.1021/acsami.2c10356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Block-copolymer-derived ordered mesoporous carbon (OMC) materials have great potential in many applications, such as adsorption, catalysis, and energy conversions; however, their formation process and the kinetic mechanism remain unclear. Herein, a N-doped OMC (N-OMC) with sp2-bonded C atoms is developed via self-assembly of the polystyrene-block-poly(4-vinyl pyridine) block copolymer. By correlating the external morphologies with the internal chemical states, the formation process can be concluded as follows: (1) pore evolution via polystyrene domain degradation and (2) regularization and graphitization of the residual carbon via the removal of sp3 C atoms. In addition, the thickness of the N-OMC shows a power function relationship with the spin-coating rate, and the N content can be incredibly increased up to 26.34 at. % in an NH3 carbonization atmosphere. With the as-prepared N-OMC as the support for loading of the pseudo-atomic-scale Pt (Pt/N-OMC), a high electrochemical active surface area value of 99.64 m2·g-1 and a half-wave potential (E1/2) of 0.850 VRHE are achieved, showing great potential in developing single-atom electrocatalysts.
Collapse
Affiliation(s)
- Yi Yang
- Hydrogen Production and Utilization Group, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
- CAS Key Lab of Renewable Energy, Guangdong Key Lab of New and Renewable Energy Research and Development, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Zhida Wang
- Hydrogen Production and Utilization Group, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
- CAS Key Lab of Renewable Energy, Guangdong Key Lab of New and Renewable Energy Research and Development, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Zheng Liang
- CAS Key Lab of Renewable Energy, Guangdong Key Lab of New and Renewable Energy Research and Development, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Lisha Shen
- Hydrogen Production and Utilization Group, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
- CAS Key Lab of Renewable Energy, Guangdong Key Lab of New and Renewable Energy Research and Development, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Changqing Guo
- Hydrogen Production and Utilization Group, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
- CAS Key Lab of Renewable Energy, Guangdong Key Lab of New and Renewable Energy Research and Development, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Yan Shi
- Hydrogen Production and Utilization Group, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
- CAS Key Lab of Renewable Energy, Guangdong Key Lab of New and Renewable Energy Research and Development, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Hongyi Tan
- Hydrogen Production and Utilization Group, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
- CAS Key Lab of Renewable Energy, Guangdong Key Lab of New and Renewable Energy Research and Development, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Zhuoxin Lu
- Hydrogen Production and Utilization Group, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
- CAS Key Lab of Renewable Energy, Guangdong Key Lab of New and Renewable Energy Research and Development, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Changfeng Yan
- Hydrogen Production and Utilization Group, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
- CAS Key Lab of Renewable Energy, Guangdong Key Lab of New and Renewable Energy Research and Development, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| |
Collapse
|
6
|
Batch synthesis of high activity and durability carbon supported platinum catalysts for oxygen reduction reaction using a new facile continuous microwave pipeline technology. J Colloid Interface Sci 2022; 628:174-188. [PMID: 35987155 DOI: 10.1016/j.jcis.2022.08.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/07/2022] [Accepted: 08/10/2022] [Indexed: 11/23/2022]
Abstract
Traditional synthesis methodologies for fuel cell catalyst production involve long reactions and uncontrollable reaction processes. Synthesis methods for the production of catalysts typically have difficulties to achieve catalysts materials with consistency, high activity, and durability. In this study, a fast, simple, and suitable continuous pipeline microwave method for catalyst mass production was developed, with the carbon carrier being treated at different temperatures simultaneously. The method herein developed resulted in carbon-supported platinum (Pt) catalysts with high activity and high durability. In addition, the half-wave potential of the catalyst exceeded 0.9 V, the electrochemical active surface area reached 85.7 m2-gPt-1, and the mass specific activity reached 171.1 mA-mg-1. Remarkably, after 30,000 cycles of Pt attenuation tests and 30,000 cycles of carbon carrier attenuation tests, the retention rate of the annealed carbon carrier catalyst reached 80 %. As a membrane electrode, the catalyst generated a single cell maximum power density of 1.4 W-cm-2, and the Pt content reached 0.286 gPt-kW-1. The work provides an effective and practical method for the mass production of high-performance and high-durability catalysts, which guiding significance for mass production of catalysts.
Collapse
|
7
|
Control on Pt-Containing Ordered Honeycomb Mesoporous Nanostructures via Self-Assembly of Block Copolymer. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
8
|
Zhang D, Zhang Y, Huang Y, Hou C, Wang H, Cai Y, Li Q. Robust Oxygen Reduction Electrocatalysis Enabled by Platinum Rooted on Molybdenum Nitride Microrods. Inorg Chem 2022; 61:12023-12032. [PMID: 35839144 DOI: 10.1021/acs.inorgchem.2c02026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Robust oxygen reduction electrocatalysis is central to renewable fuel cells and metal-air batteries. Herein, Pt nanoparticles (NPs) rooted on porous molybdenum nitride microrods (Pt/Mo2N MRs) are rationally constructed toward the oxygen reduction reaction (ORR). Owing to the desired composition with strong electronic metal-support interactions (EMSIs) and a porous one-dimensional structure supporting ultrafine NPs, the developed Pt/Mo2N MRs possess much higher ORR mass and specific activities than commercial Pt/C. In situ Raman and density functional theory calculations reveal that the EMSI weakens the adsorption of intermediates over Pt/Mo2N MRs via an associative mechanism. Moreover, the porous Mo2N support stabilizes these high activities. Impressively, a homemade zinc-air battery driven by Pt/Mo2N MRs delivers excellent performance including a peak power density of 167 mW cm-2 and a high rate capability that ranged from 5 to 50 mA cm-2. This work highlights the role of EMSI in promoting robust ORR electrocatalysis, thus providing a promising approach for efficient and robust cathode materials for advanced metal-air batteries.
Collapse
Affiliation(s)
- Danling Zhang
- Guangxi Key Laboratory of Low Carbon Energy Materials, Guangxi New Energy Ship Battery Engineering Technology Research Center, Guangxi Scientific and Technological Achievements Transformation Pilot Research Base of Electrochemical Energy Materials and Devices, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Yiyi Zhang
- Guangxi Key Laboratory of Low Carbon Energy Materials, Guangxi New Energy Ship Battery Engineering Technology Research Center, Guangxi Scientific and Technological Achievements Transformation Pilot Research Base of Electrochemical Energy Materials and Devices, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Youguo Huang
- Guangxi Key Laboratory of Low Carbon Energy Materials, Guangxi New Energy Ship Battery Engineering Technology Research Center, Guangxi Scientific and Technological Achievements Transformation Pilot Research Base of Electrochemical Energy Materials and Devices, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Cheng Hou
- Guangxi Key Laboratory of Low Carbon Energy Materials, Guangxi New Energy Ship Battery Engineering Technology Research Center, Guangxi Scientific and Technological Achievements Transformation Pilot Research Base of Electrochemical Energy Materials and Devices, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Hongqiang Wang
- Guangxi Key Laboratory of Low Carbon Energy Materials, Guangxi New Energy Ship Battery Engineering Technology Research Center, Guangxi Scientific and Technological Achievements Transformation Pilot Research Base of Electrochemical Energy Materials and Devices, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Yezheng Cai
- Guangxi Key Laboratory of Low Carbon Energy Materials, Guangxi New Energy Ship Battery Engineering Technology Research Center, Guangxi Scientific and Technological Achievements Transformation Pilot Research Base of Electrochemical Energy Materials and Devices, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Qingyu Li
- Guangxi Key Laboratory of Low Carbon Energy Materials, Guangxi New Energy Ship Battery Engineering Technology Research Center, Guangxi Scientific and Technological Achievements Transformation Pilot Research Base of Electrochemical Energy Materials and Devices, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| |
Collapse
|
9
|
Zhao L, Jiang J, Xiao S, Li Z, Wang J, Wei X, Kong Q, Chen JS, Wu R. PtZn nanoparticles supported on porous nitrogen-doped carbon nanofibers as highly stable electrocatalysts for oxygen reduction reaction. NANO MATERIALS SCIENCE 2022. [DOI: 10.1016/j.nanoms.2022.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Systematic Study of Effective Hydrothermal Synthesis to Fabricate Nb-Incorporated TiO 2 for Oxygen Reduction Reaction. MATERIALS 2022; 15:ma15051633. [PMID: 35268863 PMCID: PMC8911348 DOI: 10.3390/ma15051633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/16/2022] [Accepted: 02/20/2022] [Indexed: 11/17/2022]
Abstract
Fuel cells are expected to serve as next-generation energy conversion devices owing to their high energy density, high power, and long life performance. The oxygen reduction reaction (ORR) is important for determining the performance of fuel cells; therefore, using catalysts to promote the ORR is essential for realizing the practical applications of fuel cells. Herein, we propose Nb-incorporated TiO2 as a suitable alternative to conventional Pt-based catalysts, because Nb doping has been reported to improve the conductivity and electron transfer number of TiO2. In addition, Nb-incorporated TiO2 can induce the electrocatalytic activity for the ORR. In this paper, we report the synthesis method for Nb-incorporated TiO2 through a hydrothermal process with and without additional load pressures. The electrocatalytic activity of the synthesized samples for the ORR was also demonstrated. In this process, the samples obtained under various load pressures exceeding the saturated vapor pressure featured a high content of Nb and crystalline TiNb2O7, resulting in an ellipsoidal morphology. X-ray diffraction results also revealed that, on increasing the Nb doping amounts, the diffraction peak of the anatase TiO2 shifted to a lower angle and the full width at half maximum decreased. This implies that the Ti atom is exchanged with the Nb atom during this process, resulting in a decrease in TiO2 crystallinity. At a doping level of 10%, Nb-incorporated TiO2 exhibited the best electrocatalytic activity in terms of the oxygen reduction current (iORR) and onset potential for the ORR (EORR); this suggests that 10% Nb-doped samples have the potential for enhancing electrocatalytic activity.
Collapse
|