1
|
Jiao JB, Kang Q, Cui SX, Cao JL, Lin T, Ma CJ, Xiao ZH, Du T, Wang N, Du XJ, Wang S. Target-driven functionalized DNA hydrogel capillary sensor for SARS-CoV-2 dual-mode detection. Talanta 2024; 285:127342. [PMID: 39644672 DOI: 10.1016/j.talanta.2024.127342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/01/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
Coronavirus disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused secondary pandemic, which still poses a serious threat to physical health and economic development. Herein, the target-driven functionalized DNA hydrogel capillary sensor based on cascade signal amplification and carbon coated cobalt manganese modified by prussian blue and platinum nanoparticles (MnCo@C-Pt-PB NPs) has been successfully developed for dual-mode detection of SARS-CoV-2. The cascade signal amplification triggered by target RNA causes the permeability of the DNA hydrogel loaded in the capillary to be destroyed, thereby releasing the embedded MnCo@C-Pt-PB NPs as signal molecules into 3,3',5,5'-tetramethylbenzidine/hydrogen peroxide (TMB/H2O2) solution under the driving of capillarity. The colorless TMB is then catalyzed to blue oxidation products (oxTMB) due to peroxidase-like activity of MnCo@C-Pt-PB NPs, and MnCo@C-Pt-PB NPs and oxTMB with photothermal properties synergistically increase the system temperature under near-infrared irradiation, which are recorded by portable devices to achieve dual-mode detection. Signals intensity are proportional to the logarithm of T-RNA concentration in a wide detection range (100 aM-100 pM), with a detection limit of 100 aM. Moreover, the reliability of the developed method in oropharyngeal swabs samples has also been validated. The signal conversion and amplification function of functionalized DNA hydrogel enhances the convenience, sensitivity and versatility of the developed method, which is promising to be applied in environmental safety, molecular diagnostic assays and disease prevention.
Collapse
Affiliation(s)
- Jing-Bo Jiao
- State Key Laboratory of Food Nutrition and Safety, Engineering Research Center of Food Biotechnology, Ministry of Education, Tianjin University of Science and Technology, Tianjin, 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Qing Kang
- State Key Laboratory of Food Nutrition and Safety, Engineering Research Center of Food Biotechnology, Ministry of Education, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Shu-Xin Cui
- State Key Laboratory of Food Nutrition and Safety, Engineering Research Center of Food Biotechnology, Ministry of Education, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Jiang-Li Cao
- State Key Laboratory of Food Nutrition and Safety, Engineering Research Center of Food Biotechnology, Ministry of Education, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Tong Lin
- State Key Laboratory of Food Nutrition and Safety, Engineering Research Center of Food Biotechnology, Ministry of Education, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Chen-Jing Ma
- State Key Laboratory of Food Nutrition and Safety, Engineering Research Center of Food Biotechnology, Ministry of Education, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Ze-Hui Xiao
- State Key Laboratory of Food Nutrition and Safety, Engineering Research Center of Food Biotechnology, Ministry of Education, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Ting Du
- State Key Laboratory of Food Nutrition and Safety, Engineering Research Center of Food Biotechnology, Ministry of Education, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Nan Wang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China.
| | - Xin-Jun Du
- State Key Laboratory of Food Nutrition and Safety, Engineering Research Center of Food Biotechnology, Ministry of Education, Tianjin University of Science and Technology, Tianjin, 300457, China.
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
2
|
Huang X, Zhang Q, Lu B, Tang X, Li P. Time-resolved fluorescence/visual dual-readout nanobiosensors for the detection of aflatoxin B 1, benzo(α)pyrene and capsaicin in edible oils using a miniaturized paper analytical device. Food Chem 2024; 467:142233. [PMID: 39637672 DOI: 10.1016/j.foodchem.2024.142233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/19/2024] [Accepted: 11/22/2024] [Indexed: 12/07/2024]
Abstract
Edible oil safety impacts food safety and consumer health. The typical pollutants-aflatoxin B1 (AFB1) and benzo(α)pyrene (BaP), and kitchen waste oil-are significant hazards in edible oil consumption. Herein, we developed a dual-readout lateral flow immunoassay (tdLFIA) for the multi-quantitative detection of AFB1, BaP and capsaicin (CAP). A novel monoclonal antibody against BaP was developed with a sensitivity of 1.92 ng/mL. Subsequently, gold nanoparticles and Eu3+ labelled fluorescent nanospheres were synthesized as colorimetric and fluorescent sensors. A rapid synchronous pretreatment method based on immunomagnetic beads(IMAB)combined with a molecularly imprinted solid phase extraction (MISPE) was developed. The tdLFIA enabled a rapid response of 7 min for AFB1, BaP and CAP detection, with quantitative limits of detection of 0.003, 0.6, and 0.01 ng/mL, respectively. The proposed strategy indicated reliability and has been applied in real samples, providing useful products for evaluating edible oil quality and safety.
Collapse
Affiliation(s)
- Xiaorong Huang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Oil Crops Research Institute, Chinese Academy of Agricultural Sciences,Wuhan 430062, China; Laboratory of Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture and Rural Affairs; Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs, China.
| | - Qi Zhang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences,Wuhan 430062, China; Laboratory of Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture and Rural Affairs; Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs, China; Food Safety Research Institute, HuBei University, Wuhan 430062, China; Hubei Hongshan Laboratory, Wuhan 430070, China; Xianghu Laboratory, Hangzhou 311231, China.
| | - Baiyi Lu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| | - Xiaoqian Tang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences,Wuhan 430062, China; Laboratory of Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture and Rural Affairs; Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs, China; Food Safety Research Institute, HuBei University, Wuhan 430062, China; Hubei Hongshan Laboratory, Wuhan 430070, China; Xianghu Laboratory, Hangzhou 311231, China.
| | - Peiwu Li
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Oil Crops Research Institute, Chinese Academy of Agricultural Sciences,Wuhan 430062, China; Laboratory of Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture and Rural Affairs; Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs, China; Food Safety Research Institute, HuBei University, Wuhan 430062, China; Hubei Hongshan Laboratory, Wuhan 430070, China; Xianghu Laboratory, Hangzhou 311231, China.
| |
Collapse
|
3
|
Feng Z, Guo Y, Zhang Y, Zhang A, Jia M, Yin J, Shen G. Nanozymes: a bibliometrics review. J Nanobiotechnology 2024; 22:704. [PMID: 39538291 PMCID: PMC11562681 DOI: 10.1186/s12951-024-02907-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/04/2024] [Indexed: 11/16/2024] Open
Abstract
As novel multifunctional materials that merge enzyme-like capabilities with the distinctive traits of nanomaterials, nanozymes have made significant strides in interdisciplinary research areas spanning materials science, bioscience, and beyond. This article, for the first time, employed bibliometric methods to conduct an in-depth statistical analysis of the global nanozymes research and demonstrate research progress, hotspots and trends. Drawing on data from the Web of Science Core Collection database, we comprehensively retrieved the publications from 2004 to 2024. The burgeoning interest in nanozymes research across various nations indicated a growing and widespread trend. This article further systematically elaborated the enzyme-like activities, matrix, multifunctional properties, catalytic mechanisms and various applications of nanozymes, and the field encounters challenges. Despite notable progress, and requires deeper exploration guide the future research directions. This field harbors broad potential for future developments, promising to impact various aspects of technology and society.
Collapse
Affiliation(s)
- Zihan Feng
- School of Pharmacy, College of Life and Environmental Science, Minzu University of China, Beijing, 100081, China
| | - Yuexin Guo
- School of Pharmacy, North China University of Science and Technology, Tangshan, 063210, China
| | - Yicong Zhang
- School of Pharmacy, College of Life and Environmental Science, Minzu University of China, Beijing, 100081, China
| | - Aiqin Zhang
- School of Pharmacy, College of Life and Environmental Science, Minzu University of China, Beijing, 100081, China.
| | - Meng Jia
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Junfa Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Gangyi Shen
- School of Pharmacy, College of Life and Environmental Science, Minzu University of China, Beijing, 100081, China.
| |
Collapse
|
4
|
Chen J, Su Z, Li W, Pei Z, Wu D, Li L, Wu Y, Li G. A Clickase-Mediated Immunoassay Based on Nanopore and Bionic Signal Labels for Ultrasensitive, Portable, and On-Site Detection of Ricin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:25330-25339. [PMID: 39441662 DOI: 10.1021/acs.jafc.4c05406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
It is of particular importance to develop an effective method that possesses several merits simultaneously of rapid, ultrasensitive, portable, and on-site detection potential for food safety detection. Herein, we propose a clickase-mediated immunoassay based on nanopore and bionic signal labels for the detection of ricin. The introduction of Cu/Cys clickase and nanopore simultaneously effectively addressed the inherent limitations of natural enzymes and colorimetric signal output, respectively. Using this method, bionic signal labels can be easily formed through DNA and Gram-positive bacterial cell wall terminal peptide fragments (labeled by alkynyl and azide, respectively) and vancomycin. Translocation of the D-P@vancomycin through the nanopore generated highly specific oscillation current traces. This method showed a great on-site detection potential and superior analytical performance owing to the combination of the specificity of antibodies, high CuAAC click reaction catalytic efficiency of clickase, ultrasensitivity of the nanopore, and high signal resolution of D-P@vancomycin. Moreover, the practical applicability of the established method was also verified, achieving a limit of detection (LOD) down to 200.9 ag/mL with a wide linear relationship under the optimized conditions. In conclusion, this method is promising for rapid, portable, ultrasensitive, and on-site food safety detection.
Collapse
Affiliation(s)
- Jianing Chen
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Zhuoqun Su
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Wenrui Li
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Ziye Pei
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Di Wu
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, United Kingdom
| | - Lin Li
- Animal-Derived Food Safety Innovation Team, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yongning Wu
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing 100017, China
| | - Guoliang Li
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| |
Collapse
|
5
|
Luo Q, Ding N, Chen H, Zhang Y, Zhang M, Gao W, Li Y, Feng K, Shi X. A novel "mix-response" biosensor for colorimetric and photothermal dual-mode detection of sulfide ions in food based on silver-doping Prussian blue nanoparticle. Talanta 2024; 279:126493. [PMID: 39018946 DOI: 10.1016/j.talanta.2024.126493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/19/2024] [Accepted: 06/28/2024] [Indexed: 07/19/2024]
Abstract
Effective identification of sulfur ions (S2-) in foodstuff is crucial for food safety and human health, but it remains challenging. Traditional single-mode colorimetric sensing methods are simple and sensitive, but are prone to interference from colored substances which can lead to false positives or negatives results. Herein, we develop a novel "mix-response" biosensor for colorimetric and photothermal dual-mode detection of S2- with good simplicity, sensitivity and portability. In this biosensor, silver-doping Prussian blue nanoparticle (SPB NPs) was used as signal output component, which not only exhibits blue color characteristics, but also has photothermal conversion properties activated by near-infrared (NIR) laser. Upon increasing the S2- concentration, the prepared SPB NPs undergo etching, leading to the formation of new silver sulfide precipitation (Ag2S), along with different colorimetric and photothermal response signals. For the portable visualization of S2-, the color information was recorded by a smartphone in combination with RGB (red channel) analysis and the evolution of the photothermal signal was documented by a thermal imager. The introduction of smartphone and handheld thermal imager in this "mix-response" biosensor makes it suitable for on-site quantitative detection of S2- without sophisticated instrument. Moreover, the development of this "mix-response" biosensor does not need the use of recognition probes (e.g. aptamers and reaction intermediates), thereby simplifying the construct procedures of sensing strategies and improving the economic efficiency of detection. More importantly, the photothermal response signals can overcome the interference of colored substances in foods, thereby reducing the false positives or negatives of the detection results.
Collapse
Affiliation(s)
- Qian Luo
- Laboratory of Micro & Nano Biosensing Technology in Food Safety, Hunan Provincial Key Laboratory of Food Science and Biotechnology, College of Food Science and Technology, Hunan Agricultural University, Changsha, 410128, China
| | - Nan Ding
- Laboratory of Micro & Nano Biosensing Technology in Food Safety, Hunan Provincial Key Laboratory of Food Science and Biotechnology, College of Food Science and Technology, Hunan Agricultural University, Changsha, 410128, China
| | - Hongxiu Chen
- Laboratory of Micro & Nano Biosensing Technology in Food Safety, Hunan Provincial Key Laboratory of Food Science and Biotechnology, College of Food Science and Technology, Hunan Agricultural University, Changsha, 410128, China
| | - Yaqin Zhang
- Laboratory of Micro & Nano Biosensing Technology in Food Safety, Hunan Provincial Key Laboratory of Food Science and Biotechnology, College of Food Science and Technology, Hunan Agricultural University, Changsha, 410128, China
| | - Miao Zhang
- Laboratory of Micro & Nano Biosensing Technology in Food Safety, Hunan Provincial Key Laboratory of Food Science and Biotechnology, College of Food Science and Technology, Hunan Agricultural University, Changsha, 410128, China
| | - Wenli Gao
- Laboratory of Micro & Nano Biosensing Technology in Food Safety, Hunan Provincial Key Laboratory of Food Science and Biotechnology, College of Food Science and Technology, Hunan Agricultural University, Changsha, 410128, China
| | - Yuanhua Li
- School of Chemistry and Material Engineering, Huizhou University, Huizhou, Guangdong, 516007, China
| | - Kejun Feng
- School of Chemistry and Material Engineering, Huizhou University, Huizhou, Guangdong, 516007, China.
| | - Xingbo Shi
- Laboratory of Micro & Nano Biosensing Technology in Food Safety, Hunan Provincial Key Laboratory of Food Science and Biotechnology, College of Food Science and Technology, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
6
|
Li C, Zhu Z, Yao J, Chen Z, Huang Y. Perspectives in Aptasensor-Based Portable Detection for Biotoxins. Molecules 2024; 29:4891. [PMID: 39459259 PMCID: PMC11510259 DOI: 10.3390/molecules29204891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/11/2024] [Accepted: 10/13/2024] [Indexed: 10/28/2024] Open
Abstract
Biotoxins are pervasive in food and the environment, posing significant risk to human health. The most effective strategy to mitigate the risk arising from biotoxin exposure is through their specific and sensitive detection. Aptasensors have emerged as pivotal tools, leveraging aptamers as biorecognition elements to transduce the specificity of aptamer-target interactions into quantifiable signals for analytical applications, thereby facilitating the meticulous detection of biotoxins. When integrated with readily portable devices such as lateral flow assays (LFAs), personal glucose meters (PGMs), smartphones, and various meters measuring parameters like pH and pressure, aptasensors have significantly advanced the field of biotoxin monitoring. These commercially available devices enable precise, in situ, and real-time analysis, offering great potential for portable biotoxin detection in food and environmental matrices. This review highlights the recent progress in biotoxin monitoring using portable aptasensors, discussing both their potential applications and the challenges encountered. By addressing these impediments, we anticipate that a portable aptasensor-based detection system will open new avenues in biotoxin monitoring in the future.
Collapse
Affiliation(s)
- Congying Li
- College of Environment and Public Health, Xiamen Huaxia University, Xiamen 361024, China
| | - Ziyuan Zhu
- College of Environment and Public Health, Xiamen Huaxia University, Xiamen 361024, China
| | - Jiahong Yao
- College of Environment and Public Health, Xiamen Huaxia University, Xiamen 361024, China
| | - Zhe Chen
- School of Forensic Medicine, Shanxi Medical University, Jinzhong 030600, China
- Key Laboratory of Forensic Toxicology of Ministry of Public Security, Jinzhong 030600, China
- China Institute for Radiation Protection, Taiyuan 030000, China
| | - Yishun Huang
- College of Environment and Public Health, Xiamen Huaxia University, Xiamen 361024, China
- Institute of Analytical Technology and Smart Instruments, Xiamen Huaxia University, Xiamen 361024, China
| |
Collapse
|
7
|
Xu L, Luo ML, Dai JJ, Zhu H, Li P, Wang D, Yang FQ. Applications of nanomaterials with enzyme-like activity for the detection of phytochemicals and hazardous substances in plant samples. Chin Med 2024; 19:140. [PMID: 39380087 PMCID: PMC11462967 DOI: 10.1186/s13020-024-01014-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 09/25/2024] [Indexed: 10/10/2024] Open
Abstract
Plants such as herbs, vegetables, fruits, and cereals are closely related to human life. Developing effective testing methods to ensure their safety and quantify their active components are of significant importance. Recently, nanomaterials with enzyme-like activity (known as nanozymes) have been widely developed in various assays, including colorimetric, fluorescence, chemiluminescence, and electrochemical analysis. This review presents the latest advances in analyzing phytochemicals and hazardous substances in plant samples based on nanozymes, including some active ingredients, organophosphorus pesticides, heavy metal ions, and mycotoxins. Additionally, the current shortcomings and challenges of the actual sample analysis were discussed.
Collapse
Affiliation(s)
- Lei Xu
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, People's Republic of China
| | - Mao-Ling Luo
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, People's Republic of China
| | - Jing-Jing Dai
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, People's Republic of China
| | - Huan Zhu
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, People's Republic of China
| | - Peng Li
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.
| | - Dan Wang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, People's Republic of China
| | - Feng-Qing Yang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, People's Republic of China.
| |
Collapse
|
8
|
Duan H, Zhao Y, Hu X, Liang M, Yang X, Yu L, Oranj BT, Romanovski V, Li P, Zhang Z. Rolling Circle Amplification-Enabled Ultrasensitive Point-of-Care Test Method for Aflatoxin B1 in the Environment and Food. Foods 2024; 13:3188. [PMID: 39410223 PMCID: PMC11475565 DOI: 10.3390/foods13193188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/18/2024] [Accepted: 08/23/2024] [Indexed: 10/20/2024] Open
Abstract
Aflatoxin B1 (AFB1) contamination poses a fatal risk to human beings and urgently needs highly sensitive detection for environmental monitoring and food safety. However, the existing challenges are the unsatisfied sensitivity of the immunoassay methods and the complex matrix effect. Rolling circle amplification (RCA) is a promising method for nucleic acid isothermal amplification due to its high specificity and sensitivity. Herein, we constructed a general RCA-based point-of-care test method (RCA-POCT). With biotinylated antibodies, streptavidin, and biotinylated RCA primers, we realized the signal transduction and preliminary signal amplification. In this way, the fluorescent signal of the immunocomplex on the microwells was greatly enhanced. Under optimal conditions, we recorded sensitive detection limits for aflatoxin B1 (AFB1) of 1.94, 16.3, and 37.7 fg/mL (femtogram per microliter), and wide linear ranges with 5 × 10-6 to 5, 5 × 10-5 to 5, and 5 × 10-5 to 5 ng/mL in the irrigation water, field soil, and peanut samples, respectively. Satisfactory recovery, specificity, repeatability, and reproducibility were observed. The RCA-POCT was validated by comparing it to the HPLC method. This work provides a general RCA-assisted detection method for AFB1 in the environment and food.
Collapse
Affiliation(s)
- Hongyu Duan
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Hubei Hongshan Lab, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (H.D.); (Y.Z.); (X.H.); (M.L.); (X.Y.); (L.Y.); (P.L.)
| | - Yuan Zhao
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Hubei Hongshan Lab, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (H.D.); (Y.Z.); (X.H.); (M.L.); (X.Y.); (L.Y.); (P.L.)
| | - Xiaofeng Hu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Hubei Hongshan Lab, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (H.D.); (Y.Z.); (X.H.); (M.L.); (X.Y.); (L.Y.); (P.L.)
| | - Meijuan Liang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Hubei Hongshan Lab, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (H.D.); (Y.Z.); (X.H.); (M.L.); (X.Y.); (L.Y.); (P.L.)
| | - Xianglong Yang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Hubei Hongshan Lab, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (H.D.); (Y.Z.); (X.H.); (M.L.); (X.Y.); (L.Y.); (P.L.)
| | - Li Yu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Hubei Hongshan Lab, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (H.D.); (Y.Z.); (X.H.); (M.L.); (X.Y.); (L.Y.); (P.L.)
| | - Behrouz Tajdar Oranj
- Research Center for Environmental Determinants of Health (RCEDH), Kermanshah University of Medical Sciences, Kermanshah 67146, Iran;
| | - Valentin Romanovski
- Center of Functional Nano-Ceramics, National University of Science and Technology MISIS, Moscow 101000, Russia;
| | - Peiwu Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Hubei Hongshan Lab, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (H.D.); (Y.Z.); (X.H.); (M.L.); (X.Y.); (L.Y.); (P.L.)
| | - Zhaowei Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Hubei Hongshan Lab, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (H.D.); (Y.Z.); (X.H.); (M.L.); (X.Y.); (L.Y.); (P.L.)
| |
Collapse
|
9
|
Gao F, Wu Y, Gan C, Hou Y, Deng D, Yi X. Overview of the Design and Application of Photothermal Immunoassays. SENSORS (BASEL, SWITZERLAND) 2024; 24:6458. [PMID: 39409498 PMCID: PMC11479306 DOI: 10.3390/s24196458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 10/20/2024]
Abstract
Developing powerful immunoassays for sensitive and real-time detection of targets has always been a challenging task. Due to their advantages of direct readout, controllable sensing, and low background interference, photothermal immunoassays have become a type of new technology that can be used for various applications such as disease diagnosis, environmental monitoring, and food safety. By modification with antibodies, photothermal materials can induce temperature changes by converting light energy into heat, thereby reporting specific target recognition events. This article reviews the design and application of photothermal immunoassays based on different photothermal materials, including noble metal nanomaterials, carbon-based nanomaterials, two-dimensional nanomaterials, metal oxide and sulfide nanomaterials, Prussian blue nanoparticles, small organic molecules, polymers, etc. It pays special attention to the role of photothermal materials and the working principle of various immunoassays. Additionally, the challenges and prospects for future development of photothermal immunoassays are briefly discussed.
Collapse
Affiliation(s)
- Fengli Gao
- Henan Province Key Laboratory of New Opto-Electronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang 455000, China; (F.G.); (Y.W.); (C.G.); (Y.H.)
| | - Yike Wu
- Henan Province Key Laboratory of New Opto-Electronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang 455000, China; (F.G.); (Y.W.); (C.G.); (Y.H.)
| | - Cui Gan
- Henan Province Key Laboratory of New Opto-Electronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang 455000, China; (F.G.); (Y.W.); (C.G.); (Y.H.)
| | - Yupeng Hou
- Henan Province Key Laboratory of New Opto-Electronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang 455000, China; (F.G.); (Y.W.); (C.G.); (Y.H.)
| | - Dehua Deng
- Henan Province Key Laboratory of New Opto-Electronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang 455000, China; (F.G.); (Y.W.); (C.G.); (Y.H.)
| | - Xinyao Yi
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| |
Collapse
|
10
|
Yan L, Zheng P, Wang Z, Wang W, Chen X, Liu Q. Multimodal biosensing systems based on metal nanoparticles. Analyst 2024; 149:4116-4134. [PMID: 39007333 DOI: 10.1039/d4an00140k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Biosensors are currently among the most commonly used devices for analysing biomarkers and play an important role in environmental detection, food safety, and disease diagnosis. Researchers have developed multimodal biosensors instead of single-modal biosensors to meet increasing sensitivity, accuracy, and stability requirements. Metal nanoparticles (MNPs) are beneficial for preparing core probes for multimodal biosensors because of their excellent physical and chemical properties, such as easy regulation and modification, and because they can integrate diverse sensing strategies. This review mainly summarizes the excellent physicochemical properties of MNPs applied as biosensing probes and the principles of commonly used MNP-based multimodal sensing strategies. Recent applications and possible improvements of multimodal biosensors based on MNPs are also described, among which on-site inspection and sensitive detection are particularly important. The current challenges and prospects for multimodal biosensors based on MNPs may provide readers with a new perspective on this field.
Collapse
Affiliation(s)
- Liang Yan
- Department of Stomatology, Nanfang Hospital, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou, 510515, China.
- School of Stomatology, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Peijia Zheng
- Department of Stomatology, Nanfang Hospital, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou, 510515, China.
- School of Stomatology, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Zhicheng Wang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou, 510515, China.
- School of Stomatology, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Wenjie Wang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou, 510515, China.
- School of Stomatology, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Xiaoman Chen
- Department of Stomatology, Nanfang Hospital, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou, 510515, China.
- School of Stomatology, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Qi Liu
- Department of Stomatology, Nanfang Hospital, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou, 510515, China.
- School of Stomatology, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| |
Collapse
|
11
|
Chen H, An L, Li M, Liu H, Jin Z, Ma H, Ma J, Zhou J, Duan R, Zhang D, Cao X, Wang T, Wu X. A self-assembled 3D nanoflowers based nano-ELISA platform for the sensitive detection of pyridaben. Food Chem 2024; 445:138756. [PMID: 38394906 DOI: 10.1016/j.foodchem.2024.138756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/26/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024]
Abstract
Biomimetic methods are invariably employed to synthesize hybrid organic-inorganic multilevel structure nanoflowers with self-assembly processes in aqueous solutions, which is an ideal way to meet the challenges of immobilizing antibodies or enzymes in nanomaterial based enzyme-linked immunosorbent assay (nano-ELISA). In this study, we developed protein-inorganic hybrid 3D nanoflowers composed of bovine serum albumin (BSA), horseradish peroxidase (HRP)-conjugated goat anti-mouse IgG (IgG-HRP) and copper(Ⅱ) phosphate (BSA-(IgG-HRP)-Cu3(PO4)2) using a self-assembly biomimetic method. The preparation process avoided the use of any organic solvent and protein immobilization did not require covalent modifications. Additionally, the unique hierarchical structure enhances the thermal and storage stability of HRP. The BSA-(IgG-HRP)-Cu3(PO4)2 hybrid 3D nanoflower was then applied to a nano-ELISA platform for pyridaben detection, achieving a 50% inhibition concentration of 3.90 ng mL-1. The nano-ELISA achieved excellent accuracy for pyridaben detection. Such a novel BSA-(IgG-HRP)-Cu3(PO4)2 hybrid 3D nanoflower provide an excellent reagent for small molecule immunoassay.
Collapse
Affiliation(s)
- He Chen
- Institute of Quality and Safety for Agro-products, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; Key Laboratory of Grain Quality and Safety and Testing Henan Province, Zhengzhou 450002, China
| | - Li An
- Institute of Quality and Safety for Agro-products, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; Key Laboratory of Grain Quality and Safety and Testing Henan Province, Zhengzhou 450002, China
| | - Meng Li
- Institute of Quality and Safety for Agro-products, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; Key Laboratory of Grain Quality and Safety and Testing Henan Province, Zhengzhou 450002, China
| | - Hao Liu
- School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Zhong Jin
- Institute of Quality and Safety for Agro-products, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; School of Resources and Environment, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China
| | - Huan Ma
- Institute of Quality and Safety for Agro-products, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; Key Laboratory of Grain Quality and Safety and Testing Henan Province, Zhengzhou 450002, China
| | - Jingwei Ma
- Institute of Quality and Safety for Agro-products, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; Key Laboratory of Grain Quality and Safety and Testing Henan Province, Zhengzhou 450002, China
| | - Juan Zhou
- Institute of Quality and Safety for Agro-products, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; Key Laboratory of Grain Quality and Safety and Testing Henan Province, Zhengzhou 450002, China
| | - Ran Duan
- Institute of Quality and Safety for Agro-products, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; Key Laboratory of Grain Quality and Safety and Testing Henan Province, Zhengzhou 450002, China
| | - Di Zhang
- Institute of Quality and Safety for Agro-products, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; Key Laboratory of Grain Quality and Safety and Testing Henan Province, Zhengzhou 450002, China
| | - Xiu Cao
- Institute of Quality and Safety for Agro-products, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; Key Laboratory of Grain Quality and Safety and Testing Henan Province, Zhengzhou 450002, China
| | - Tieliang Wang
- Institute of Quality and Safety for Agro-products, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; Key Laboratory of Grain Quality and Safety and Testing Henan Province, Zhengzhou 450002, China
| | - Xujin Wu
- Institute of Quality and Safety for Agro-products, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; Key Laboratory of Grain Quality and Safety and Testing Henan Province, Zhengzhou 450002, China.
| |
Collapse
|
12
|
Tao C, Wang J, Zhu Y, Ding C, Shen Z, Sun D, Cao S, Jiang X, Li Y, Liu C, Zhang Q, Li S, Zhang X, Shi Q, Kong D. A highly sensitive fluorescence biosensor for aflatoxins B 1 detection based on polydiacetylene liposomes combined with exonuclease III-assisted recycling amplification. Mikrochim Acta 2024; 191:397. [PMID: 38877314 DOI: 10.1007/s00604-024-06482-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/03/2024] [Indexed: 06/16/2024]
Abstract
A fluorescence biosensor for determination of aflatoxin B1 (AFB1) based on polydiacetylene (PDA) liposomes and exonuclease III (EXO III)-assisted recycling amplification was developed. The AFB1 aptamer partially hybridizes with complementary DNA (cDNA), which is released upon recognition of AFB1 by the aptamer. Subsequently, the cDNA hybridizes with hairpin H to form double-stranded DNA that undergoes digestion by EXO III, resulting in the cyclic release of cDNA and generation of capture DNA for further reaction. The capture DNA then hybridizes with probe modified on PDA liposomes, leading to aggregation of liposomes and subsequent fluorescence production. This strategy exhibited a limit of detection of 0.18 ng/mL within the linear range 1-100 ng/mL with a determination coefficient > 0.99. The recovery ranged from 92.81 to 106.45%, with relative standard deviations (RSD) between 1.73 and 4.26%, for corn, brown rice, peanut butter, and wheat samples. The stability, accuracy, and specificity of the method demonstrated the applicability for real sample analysis.
Collapse
Affiliation(s)
- Chunxu Tao
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu, China
| | - Junyan Wang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu, China
| | - Ying Zhu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu, China
| | - Chao Ding
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu, China
| | - Zhuoyue Shen
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu, China
| | - Danni Sun
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu, China
| | - Shanshan Cao
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu, China
| | - Xinrong Jiang
- The Quality Monitoring Center for Food and Strategic Reserves of Zhenjiang City, Zhenjiang, 212009, Jiangsu, China
| | - Yaqi Li
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu, China
- Jiangsu Provincial Engineering Research Center of Grain Bioprocessing, Zhenjiang, 212003, Jiangsu, China
| | - Chang Liu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu, China
- Jiangsu Provincial Engineering Research Center of Grain Bioprocessing, Zhenjiang, 212003, Jiangsu, China
| | - Qi Zhang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu, China
- Jiangsu Provincial Engineering Research Center of Grain Bioprocessing, Zhenjiang, 212003, Jiangsu, China
| | - Shijie Li
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu, China
- Jiangsu Provincial Engineering Research Center of Grain Bioprocessing, Zhenjiang, 212003, Jiangsu, China
| | - Xinyan Zhang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu, China
- Jiangsu Provincial Engineering Research Center of Grain Bioprocessing, Zhenjiang, 212003, Jiangsu, China
| | - Qiaoqiao Shi
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu, China.
- Jiangsu Provincial Engineering Research Center of Grain Bioprocessing, Zhenjiang, 212003, Jiangsu, China.
| | - Dezhao Kong
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu, China.
- Jiangsu Provincial Engineering Research Center of Grain Bioprocessing, Zhenjiang, 212003, Jiangsu, China.
| |
Collapse
|
13
|
Schneider E, Tita MD, Guerreiro JL, Duarte AJ, Moreira FTC. Prussian blue nanocubes with peroxidase-like activity for polyphenol detection in commercial beverages. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:3663-3674. [PMID: 38804266 DOI: 10.1039/d4ay00201f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The present study describes an efficient method for the determination of polyphenol content in beverages based on a composite material of graphene oxide decorated with Prussian blue nanocubes (rGO/PBNCs). In this method, rGO/PBNCs act as a nanoenzyme with peroxidase-like catalytic activity and produce a colorimetric product in the presence of hydrogen peroxide and tetramethylbenzidine (TMB). To verify the effectiveness of the method, we used two model standards for antioxidants: gallic acid (GA) and tannic acid (TA). The method validation included a comparison of the performance of a natural enzyme and an artificial one (rGO/PBNCs) and two polyphenols in the analysis of commercial beverage samples. After optimization, a pH of 4, ambient temperature (22 °C), a reaction time of 2 minutes and an rGO/PBNCs concentration of 0.01 μg mL-1 were found to be the most favorable conditions. The detection limits obtained were 5.6 μmol L-1 for GA and 1.5 μmol L-1 for TA. Overall, rGO/PBNCs offer advantages over natural enzymes in terms of stability, versatility, scalability and durability, making them attractive candidates for a wide range of catalytic and sensory applications.
Collapse
Affiliation(s)
- Eduarda Schneider
- CIETI-LabRISE, School of Engineering, Polytechnic of Porto, R. Dr António Bernardino de Almeida, 431, 4200-072, Porto, Portugal.
| | - Marta D Tita
- CIETI-LabRISE, School of Engineering, Polytechnic of Porto, R. Dr António Bernardino de Almeida, 431, 4200-072, Porto, Portugal.
| | - Joana L Guerreiro
- CIETI-LabRISE, School of Engineering, Polytechnic of Porto, R. Dr António Bernardino de Almeida, 431, 4200-072, Porto, Portugal.
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
- LABBELS - Associate Laboratory, Braga, Guimarães, Portugal
| | - Abel J Duarte
- CIETI-LabRISE, School of Engineering, Polytechnic of Porto, R. Dr António Bernardino de Almeida, 431, 4200-072, Porto, Portugal.
| | - Felismina T C Moreira
- CIETI-LabRISE, School of Engineering, Polytechnic of Porto, R. Dr António Bernardino de Almeida, 431, 4200-072, Porto, Portugal.
| |
Collapse
|
14
|
Deng X, Ma B, Gong Y, Li J, Zhou Y, Xu T, Hao P, Sun K, Lv Z, Yu X, Zhang M. Advances in Aptamer-Based Conjugate Recognition Techniques for the Detection of Small Molecules in Food. Foods 2024; 13:1749. [PMID: 38890976 PMCID: PMC11172347 DOI: 10.3390/foods13111749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/23/2024] [Accepted: 05/30/2024] [Indexed: 06/20/2024] Open
Abstract
Small molecules are significant risk factors for causing food safety issues, posing serious threats to human health. Sensitive screening for hazards is beneficial for enhancing public security. However, traditional detection methods are unable to meet the requirements for the field screening of small molecules. Therefore, it is necessary to develop applicable methods with high levels of sensitivity and specificity to identify the small molecules. Aptamers are short-chain nucleic acids that can specifically bind to small molecules. By utilizing aptamers to enhance the performance of recognition technology, it is possible to achieve high selectivity and sensitivity levels when detecting small molecules. There have been several varieties of aptamer target recognition techniques developed to improve the ability to detect small molecules in recent years. This review focuses on the principles of detection platforms, classifies the conjugating methods between small molecules and aptamers, summarizes advancements in aptamer-based conjugate recognition techniques for the detection of small molecules in food, and seeks to provide emerging powerful tools in the field of point-of-care diagnostics.
Collapse
Affiliation(s)
- Xin Deng
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou 310018, China; (X.D.); (B.M.); (Y.G.); (P.H.); (K.S.); (X.Y.)
| | - Biao Ma
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou 310018, China; (X.D.); (B.M.); (Y.G.); (P.H.); (K.S.); (X.Y.)
| | - Yunfei Gong
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou 310018, China; (X.D.); (B.M.); (Y.G.); (P.H.); (K.S.); (X.Y.)
| | - Jiali Li
- Hangzhou Quickgene Sci-Tech. Co., Ltd., Hangzhou 310018, China;
| | - Yuxin Zhou
- College of Life Science, China Jiliang University, Hangzhou 310018, China; (Y.Z.); (T.X.)
| | - Tianran Xu
- College of Life Science, China Jiliang University, Hangzhou 310018, China; (Y.Z.); (T.X.)
| | - Peiying Hao
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou 310018, China; (X.D.); (B.M.); (Y.G.); (P.H.); (K.S.); (X.Y.)
| | - Kai Sun
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou 310018, China; (X.D.); (B.M.); (Y.G.); (P.H.); (K.S.); (X.Y.)
| | - Zhiyong Lv
- Dept Qual Managemet, Inner Mongolia Yili Grp. Co., Ltd., Hohhot 151100, China;
| | - Xiaoping Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou 310018, China; (X.D.); (B.M.); (Y.G.); (P.H.); (K.S.); (X.Y.)
| | - Mingzhou Zhang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou 310018, China; (X.D.); (B.M.); (Y.G.); (P.H.); (K.S.); (X.Y.)
| |
Collapse
|
15
|
Zhang S, Li H, Xia Q, Yang D, Yang Y. Zirconium-porphyrin-MOF-based oxidase-like nanozyme with oxygen vacancy for aflatoxin B1 colorimetric sensing. J Food Sci 2024; 89:3618-3628. [PMID: 38685872 DOI: 10.1111/1750-3841.17077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/16/2024] [Accepted: 03/27/2024] [Indexed: 05/02/2024]
Abstract
In this study, a porous coordination network zirconium-porphyrin-based nanoparticle with oxygen vacancies (OVs) was prepared using acetic acid and benzoic acid as modulators via a simple hydrothermal method. The presence of OVs was confirmed by various characterization methods and was found to enhance oxygen uptake and activation. This resulted in the generation of more reactive peroxyl radicals (•O2 -) and led to an improved oxidase (OXD) mimetic activity. Additionally, it promoted 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) oxidation, with a low Km value of 0.07 mM and a high Vmax of 1.47 × 10-7 M·s-1. As aflatoxin B1 (AFB1) inhibits the Pt@PCN-222-ABTS nanozyme system, a colorimetric probe for AFB1 detection was constructed. The limit of detection (LOD) was 0.074 µg·L-1. This research presents a novel approach for designing a nanozymatic-based colorimetric method to analyze trace AFB1 residues in food.
Collapse
Affiliation(s)
- Shengyuan Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Hong Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Qinghai Xia
- School of Public Health, Kunming Medical University, Kunming, Yunnan, China
| | - Dezhi Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yaling Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| |
Collapse
|
16
|
Baruah S, Mohanta D, Betty CA. Highly sensitive and label free on-site monitoring immunosensor for detection of Aflatoxin B 1 from real samples. Anal Biochem 2024; 689:115493. [PMID: 38403259 DOI: 10.1016/j.ab.2024.115493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/02/2024] [Accepted: 02/22/2024] [Indexed: 02/27/2024]
Abstract
Aflatoxin B1 (AF-B1) are toxins secreted by secondary metabolites of molds that have adverse effects on humans and animals resulting in huge economic losses. Here we report on field useable, cost effective and direct electrochemical sensor based on conducting polymer composite electrode, Poly (3,4-ethylenedioxythiophene): polystyrene sulphonic acid (PEDOT-PSS) for label-free detection of AF-B1. Structural and morphological characterization of composite electrodes were carried out using XRD and SEM. We compared two different electroanalytical techniques namely, transient capacitance and differential pulse voltammetry, to select the most prominent technique for analyzing the mycotoxin easily. For direct detection of AF-B1, transient capacitance measurement at 77 and 1000 Hz was employed wherein sensor showed linearity in 18.18-300.0 ng mL-1 range at 77 Hz for AF-B1. Best limit of detection (LOD) for AF-B1 was 55.41 ng mL-1 (369 pM) at 77 Hz with very good repeatability. DPV showed linearity in the range 18.18-342.85 ng mL-1 with LOD 435 pM. For demonstration of application of this sensor directly using minimum sample preparation, AF-B1 sensing has been confirmed successfully using white button mushrooms and okra stored at ambient conditions. Sensor response with real samples suggest usefulness of sensor to monitor stored farm products easily.
Collapse
Affiliation(s)
- Susmita Baruah
- Nanoscience and Soft Matter Laboratory, Department of Physics, Tezpur University, PO: Napaam, Tezpur, 784028, Assam, India
| | - D Mohanta
- Nanoscience and Soft Matter Laboratory, Department of Physics, Tezpur University, PO: Napaam, Tezpur, 784028, Assam, India.
| | - C A Betty
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai, 400085, Maharashtra, India; Homi Bhabha National Institute, Mumbai, 400094, Maharashtra, India.
| |
Collapse
|
17
|
Huang LH, Hsieh YY, Yang FA, Liao WC. DNA-modified Prussian blue nanozymes for enhanced electrochemical biosensing. NANOSCALE 2024; 16:9770-9780. [PMID: 38597919 DOI: 10.1039/d4nr00387j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Prussian blue nanoparticles exhibit the potential to be employed in bioanalytical applications due to their robust stability, peroxidase-like catalytic functionality, straightforward synthesis, and biocompatibility. An efficient approach is presented for the synthesis of nucleic acid-modified Prussian blue nanoparticles (DNA-PBNPs), utilizing nanoparticle porosity to adsorb nucleic acids (polyT). This strategic adsorption leads to the exposure of nucleic acid sequences on the particle surface while retaining catalytic activity. DNA-PBNPs further couple with functional nucleic acid sequences and aptamers through complementary base pairing to act as transducers in biosensors and amplify signal acquisition. Subsequently, we integrated a copper ion-dependent DNAzyme (Cu2+-DNAzyme) and a vascular endothelial growth factor aptamer (VEGF aptamer) onto screen-printed electrodes to serve as recognition elements for analytes. Significantly, our approach leverages DNA-PBNPs as a superior alternative to traditional enzyme-linked antibodies in electrochemical biosensors, thereby enhancing both the efficiency and adaptability of these devices. Our study conclusively demonstrates the application of DNA-PBNPs in two different biosensing paradigms: the sensitive detection of copper ions and vascular endothelial growth factor (VEGF). These results indicate the promising potential of DNA-modified Prussian blue nanoparticles in advancing bioanalytical sensing technologies.
Collapse
Affiliation(s)
- Lin-Hui Huang
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei 112, Taiwan.
| | - Yu-Yu Hsieh
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei 112, Taiwan.
| | - Fu-An Yang
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei 112, Taiwan.
| | - Wei-Ching Liao
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei 112, Taiwan.
- Medical Device Innovation and Translation Center, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| |
Collapse
|
18
|
Fu Z, Huang J, Wei W, Wu Z, Shi X. A multimode biosensor based on prussian blue nanoparticles loaded with gold nanoclusters for the detection of aflatoxin B1. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024. [PMID: 38690679 DOI: 10.1039/d3ay02330c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Herein, a novel fluorescent/colorimetric/photothermal biosensor is proposed for aflatoxin B1 (AFB1) detection in food based on Prussian blue nanoparticles (PBNPs) (∼50 nm), gold nanoclusters (AuNCs), and an aptamer (Apt) within three hours. Briefly, a multifunctional compound, namely PBNPs-PEI@AuNCs, was synthesized from PBNPs as the loading carrier, polyethyleneimine (PEI) as the cross-linking agent, and AuNCs directly combined on the surface of PBNPs. The AFB1 Apt was then modified on the PBNPs-PEI@AuNCs to form a PBNPs-PEI@AuNCs-Apt probe, whereby when AFB1 is present, AFB1 is specifically captured by the probe. Meanwhile, the MNPs@antibody was also introduced to capture AFB1, thereby forming a "sandwich" structure compound. After magnetic separation, high temperature was applied to this "sandwich" structure compound to induce the denaturation of the Apt. Then the fluorescent/colorimetric/photothermal signals were collected from the PBNPs-PEI@AuNCs@Apt to give information on its related condition. The detection limits of the biosensor were 0.64 × 10-14, 0.96 × 10-14, and 0.55 × 10-12 g mL-1 for the three signals, which were outputted independently and could be verified with each other to ensure the accuracy of the results. Moreover, the colorimetric and photothermal strategies with this probe do not require large-scale instruments, providing a promising choice for achieving the rapid field detection of AFB1.
Collapse
Affiliation(s)
- Zhaodi Fu
- Testing Technology Company of Changsha Research Institute of Mining and Metallurgy Co., Ltd., Changsha 410012, China
| | - Juan Huang
- Laboratory of Micro & Nano Biosensing Technology in Food Safety, Hunan Provincial Key Laboratory of Food Science and Biotechnology, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China.
| | - Wei Wei
- Testing Technology Company of Changsha Research Institute of Mining and Metallurgy Co., Ltd., Changsha 410012, China
| | - Zhihui Wu
- Laboratory of Micro & Nano Biosensing Technology in Food Safety, Hunan Provincial Key Laboratory of Food Science and Biotechnology, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China.
| | - Xingbo Shi
- Laboratory of Micro & Nano Biosensing Technology in Food Safety, Hunan Provincial Key Laboratory of Food Science and Biotechnology, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
19
|
Gao X, Liu L, Jia M, Zhang H, Li X, Li J. A dual-mode fluorometric/colorimetric sensor for sulfadimethoxine detection based on Prussian blue nanoparticles and carbon dots. Mikrochim Acta 2024; 191:284. [PMID: 38652331 DOI: 10.1007/s00604-024-06358-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 04/08/2024] [Indexed: 04/25/2024]
Abstract
A dual-mode (colorimetric/fluorescence) nanoenzyme-linked immunosorbent assay (NLISA) was developed based on Au-Cu nanocubes generating Prussian blue nanoparticles (PBNPs). It is expected that this method can be used to detect the residues of sulfonamides in the field, and solve the problem of long analysis time and high cost of the traditional method. Sulfadimethoxine (SDM) was selected as the proof-of-concept target analyte. The Au-Cu nanocubes were linked to the aptamer by amide interaction, and the Au-Cu nanocubes, SDM and antibody were immobilized on a 96-well plate using the sandwich method. The assay generates PBNPs by oxidising the Cu shells on the Au-Cu nanocubes in the presence of hydrochloric acid, Fe3+ and K3[Fe (CN)6]. In this process, the copper shell undergoes oxidation to Cu2+ and subsequently Cu2 + further quenches the fluorescence of the carbon point. PBNPs exhibit peroxidase-like activity, oxidising 3,3',5,5'-tetramethylbenzidine (TMB) to OX-TMB in the presence of H2O2, which alters the colorimetric signal. The dual-mode signals are directly proportional to the sulfadimethoxine concentration within the range 10- 3~10- 7 mg/mL. The limit of detection (LOD) of the assay is 0.023 ng/mL and 0.071 ng/mL for the fluorescent signal and the colorimetric signal, respectively. Moreover, the assay was successfully applied to determine sulfadimethoxine in silver carp, shrimp, and lamb samples with satisfactory results.
Collapse
Affiliation(s)
- Xue Gao
- College of Food Science and Technology, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products. Food Safety Key Lab of Liaoning Province, Institute of Ocean Research, Bohai University, The Fresh Food Storage and Processing Technology Research Institute of Liaoning Provincial Universities, Jinzhou, Liaoning, 121013, China
| | - Lu Liu
- College of Food Science and Technology, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products. Food Safety Key Lab of Liaoning Province, Institute of Ocean Research, Bohai University, The Fresh Food Storage and Processing Technology Research Institute of Liaoning Provincial Universities, Jinzhou, Liaoning, 121013, China
| | - Mu Jia
- College of Food Science and Technology, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products. Food Safety Key Lab of Liaoning Province, Institute of Ocean Research, Bohai University, The Fresh Food Storage and Processing Technology Research Institute of Liaoning Provincial Universities, Jinzhou, Liaoning, 121013, China
| | - Hongmei Zhang
- College of Food Science and Technology, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products. Food Safety Key Lab of Liaoning Province, Institute of Ocean Research, Bohai University, The Fresh Food Storage and Processing Technology Research Institute of Liaoning Provincial Universities, Jinzhou, Liaoning, 121013, China
| | - Xuepeng Li
- College of Food Science and Technology, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products. Food Safety Key Lab of Liaoning Province, Institute of Ocean Research, Bohai University, The Fresh Food Storage and Processing Technology Research Institute of Liaoning Provincial Universities, Jinzhou, Liaoning, 121013, China.
| | - Jianrong Li
- College of Food Science and Technology, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products. Food Safety Key Lab of Liaoning Province, Institute of Ocean Research, Bohai University, The Fresh Food Storage and Processing Technology Research Institute of Liaoning Provincial Universities, Jinzhou, Liaoning, 121013, China.
| |
Collapse
|
20
|
Zhi L, Li M, Li M, Tu J, Lu X. Realizing Ultrasensitive and Accurate Point-of-Care Profiling for ATP with a Triple-Mode Strategy Based on the ATP-Induced Reassembly of a Copper Coordination Polymer Nanoflower. Anal Chem 2024; 96:6202-6208. [PMID: 38598750 DOI: 10.1021/acs.analchem.3c05142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
New strategies for accurate and reliable detection of adenosine triphosphate (ATP) with portable devices are significant for biochemical analysis, while most recently reported approaches cannot satisfy the detection accuracy and independent of large instruments simultaneously, which are unsuitable for fast, simple, and on-site ATP monitoring. Herein, a unique, convenient, and label-free point-of-care sensing strategy based on novel copper coordination polymer nanoflowers (CuCPNFs) was fabricated for multimode (UV-vis, photothermal, and RGB values) onsite ATP determination with high selectivity, sensitivity, and accuracy. The resulting CuCPNFs with a 3D hierarchical structure exhibit the ATP-triggered decomposition behavior because the competitive coordination between ATP and the copper ions of CuCPNFs can result in the formation of ATP-Cu, which reveals preeminent peroxidase mimics activity and can accelerate the oxidation of 3, 3', 5, 5'-tetramethylbenzidine (TMB) to form oxTMB. During this process, the detection system displayed not only color changes but also a strong NIR laser-driven photothermal effect. Thus, the photothermal and color signal variations are easily monitored by a portable thermometer and a smartphone. This multimode point-of-care platform can meet the requirements of onsite, without bulky equipment, accuracy, and reliability all at once, greatly enhancing its application in practice and paving a new way in ATP analysis.
Collapse
Affiliation(s)
- Lihua Zhi
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic China
| | - Min Li
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic China
| | - Min Li
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic China
| | - Jibing Tu
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic China
| | - Xiaoquan Lu
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic China
| |
Collapse
|
21
|
Xiong J, Sun B, Zhang S, Wang S, Qin L, Jiang H. Highly efficient dual-mode detection of AFB1 based on the inner filter effect: Donor-acceptor selection and application. Anal Chim Acta 2024; 1298:342384. [PMID: 38462339 DOI: 10.1016/j.aca.2024.342384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/13/2024] [Accepted: 02/16/2024] [Indexed: 03/12/2024]
Abstract
BACKGROUND The utilization of inner filter effect (IFE) brings more opportunities for construction of fluorescence immunoassays but remains a great challenge, especially how to select best donor in the face of extensive fluorescent nanomaterials. Aflatoxin B1 possesses high toxicity among mycotoxins and is frequently found in agricultural products that may significantly threaten to human health. Therefore, with the help of signal transduction mechanism of IFE to develop a convenient and sensitive approach for AFB1 detection is of great significance in ensuring food safety. RESULTS Herein, the classical alkaline phosphatase (ALP) catalyzes hydrolysis of p-nitrophenylphosphate to produce p-nitrophenol (PNP) was employed as a model reaction, which intends to explore tunable multicolor fluorescence of gold nanoclusters (AuNCs) for matching PNP to maximize IFE efficiency. The luminescent green-emitting AuNCs were selected as an optimal donor in terms of excellent spectral overlap, high photoluminescence, and adequate system adaptability, thus achieving a 22-fold increase in sensitivity improvement compared to colorimetric method for ALP detection. The fluorescence quenching mechanism between PNP and AuNCs was validated as IFE by studying ultraviolet absorption, zeta potentials and fluorescence lifetime. In light of this, we integrated a highly specific antibody-antigen recognition system, efficient enzymatic reaction and excellent optical characteristics of AuNCs to develop dual-mode immunoassay for AFB1 monitoring. The sensitivity of fluorometric immunoassay was lower to 0.06 ng/mL, which obtained a 3.5-fold improvement compared to "gold standard" ELISA. Their practicability and applicability were confirmed in the tap water, corn, wheat and peanuts samples. SIGNIFICANCE This work provides an easy-to-understand screening procedure to select optimal donor-acceptor pairs in IFE analysis. Furthermore, we expect that integration of IFE-based signal conversion strategy into mature immunoassay not only extends the signal types, simplifies signal amplification steps, and reduces the false-positive/false-negative rates, but also provides a simple, convenient, and versatile strategy for monitoring of trace other contaminants.
Collapse
Affiliation(s)
- Jincheng Xiong
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, China Agricultural University, Beijing, 100193, China; Guangdong Provincial Key Laboratory of Advanced Biomaterials, Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Boyan Sun
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, China Agricultural University, Beijing, 100193, China
| | - Shuai Zhang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, China Agricultural University, Beijing, 100193, China
| | - Sihan Wang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, China Agricultural University, Beijing, 100193, China
| | - Linqian Qin
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, China Agricultural University, Beijing, 100193, China
| | - Haiyang Jiang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
22
|
Lu D, Jiang H, Zhang T, Pan J, Zhao L, Shi X, Zhao Q. Dual modal improved enzyme-linked immunosorbent assay for aflatoxin B1 detection inspired by the interaction of amines with Prussian blue nanoparticles. Int J Biol Macromol 2024; 264:130479. [PMID: 38431003 DOI: 10.1016/j.ijbiomac.2024.130479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/20/2024] [Accepted: 02/26/2024] [Indexed: 03/05/2024]
Abstract
This work reports an improved enzyme-linked immunosorbent assay (ELISA) via the interaction between prussian blue nanoparticles (PBNPs) and amines for aflatoxin B1 (AFB1) detection. The effect of different amines on the structure and properties of PBNPs was systematically investigated. Amines with pKb < 7, like ethylenediamine (EDA), can decompose structure of PBNPs, leading to the reduction of extinction coefficient and photothermal effect. Whereas, amines with large pKb > 7, such as o-phenylenediamine (OPD), could undergo catalytic oxidation by PBNPs, resulting in the production of fluorescent and colored oxidation products. Accordingly, EDA and OPD were used to construct improved ELISA. Specifically, silica nanoparticles, on which AFB1 aptamer and amino binding agent (ethylenediaminetetraacetic acid disodium salt, EDTA•2Na) were previously assembled via carboxyl-amino linkage, are anchored to microplates by AFB1 and antibody. EDA concentration can be regulated by EDTA•2Na to affect extinction coefficient and photothermal effect of PBNPs, thereby achieving visual colorimetric and portable photothermal signal readout (Model 1). OPD concentration can also be controlled by EDTA•2Na, thus generating colorimetric and ultrasensitive fluorescent signals through PBNPs catalysis (Model 2). The proposed strategy not only opens new avenue for signal readout mode of biosensing, but also provides universal technique for hazards.
Collapse
Affiliation(s)
- Dai Lu
- Laboratory of Micro & Nano Biosensing Technology in Food Safety, Hunan Provincial Key Laboratory of Food Science and Biotechnology, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, PR China
| | - Hao Jiang
- Laboratory of Micro & Nano Biosensing Technology in Food Safety, Hunan Provincial Key Laboratory of Food Science and Biotechnology, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Tianyu Zhang
- Laboratory of Micro & Nano Biosensing Technology in Food Safety, Hunan Provincial Key Laboratory of Food Science and Biotechnology, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Jun Pan
- Laboratory of Micro & Nano Biosensing Technology in Food Safety, Hunan Provincial Key Laboratory of Food Science and Biotechnology, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Lingyan Zhao
- Laboratory of Micro & Nano Biosensing Technology in Food Safety, Hunan Provincial Key Laboratory of Food Science and Biotechnology, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China.
| | - Xingbo Shi
- Laboratory of Micro & Nano Biosensing Technology in Food Safety, Hunan Provincial Key Laboratory of Food Science and Biotechnology, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China.
| | - Qian Zhao
- Laboratory of Micro & Nano Biosensing Technology in Food Safety, Hunan Provincial Key Laboratory of Food Science and Biotechnology, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
23
|
Chen J, Cheng L, Yang Y, Liu Y, Su C, He Y, You M, Lin Z, Hong G. Background-Free SERS Nanosensor for Endogenous Hydrogen Sulfide Detection Based on Prussian Blue-Coated Gold Nanobipyramids. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38491944 DOI: 10.1021/acsami.3c17385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2024]
Abstract
Surface-enhanced Raman scattering (SERS) has great potential in biological analysis due to its specificity, sensitivity, and non-invasive nature. However, effectively extracting Raman information and avoiding spectral overlapping from biological background interference remain major challenges. In this study, we developed a background-free SERS nanosensor consisting of gold nanobipyramids (Au NBPs) core-Prussian blue (PB) shell (Au NBPs@PB), for endogenous H2S detection. The PB shell degraded quickly upon contact with endogenous H2S, generating a unique Raman signal response in the Raman silent region (1800-2800 cm-1). By taking advantage of the high SERS-activity of Au NBPs and H2S-triggered spectral changes of PB, these SERS nanosensors effectively minimize potential biological interferences. The nanosensor exhibits a detection range of 2.0 μM to 250 μM and a limit of detection (LOD) of 0.34 μM, with good reproducibility and minimal interference. We successfully applied this background-free SERS platform to monitor endogenous H2S concentrations in human serum samples with satisfied results.
Collapse
Affiliation(s)
- Jiaming Chen
- Department of Laboratory Medicine, Xiamen Key Laboratory of Genetic Testing, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361005, People's Republic of China
| | - Lingjun Cheng
- Department of Laboratory Medicine, Xiamen Key Laboratory of Genetic Testing, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361005, People's Republic of China
| | - Yuanyuan Yang
- Department of Laboratory Medicine, Xiamen Key Laboratory of Genetic Testing, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361005, People's Republic of China
| | - Yating Liu
- Department of Laboratory Medicine, Xiamen Key Laboratory of Genetic Testing, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361005, People's Republic of China
| | - Canping Su
- Department of Laboratory Medicine, Xiamen Key Laboratory of Genetic Testing, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361005, People's Republic of China
| | - Yinghao He
- Department of Laboratory Medicine, Xiamen Key Laboratory of Genetic Testing, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361005, People's Republic of China
| | - Mingming You
- Department of Laboratory Medicine, Xiamen Key Laboratory of Genetic Testing, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361005, People's Republic of China
| | - Zhenyu Lin
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, Department of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, People's Republic of China
| | - Guolin Hong
- Department of Laboratory Medicine, Xiamen Key Laboratory of Genetic Testing, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361005, People's Republic of China
| |
Collapse
|
24
|
Fu M, Zhou P, Sheng W, Bai Z, Wang J, Zhu X, Hua L, Pan B, Gao F. Magnetically Controlled Photothermal, Colorimetric, and Fluorescence Trimode Assay for Gastric Cancer Exosomes Based on Acid-Induced Decomposition of CP/Mn-PBA DSNBs. Anal Chem 2024; 96:4213-4223. [PMID: 38427460 DOI: 10.1021/acs.analchem.3c05550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
The accurate quantification of cancer-derived exosomes, which are emerging as promising noninvasive biomarkers for liquid biopsies in the early diagnosis of cancer, is becoming increasingly imperative. In our work, we developed a magnetically controlled photothermal, colorimetric, and fluorescence trimode aptasensor for human gastric cancer cell (SGC-7901)-derived exosomes. This sensor relied on CP/Mn-PBA DSNBs nanocomposites, created by decorating copper peroxide (CP) nanodots on polyethyleneimine-modified manganese-containing Prussian blue analogues double-shelled nanoboxes (PEI-Mn-PBA DSNBs). Through self-assembly, we attached CD63 aptamer-labeled CP/Mn-PBA DSNBs (Apt-CP/Mn-PBA DSNBs) to complementary DNA-labeled magnetic beads (cDNA-MB). During exosome incubation, these aptamers preferentially formed complexes with exosomes, and we efficiently removed the released CP/Mn-PBA DSNBs by using magnetic separation. The CP/Mn-PBA DSNBs exhibited high photoreactivity and photothermal conversion efficiency under near-infrared (NIR) light, leading to temperature variations under 808 nm irradiation, correlating with different exosome concentrations. Additionally, colorimetric detection was achieved by monitoring the color change in a 3,3',5,5'-tetramethylbenzidine (TMB) system, facilitated by PEI modification, NIR-enhanced peroxidase-like activity of CP/Mn-PBA DSNBs and their capacity to generate Cu2+ and H2O2 under acidic conditions. Moreover, in the presence of Cu2+ and ascorbic acid (AA), DNA sequences could form dsDNA-templated copper nanoparticles (CuNPs), which emitted strong fluorescence at around 575 nm. Increasing exosome concentrations correlated with decreases in temperature, absorbance, and fluorescence intensity. This trimode biosensor demonstrated satisfactory ability in differentiating gastric cancer patients from healthy individuals using human serum samples.
Collapse
Affiliation(s)
- Mengying Fu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Peng Zhou
- Department of Orthopedics, The Affiliated Huai'an Hospital of Xuzhou Medical University, The Second People's Hospital of Huai'an, Huai'an 223002, China
| | - Weiwei Sheng
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Zetai Bai
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Jin Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Xu Zhu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Lei Hua
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Bin Pan
- Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| | - Fenglei Gao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| |
Collapse
|
25
|
Zhu X, Tang J, Ouyang X, Liao Y, Feng H, Yu J, Chen L, Lu Y, Yi Y, Tang L. A versatile CuCo@PDA nanozyme-based aptamer-mediated lateral flow assay for highly sensitive, on-site and dual-readout detection of Aflatoxin B1. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133178. [PMID: 38064951 DOI: 10.1016/j.jhazmat.2023.133178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/02/2023] [Accepted: 12/02/2023] [Indexed: 02/08/2024]
Abstract
Mycotoxin contaminations in food and environment seriously harms human health. Constructing sensitive and point-of-test early-warning tools for mycotoxin determination is in high demand. In this study, a CuCo@PDA nanozyme-based aptamer-mediated lateral flow assay (Apt-LFA) has been elaborately designed for on-site and sensitive determination of mycotoxin Aflatoxin B1 (AFB1). Benefiting from the rich functional groups and excellent peroxidase-like activity, the CuCo@PDA with original dark color can be conjugated with the specific recognition probe (i.e., aptamer), generating colorimetric signal on the test lines of Apt-LFA via a competitive sensing strategy. The signal can further be amplified in-situ by catalytic chromogenic reaction. Therefore, a visual and dual-readout detection of AFB1 has been realized. The developed Apt-LFA provides a flexible detection mode for qualitative and quantitative analysis of AFB1 by naked-eyes observation or smartphone readout. The smartphone-based LFA platform shows a reliable and ultrasensitive determination of AFB1 with the limit of detection (LOD) of 2.2 pg/mL. The recoveries in the real samples are in the range of 95.11-113.77% with coefficients of variations less than 9.84%. This study provides a new approach to realize point-of-test and sensitive detection of mycotoxins in food and environment using nanozyme-based Apt-LFAs.
Collapse
Affiliation(s)
- Xu Zhu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, China; School of Environmental Science and Engineering, TianGong University, Tianjin 300387, China
| | - Jing Tang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, China.
| | - Xilian Ouyang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, China
| | - Yibo Liao
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, China
| | - Haopeng Feng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, China
| | - Jiangfang Yu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, China
| | - Li Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, China
| | - Yating Lu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, China
| | - Yuyang Yi
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, China
| | - Lin Tang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, China.
| |
Collapse
|
26
|
Zhang X, Shi Y, Wu D, Fan L, Liu J, Wu Y, Li G. A bifunctional core-shell gold@Prussian blue nanozyme enabling dual-readout microfluidic immunoassay of food allergic protein. Food Chem 2024; 434:137455. [PMID: 37741244 DOI: 10.1016/j.foodchem.2023.137455] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/07/2023] [Accepted: 09/09/2023] [Indexed: 09/25/2023]
Abstract
Food allergy has posed a great threat for public health due to its rising prevalence worldwide, and thus sensitive and reliable food allergen monitoring methods is of great significance. In this study, we prepared a bifunctional core-shell gold@Prussian blue nanoparticles (Au@PBNP) nanozyme, which not only could serve as an alternative to natural peroxidase for colorimetric immunoassay, but also act as a unique Raman label in Raman-silent region (1800-2800 cm-1) for SERS analysis. By combining microfluidic device, smartphone, and portable Raman spectrometer, a new smartphone/SERS dual-readout microfluidic immunoassay platform was established for portable detection of food allergic protein (i.e., alpha-lactalbumin (α-LA)). The established method for detection of α-LA showed a LOD of 0.011 ng/mL in a liner range of 0.2-600 ng/mL. Furthermore, this method was also challenged in spiked food samples with good average recoveries, showing a great potential in practical applications.
Collapse
Affiliation(s)
- Xianlong Zhang
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Yiheng Shi
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Di Wu
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, United Kingdom
| | - Lihua Fan
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Jianghua Liu
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Yongning Wu
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China; NHC Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Guoliang Li
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| |
Collapse
|
27
|
Shi SS, Li XJ, Ma RN, Shang L, Zhang W, Zhao HQ, Jia LP, Wang HS. A smartphone-based electrochemical POCT for CEA based on signal amplification of Zr 6MOFs. LAB ON A CHIP 2024; 24:367-374. [PMID: 38126214 DOI: 10.1039/d3lc00748k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Carcinoembryonic antigen (CEA) is a biomarker of high expression in cancer cells. Highly sensitive and selective detection of CEA holds significant clinical value in the diagnosis, monitoring and efficacy evaluation of malignant tumors. In this work, a smartphone-based electrochemical point-of-care testing (POCT) platform for the detection of CEA was developed based on a Zr6MOF signal amplification strategy. Ferrocene labeled DNA strands (Fc-DNA) were immobilized on Zr6MOFs to form a Fc-DNA/Zr6MOF signal probe. Double-stranded DNA (dsDNA) formed by complementary DNA (cDNA) and CEA aptamer was assembled on a screen-printed electrode via an Au-S bond. When CEA was added, the aptamer specifically bound with CEA, resulting in the exposure of cDNA. Then, Fc-DNA/Zr6MOF signal probes were introduced on the electrode surface through hybridization between Fc-DNA and cDNA. The detection of CEA was realized by measuring the electrochemical response of Fc. The POCT device was made by connecting a modified electrode with a smartphone through a Sensit Smart USB flash disk. Due to the signal amplification of Zr6MOFs, this POCT platform exhibited high sensitivity, wide linear range, and low detection limit for CEA detection. The developed POCT platform has been used for the detection of CEA in actual human serum samples with satisfactory results.
Collapse
Affiliation(s)
- Shan-Shan Shi
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong, 250022, P. R. China.
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252000, P. R. China.
| | - Xiao-Jian Li
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252000, P. R. China.
| | - Rong-Na Ma
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252000, P. R. China.
| | - Lei Shang
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252000, P. R. China.
| | - Wei Zhang
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252000, P. R. China.
| | - Huai-Qing Zhao
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong, 250022, P. R. China.
| | - Li-Ping Jia
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252000, P. R. China.
| | - Huai-Sheng Wang
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252000, P. R. China.
| |
Collapse
|
28
|
Zhao Q, Wu J, Jiang Z, Lu D, Xie X, Chen L, Shi X. Novel functional DNA-linked immunosorbent assay for aflatoxin B1 with dual-modality based on hybrid chain reaction. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 305:123474. [PMID: 37801796 DOI: 10.1016/j.saa.2023.123474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/08/2023]
Abstract
Aflatoxin B1 (AFB1) is one of the most toxic mycotoxins, which is frequently detected in agricultural products. Herein, a novel functional DNA -linked immunosorbent assay (DLISA) with dual-modality based on hybrid chain reaction (HCR) has been successfully developed for ultrasensitive detection of AFB1. The strategy relies on AFB1 immune-bridged occurrence of HCR and the salt-induced aggregation of gold nanoparticles (AuNPs). An aptamer-initiator stand (Apt-Ini stand) is designed for the AFB1 recognition and the activation of HCR, which can recognize the matched hairpins and cause the crossing-opening of H1 and H2, producing a long double-stranded DNA polymer. The addition of SYBR Green I achieves the fluorescent signal output. Remaining less DNA hairpins were added and stuck on the surface of AuNPs, which were insufficient to protect the AuNPs, resulting in the salt-induced aggregation with the color change from red to blue. The dual-modality provides limits of detections of 1.333 × 10-14 g/mL and 2.471 × 10-15 g/mL, respectively. This DLISA with dual-modality provides not only a colorimetry that can meet the needs of on-the-spot preliminary inspection, but also a fluorescence assay that can acquire the precise results.
Collapse
Affiliation(s)
- Qian Zhao
- Laboratory of Micro & Nano Biosensing Technology in Food Safety, Hunan Provincial Key Laboratory of Food Science and Biotechnology, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Jiahao Wu
- Laboratory of Micro & Nano Biosensing Technology in Food Safety, Hunan Provincial Key Laboratory of Food Science and Biotechnology, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Zhenghong Jiang
- Laboratory of Micro & Nano Biosensing Technology in Food Safety, Hunan Provincial Key Laboratory of Food Science and Biotechnology, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Dai Lu
- Laboratory of Micro & Nano Biosensing Technology in Food Safety, Hunan Provincial Key Laboratory of Food Science and Biotechnology, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Xinhui Xie
- Laboratory of Micro & Nano Biosensing Technology in Food Safety, Hunan Provincial Key Laboratory of Food Science and Biotechnology, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Liye Chen
- Laboratory of Micro & Nano Biosensing Technology in Food Safety, Hunan Provincial Key Laboratory of Food Science and Biotechnology, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Xingbo Shi
- Laboratory of Micro & Nano Biosensing Technology in Food Safety, Hunan Provincial Key Laboratory of Food Science and Biotechnology, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
29
|
Fan L, Yan W, Chen Q, Tan F, Tang Y, Han H, Yu R, Xie N, Gao S, Chen W, Chen Z, Zhang P. One-Component Dual-Readout Aggregation-Induced Emission Nanobeads for Qualitative and Quantitative Detection of C-Reactive Protein at the Point of Care. Anal Chem 2024; 96:401-408. [PMID: 38134291 DOI: 10.1021/acs.analchem.3c04441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
Fluorescent lateral flow immunoassay (LFA) systems are versatile tools for sensitive and quantitative detection of disease markers at the point of care. However, traditional fluorescent nanoparticle-based lateral flow immunoassays are not visible under room light, necessitate an additional fluorescent reader, and lack flexibility for different application scenarios. Herein, we report a dual-readout LFA system for the rapid and sensitive detection of C-reactive protein (CRP) in clinical samples. The system relied on the aggregation-induced emission nanobeads (AIENBs) encapsulated with red AIE luminogen, which possesses both highly fluorescent and colorimetric properties. The AIENB-based LFA in the naked-eye mode was able to qualitatively detect CRP levels as low as 8.0 mg/L, while in the fluorescent mode, it was able to quantitatively measure high-sensitivity CRP (hs-CRP) with a limit of detection of 0.16 mg/L. The AIENB-based LFA system also showed a good correlation with the clinically used immunoturbidimetric method for CRP and hs-CRP detection in human plasma. This dual-modal AIENB-based LFA system offers the convenience of colorimetric testing and highly sensitive and quantitative detection of disease biomarkers and medical diagnostics in various scenarios.
Collapse
Affiliation(s)
- Lingzhi Fan
- Department of Central Laboratory, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China
| | - Wannian Yan
- Department of Central Laboratory, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China
| | - Qilong Chen
- Department of Central Laboratory, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China
| | - Fei Tan
- Department of Central Laboratory, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China
| | - Yijie Tang
- Department of Central Laboratory, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China
| | - Huanxing Han
- Department of Pharmacy, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Rujia Yu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Ni Xie
- AUISET Biotechnology Co., Ltd., Kwai Chung, New Territories, Hong Kong S.A.R. 000000, China
- AIEgen Biotech Co., Ltd., 28 Yee Wo Street, Causeway Bay, Hong Kong S.A.R. 000000, China
| | - Shouhong Gao
- Department of Pharmacy, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Wansheng Chen
- Department of Pharmacy, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhongjian Chen
- Department of Central Laboratory, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China
- Shanghai Engineering Research Center for External Chinese Medicine, Shanghai 200433, China
| | - Pengfei Zhang
- Department of Central Laboratory, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China
| |
Collapse
|
30
|
Gao S, Zhou R, Zhang D, Zheng X, El-Seedi HR, Chen S, Niu L, Li X, Guo Z, Zou X. Magnetic nanoparticle-based immunosensors and aptasensors for mycotoxin detection in foodstuffs: An update. Compr Rev Food Sci Food Saf 2024; 23:e13266. [PMID: 38284585 DOI: 10.1111/1541-4337.13266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/06/2023] [Accepted: 10/15/2023] [Indexed: 01/30/2024]
Abstract
Mycotoxin contamination of food crops is a global challenge due to their unpredictable occurrence and severe adverse health effects on humans. Therefore, it is of great importance to develop effective tools to prevent the accumulation of mycotoxins through the food chain. The use of magnetic nanoparticle (MNP)-assisted biosensors for detecting mycotoxin in complex foodstuffs has garnered great interest due to the significantly enhanced sensitivity and accuracy. Within such a context, this review includes the fundamentals and recent advances (2020-2023) in the area of mycotoxin monitoring in food matrices using MNP-based aptasensors and immunosensors. In this review, we start by providing a comprehensive introduction to the design of immunosensors (natural antibody or nanobody, random or site-oriented immobilization) and aptasensors (techniques for aptamer selection, characterization, and truncation). Meanwhile, special attention is paid to the multifunctionalities of MNPs (recoverable adsorbent, versatile carrier, and signal indicator) in preparing mycotoxin-specific biosensors. Further, the contribution of MNPs to the multiplexing determination of various mycotoxins is summarized. Finally, challenges and future perspectives for the practical applications of MNP-assisted biosensors are also discussed. The progress and updates of MNP-based biosensors shown in this review are expected to offer readers valuable insights about the design of MNP-based tools for the effective detection of mycotoxins in practical applications.
Collapse
Affiliation(s)
- Shipeng Gao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Ruiyun Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Focusight Technology (Jiangsu) Co., LTD, Changzhou, China
| | - Di Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Xueyun Zheng
- Key Laboratory of Fermentation Engineering (Ministry of Education), School of Biological Engineering and Food, Hubei University of Technology, Wuhan, China
| | - Hesham R El-Seedi
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing (Jiangsu Education Department), Zhenjiang, China
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China
| | - Shiqi Chen
- Chongqing Institute for Food and Drug Control, Chongqing, China
| | - Lidan Niu
- Chongqing Institute for Food and Drug Control, Chongqing, China
| | - Xin Li
- Jiangsu Hengshun vinegar Industry Co., Ltd., Zhenjiang, China
| | - Zhiming Guo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing (Jiangsu Education Department), Zhenjiang, China
| | - Xiaobo Zou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
31
|
Guo Q, Huang X, Huang Y, Zhang Z, Li P, Yu L. Fe-N-C single-atom nanozyme-linked immunosorbent assay for quantitative detection of aflatoxin B1. J Food Compost Anal 2024; 125:105795. [DOI: 10.1016/j.jfca.2023.105795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
|
32
|
Chen J, Ren B, Wang Z, Wang Q, Bi J, Sun X. Multiple Isothermal Amplification Coupled with CRISPR-Cas14a for the Naked-eye and Colorimetric Detection of Aflatoxin B1. ACS APPLIED MATERIALS & INTERFACES 2023; 15:55423-55432. [PMID: 38014527 DOI: 10.1021/acsami.3c13331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Aflatoxin B1 (AFB1) is highly toxic and challenging to remove, posing significant risks to both human health and economic development. Therefore, there is an urgent need to develop rapid, simple, and sensitive detection technologies. In this study, we introduce a naked-eye and colorimetric method based on multiple isothermal amplifications coupled with CRISPR-Cas14a and investigate its biosensing properties. This technique utilizes composite nanoprobes (MAPs) comprising magnetic nanoparticles and gold nanoparticles. AFB1 is efficiently identified through an aptamer competition process facilitated by magnetic nanoparticles , which triggers multiple isothermal amplification. This converts trace amounts of the toxin into a large quantity of DNA signal. Upon specific activation of the CRISPR-Cas14a complex, the MAPs are cleaved, resulting in significant changes in both color and colorimetric signal. The method demonstrates acceptable sensitivity, with a detection limit of 31.90 pg mL-1 and a wide detection range from 0.05 to 10 ng mL-1. Furthermore, the assay exhibits satisfactory specificity and high accuracy when it is applied to practical samples. Our approach offers a universal sensing platform with potential applications in food safety, environmental monitoring, and clinical diagnostics.
Collapse
Affiliation(s)
- Jiaojiao Chen
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Beizhuo Ren
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Zhigang Wang
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Qian Wang
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Jing Bi
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Xuan Sun
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China
- Hubei Shizhen Laboratory, Wuhan 430061, China
| |
Collapse
|
33
|
Li J, Liang P, Song H, Yu X, Hu S, Wang J, Cheng C, Zhao Y, Su Z. A colorimetric sensor with dual-ratio and dual-mode for detection of nicotine in tobacco samples. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:6377-6384. [PMID: 37869902 DOI: 10.1039/d3ay01571h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Nicotine (NIC) is a harmful substance, drug, pesticide and chemical that is widely found in tobacco. It has carcinogenic, teratogenic and neurotoxic effects that have raised serious concerns. Herein, a colorimetric sensor with dual-ratio and dual-mode for the detection of NIC in tobacco samples was reported. The localized surface plasmon resonance signals of gold nanoparticles (AuNPs) and AuNPs-NIC are used as dual-ratio signals. The absorbance ratio of NIC to AuNPs or the absorbance ratio of NIC to AuNPs-NIC and the wavelength shift value of AuNPs-NIC are applied as dual-mode. Transmission electron microscopy, energy dispersive spectroscopy, dynamic light scattering spectroscopy, ultraviolet-visible spectrophotometry, cyclic voltammetry, and potentiostatic methods were used to characterize the sensor. Further analysis of NIC was conducted through morphological fitting and theoretical calculations. Under optimal conditions, the sensor shows a wide linear range of 5-500 μM. The detection limits for NIC are 2.48 μM, 1.63 μM and 1.34 μM, respectively. The experimental result shows that the dual-ratio signal of AuNPs and AuNPs-NIC has good selectivity and sensitivity, and can effectively reduce the interference of impurities on NIC detection. And the dual-mode of detection for NIC improves the accuracy and comparability of the result significantly. In addition, the proposed sensor was also applied to test NIC in tobacco samples with satisfactory recovery.
Collapse
Affiliation(s)
- Jian Li
- College of Chemistry and Materials Science, College of Agronomy, Hunan Agricultural University, Changsha 410128, PR China.
| | - Pengcheng Liang
- College of Chemistry and Materials Science, College of Agronomy, Hunan Agricultural University, Changsha 410128, PR China.
| | - Huijuan Song
- College of Chemistry and Materials Science, College of Agronomy, Hunan Agricultural University, Changsha 410128, PR China.
| | - Xia Yu
- College of Chemistry and Materials Science, College of Agronomy, Hunan Agricultural University, Changsha 410128, PR China.
| | - Shiyu Hu
- College of Chemistry and Materials Science, College of Agronomy, Hunan Agricultural University, Changsha 410128, PR China.
| | - Jiaqi Wang
- College of Chemistry and Materials Science, College of Agronomy, Hunan Agricultural University, Changsha 410128, PR China.
| | - Cong Cheng
- College of Chemistry and Materials Science, College of Agronomy, Hunan Agricultural University, Changsha 410128, PR China.
| | - Yan Zhao
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Zhaohong Su
- College of Chemistry and Materials Science, College of Agronomy, Hunan Agricultural University, Changsha 410128, PR China.
| |
Collapse
|
34
|
Meng X, Sang M, Guo Q, Li Z, Zhou Q, Sun X, Zhao W. Target-Induced Electrochemical Sensor Based on Foldable Aptamer and MoS 2@MWCNTs-PEI for Enhanced Detection of AFB1 in Peanuts. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:16422-16431. [PMID: 37934460 DOI: 10.1021/acs.langmuir.3c02216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Herein, a sensitive and selective electrochemical sensor based on aptamer folding was constructed to detect aflatoxin B1 (AFB1) in peanuts. Specifically, polyethylenimine-functionalized multiwalled carbon nanotubes modified with molybdenum disulfide (MoS2@MWCNTs-PEI) were used as the electrode matrix to enable a large specific surface area, which were characterized by the Randles-Sevcik equation. Additionally, AuNPs were used to immobilize the aptamer via the Au-S covalent bond and provide a favorable microenvironment for signal enhancement. Methylene blue (MB) was modified at the proximal 3' termini of the aptamer as the capture probe, while the signal transduction of the sensor was obtained through changes in conformation and position of MB induced by the binding between AFB1 and the probe. Changes in spatial conformation could be recorded by electrochemical methods more readily. This electrochemical aptasensor demonstrated remarkable sensitivity to AFB1 with an extensive detection range (1 pg/mL to 100 ng/mL) and a lower limit detection (1.0 × 10-3 ng/mL). Moreover, using the constructed aptasensor, AFB1 was identified successfully in peanut samples, with recoveries ranging from 95.83 to 107.53%, illustrating its potential use in determining AFB1 in food.
Collapse
Affiliation(s)
- Xiaoya Meng
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Maosheng Sang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Qi Guo
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Zhongyu Li
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Quanlong Zhou
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Xia Sun
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Wenping Zhao
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| |
Collapse
|
35
|
Li S, Wang F, Zhao B, Wang C, Wang Z, Wu Q. MnO 2 nanoflowers based colorimetric and fluorescent dual-mode aptasensor for sensitive detection of aflatoxin B1 in milk. Anal Chim Acta 2023; 1279:341844. [PMID: 37827626 DOI: 10.1016/j.aca.2023.341844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/14/2023] [Accepted: 09/22/2023] [Indexed: 10/14/2023]
Abstract
Aflatoxin B1 (AFB1) with tremendous toxic effects has caused a serious threat to food security. Accurate quantification of AFB1 in food can effectively prevent the risk of human intake of AFB1. Herein, a colorimetric and fluorescent dual-mode aptasensor for accurate and sensitive detection of AFB1 has been developed based on MnO2 nanoflowers (MnO2NFs) for the first time. MnO2NFs could catalyze the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) into blue oxidation product (TMBox) by H2O2, which would be used for visible detection of AFB1. Simultaneously, MnO2NFs can be served as a signal amplifier and reduced by ascorbic acid to generate lots of Mn2+ which would quench the fluorescence of calcein for fluorescent detection of AFB1. Both colorimetric and fluorescent methods have been successfully applied for determination of AFB1 in milk samples with satisfactory results. The proposed dual-mode detection method with high detection sensitivity and accuracy showed great promise for monitoring AFB1 in food.
Collapse
Affiliation(s)
- Shuofeng Li
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, China; College of Science, Hebei Agricultural University, Baoding, 071001, China
| | - Fangfang Wang
- Hebei Bioinformatic Utilization and Technological Innovation Center for Agricultural Microbes, College of Life Sciences, Hebei Agricultural University, Baoding, 071001, China.
| | - Bin Zhao
- College of Science, Hebei Agricultural University, Baoding, 071001, China
| | - Chun Wang
- College of Science, Hebei Agricultural University, Baoding, 071001, China
| | - Zhi Wang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, China; College of Science, Hebei Agricultural University, Baoding, 071001, China
| | - Qiuhua Wu
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, China; College of Science, Hebei Agricultural University, Baoding, 071001, China.
| |
Collapse
|
36
|
Jiao JB, Kang Q, Cao JL, Zhang SQ, Ma CJ, Lin T, Xiao ZH, Zhao CM, Du T, Du XJ, Wang S. Integrated multifunctional nanoplatform for fluorescence detection and inactivation of Staphylococcus aureus. Food Chem 2023; 428:136780. [PMID: 37413833 DOI: 10.1016/j.foodchem.2023.136780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 06/21/2023] [Accepted: 06/30/2023] [Indexed: 07/08/2023]
Abstract
Foodborne illness caused by Staphylococcus aureus (S. aureus) has posed a significant threat to human health. Herein, an integrated multifunctional nanoplatform was developed for fluorescence detection and inactivation of S. aureus based on cascade signal amplification coupled with single strand DNA-template copper nanoparticles (ssDNA-Cu NPs). Benefiting from reasonable design, one-step cascade signal amplification was achieved through strand displacement amplification combined with rolling circle amplification, followed by in-situ generation of copper nanoparticles. S. aureus detection could be performed through naked eye observation and microplate reader measurement of the red fluorescence signal. The multifunctional nanoplatform had satisfactory specificity and sensitivity, achieving 5.2 CFU mL-1 detection limit and successful detection of 7.3 CFU of S. aureus in spiked egg after < 5 h of enrichment. Moreover, ssDNA-Cu NPs could eliminate S. aureus to avoid secondary bacterial contamination without further treatment. Therefore, this multifunctional nanoplatform has potential application in food safety dtection.
Collapse
Affiliation(s)
- Jing-Bo Jiao
- State Key Laboratory of Food Nutrition and Safety, Engineering Research Center of Food Biotechnology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Qing Kang
- State Key Laboratory of Food Nutrition and Safety, Engineering Research Center of Food Biotechnology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jiang-Li Cao
- State Key Laboratory of Food Nutrition and Safety, Engineering Research Center of Food Biotechnology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Shuai-Qi Zhang
- State Key Laboratory of Food Nutrition and Safety, Engineering Research Center of Food Biotechnology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Chen-Jing Ma
- State Key Laboratory of Food Nutrition and Safety, Engineering Research Center of Food Biotechnology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Tong Lin
- State Key Laboratory of Food Nutrition and Safety, Engineering Research Center of Food Biotechnology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Ze-Hui Xiao
- State Key Laboratory of Food Nutrition and Safety, Engineering Research Center of Food Biotechnology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Chu-Min Zhao
- State Key Laboratory of Food Nutrition and Safety, Engineering Research Center of Food Biotechnology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Ting Du
- State Key Laboratory of Food Nutrition and Safety, Engineering Research Center of Food Biotechnology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xin-Jun Du
- State Key Laboratory of Food Nutrition and Safety, Engineering Research Center of Food Biotechnology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China.
| |
Collapse
|
37
|
Yuan X, Cao H, Zhang H, Mao G, Wei L. Color-encoded Escherichia coli assay via enzyme-induced etching of Au@MnO 2 nanoparticles. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 299:122888. [PMID: 37216818 DOI: 10.1016/j.saa.2023.122888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/12/2023] [Accepted: 05/13/2023] [Indexed: 05/24/2023]
Abstract
Au@MnO2 nanoparticles (NPs), as core-shell nanostructures, have been widely used in ions, molecules and enzyme activities detection due to their stable properties and easy preparation, but their application in bacterial pathogens detection is rarely reported. In this work, Au@MnO2 NPs is employed for Escherichia coli (E. coli) detection through monitoring and measuring β-galactosidase (β-gal) activity based enzyme-induced color-code single particle enumeration (SPE) method. In the existence of E. coli, p-aminophenylβ-D-galactopyranoside (PAPG) can be hydrolyzed to generate p-aminophenol (AP) by the endogenous β-gal of E. coli. MnO2 shell reacts with AP and produces Mn2+, causing the blue shift of the localized surface plasmon resonance (LSPR) peak and color change of the probe from bright yellow to green. With the SPE method, the amount of E. coli can be quantified readily. The detection limit reaches 15 CFU/mL with dynamic range from 100 to 2900 CFU/mL. Besides, this assay is effectively employed to monitor E. coli in river water sample. The designed sensing strategy provides an ultrasensitive and low cost way for E. coli detection and has the possibility to detect other bacteria in environmental monitoring and food quality analysis.
Collapse
Affiliation(s)
- Xiang Yuan
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, National and Local Joint Engineering Laboratory for New Petrochemical Materials and Fine Utilization of Resources, College of Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Huijuan Cao
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, National and Local Joint Engineering Laboratory for New Petrochemical Materials and Fine Utilization of Resources, College of Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Huiling Zhang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, National and Local Joint Engineering Laboratory for New Petrochemical Materials and Fine Utilization of Resources, College of Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Guojiang Mao
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, National and Local Joint Engineering Laboratory for New Petrochemical Materials and Fine Utilization of Resources, College of Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Lin Wei
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, National and Local Joint Engineering Laboratory for New Petrochemical Materials and Fine Utilization of Resources, College of Chemical Engineering, Hunan Normal University, Changsha 410081, China.
| |
Collapse
|
38
|
Li K, Wang J, Liu L, Cao H, Yang X, Liu Y, Wang J, He S, Wei H, Yu CY. Pd(II)-based coordination polymer nanosheets for ratiometric colorimetric and photothermal dual-mode assay of serum alkaline phosphatase. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 299:122802. [PMID: 37187151 DOI: 10.1016/j.saa.2023.122802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/30/2023] [Accepted: 04/26/2023] [Indexed: 05/17/2023]
Abstract
Fabrication of a multi-signal readout assay with high sensitivity and selectivity is highly desirable for clinical and biochemical analysis, but remains a challenge due to laborious procedures, large-scale instruments, and inadequate accuracy. Herein, a straightforward, rapid, and portable detection platform based on palladium(II) methylene blue (MB) coordination polymer nanosheets (PdMBCP NSs) was unveiled for the ratiometric dual-mode detection of alkaline phosphatase (ALP) with temperature and colorimetric signal readout properties. The sensing mechanism is the ALP-catalyzed generation of ascorbic acid for competitive binding and etching PdMBCP NSs to release free MB in a quantitive means for detection. Specifically, ALP addition led to the decrease of temperature signal readout from the decomposed PdMBCP NSs under 808 nm laser excitation, and simultaneous increase of the temperature from the generated MB with a 660 nm laser, together with the corresponding absorbance changes at both wavelengths. Notably, this ratiometric nanosensor exhibited a detection limit of 0.013 U/L (colorimetric) and 0.095 U/L (photothermal) within 10 min, respectively. The reliability and satisfactory sensing performance of the developed method were further confirmed by clinic serum samples. Therefore, this study provides a new insight for the development of dual-signal sensing platforms for convenient, universal, and accurate detection of ALP.
Collapse
Affiliation(s)
- Kailing Li
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Postdoctoral Research Station of Basic Medicine, The Affiliated Nanhua Hospital, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Jun Wang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Postdoctoral Research Station of Basic Medicine, The Affiliated Nanhua Hospital, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Li Liu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Postdoctoral Research Station of Basic Medicine, The Affiliated Nanhua Hospital, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Hui Cao
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Postdoctoral Research Station of Basic Medicine, The Affiliated Nanhua Hospital, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Xu Yang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Postdoctoral Research Station of Basic Medicine, The Affiliated Nanhua Hospital, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Ying Liu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Postdoctoral Research Station of Basic Medicine, The Affiliated Nanhua Hospital, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Jikai Wang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Postdoctoral Research Station of Basic Medicine, The Affiliated Nanhua Hospital, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Suisui He
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Postdoctoral Research Station of Basic Medicine, The Affiliated Nanhua Hospital, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China.
| | - Hua Wei
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Postdoctoral Research Station of Basic Medicine, The Affiliated Nanhua Hospital, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China.
| | - Cui-Yun Yu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Postdoctoral Research Station of Basic Medicine, The Affiliated Nanhua Hospital, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China.
| |
Collapse
|
39
|
He C, Ke Z, Liu K, Peng J, Yang Q, Wang L, Feng G, Fang J. Nanozyme-based dual-signal sensing system for colorimetric and photothermal detection of AChE activity in the blood of liver-injured mice. Anal Bioanal Chem 2023; 415:2655-2664. [PMID: 36995409 DOI: 10.1007/s00216-023-04663-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/16/2023] [Accepted: 03/18/2023] [Indexed: 03/31/2023]
Abstract
Acetylcholinesterase (AChE), a crucial enzyme related to liver function, is involved in numerous physiological processes such as neurotransmission and muscular contraction. The currently reported techniques for detecting AChE mainly rely on a single signal output, limiting their high-accuracy quantification. The few reported dual-signal assays are challenging to implement in dual-signal point-of-care testing (POCT) because of the need for large instruments, costly modifications, and trained operators. Herein, we report a colorimetric and photothermal dual-signal POCT sensing platform based on CeO2-TMB (3,3',5,5'-tetramethylbenzidine) for the visualization of AChE activity in liver-injured mice. The method compensates for the false positives of a single signal and realizes the rapid, low-cost portable detection of AChE. More importantly, the CeO2-TMB sensing platform enables the diagnosis of liver injury and provides an effective tool for studying liver disease in basic medicine and clinical applications. Rapid colorimetric and photothermal biosensor for sensitive detection of acetylcholinesterase (I) and acetylcholinesterase levels in mouse serum (II).
Collapse
Affiliation(s)
- Chang He
- School of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Zhenyi Ke
- School of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Kai Liu
- School of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Jiasheng Peng
- School of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Qinghui Yang
- School of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Lixiang Wang
- School of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Guangfu Feng
- School of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China.
| | - Jun Fang
- School of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
40
|
Zhang M, Guo X, Wang J. Advanced biosensors for mycotoxin detection incorporating miniaturized meters. Biosens Bioelectron 2023; 224:115077. [PMID: 36669289 DOI: 10.1016/j.bios.2023.115077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023]
Abstract
Advanced biosensors, considered as emerging technologies, are capable of accurate, quantitative and real-time analysis for point-of-care testing (POCT) applications. Moreover, the integrating of miniaturized meters into these advanced biosensors makes them ideally appropriate for portable, sensitive and selective detection of biomolecules. Miniaturized meters including PGMs (personal glucose meters), thermometer, pressuremeter, pH meter, etc. are the most accurate devices and wide availability in the market, exhibiting a promising potential towards detection of small molecule mycotoxins. In this article, we introduce and analyze the recent advancements for sensing of mycotoxins measured by handheld meters since the first report in 2012. Furthermore, limitations and challenges for versatile meters application against mycotoxins in food matrix are highlighted. By overcoming the bottleneck problems, we believe the miniaturized meters-based biosensor platform will provide great possibilities for mycotoxins analysis and launch them to the market.
Collapse
Affiliation(s)
- Mengke Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Xiaodong Guo
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China.
| | - Jiaqi Wang
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agriculture Sciences, Beijing, 100193, China.
| |
Collapse
|
41
|
Chen X, Zheng X, Yu X, Li X, Lin Y, Lin H, Ye S, Huang X, Tang D, Lai W. Novel rapid coordination of ascorbic acid 2-phosphate and iron(III) as chromogenic substrate system based on Fe 2O 3 nanoparticle and application in immunoassay for the colorimetric detection of carcinoembryonic antigen. Talanta 2023; 258:124414. [PMID: 36889191 DOI: 10.1016/j.talanta.2023.124414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/07/2023]
Abstract
This work for the first time reports on a simple and rapid colorimetric immunoassay with rapid coordination of ascorbic acid 2-phosphate (AAP) and iron (III) for determination of carcinoembryonic antigen (CEA, used as a model) by using Fe2O3 nanoparticle based-chromogenic substrate system. The signal was produced rapidly (1 min) from the coordination of AAP and iron (III) with color development of colorless to brown. TD-DFT calculation methods were employed to simulate the UV-Vis spectra of AAP-Fe2+ and AAP-Fe3+ complexes. Moreover, Fe2O3 nanoparticle could be dissolved with the aid of acid, thereby releasing free iron (III). Herein, a sandwich-type immunoassay was established based on Fe2O3 nanoparticle as labels. As target CEA concentration increased, the number of Fe2O3 labelled-antibodies (bound specifically) increased, resulting in loading more Fe2O3 nanoparticle on platform. The absorbance increased as the number of free iron (III), derived from Fe2O3 nanoparticle, increased. So, the absorbance of reaction solution is positively correlated with antigen concentration. Under optimal conditions, the current results showed good performance for CEA detection in the range 0.02-10.0 ng/mL with a detection limit of 11 pg/mL. Moreover, the repeatability, stability, and selectivity of the colorimetric immunoassay were also acceptable.
Collapse
Affiliation(s)
- Xuwei Chen
- Key Laboratory of Modern Analytical Science and Separation Technology, College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou, 363000, People's Republic of China
| | - Xuan Zheng
- Key Laboratory of Modern Analytical Science and Separation Technology, College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou, 363000, People's Republic of China
| | - Xiangyong Yu
- Key Laboratory of Modern Analytical Science and Separation Technology, College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou, 363000, People's Republic of China
| | - Xiaoqin Li
- Key Laboratory of Modern Analytical Science and Separation Technology, College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou, 363000, People's Republic of China
| | - Youxiu Lin
- Key Laboratory of Modern Analytical Science and Separation Technology, College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou, 363000, People's Republic of China.
| | - Huizi Lin
- Department of Neonatology, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350108, People's Republic of China.
| | - Shuai Ye
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China.
| | - Xinyu Huang
- Fujian Yigong Soft Packaging Technology Co., Ltd., Zhangzhou, 363000, People's Republic of China
| | - Dianping Tang
- Key Laboratory of Analysis and Detection for Food Safety (Ministry of Education & Fujian Province), Institute of Nanomedicine and Nanobiosensing, Department of Chemistry, Fuzhou University, Fuzhou, 350108, People's Republic of China
| | - Wenqiang Lai
- Key Laboratory of Modern Analytical Science and Separation Technology, College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou, 363000, People's Republic of China.
| |
Collapse
|
42
|
Zhu X, Shan J, Dai L, Shi F, Wang J, Wang H, Li Y, Wu D, Ma H, Wei Q, Ju H. PB@PDA nanocomposites as nanolabels and signal reporters for separate-type cathodic photoelectrochemical immunosensors in the detection of carcinoembryonic antigens. Talanta 2023; 254:124134. [PMID: 36450179 DOI: 10.1016/j.talanta.2022.124134] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/24/2022]
Abstract
Photoelectrochemical (PEC) immunoassays exhibiting high sensitivity and decent operability have considerable potential in areas such as cancer diagnostics. In particular, cathodic PEC configurations can prevent interference from reductive substances, which can occur in biological samples; however, challenges remain in terms of sensitivity and operability. In this study, separate-type PEC immunoassays were developed for carcinoembryonic antigen (CEA) by combining microplate-based immune recognition and off-on cathodic PEC detection. Polydopamine (PDA)-coated Prussian blue (PB) nanoparticles (PB@PDA NPs) were used as signal tags to label the detection antibody. The PB NPs and PDA captured on the microplates both disassembled under strongly alkaline conditions to generate redox-active electron acceptors. The disassembled products were quantitatively transferred to PEC detection cells and synergistically enhanced the PEC current with microstructured BiOI, which operated as a cathodic semiconductor electrode. As proof of principle, carcinoembryonic antigen (CEA) was applied to elucidate the potential application of PEC immunoassay in clinical diagnosis, and the obtained linear range of the sensor was 0.001-100 ng mL-1 with the detection limit of 54.9 fg mL-1 (S/N = 3). The proposed separate-type off-on PEC strategy showed high sensitivity and decent operability for CEA detection, indicating its potential for the identification of other tumor markers.
Collapse
Affiliation(s)
- Xiaodi Zhu
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection; Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, Shandong. China
| | - Jingkai Shan
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection; Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, Shandong. China
| | - Li Dai
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection; Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, Shandong. China
| | - Feifei Shi
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection; Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, Shandong. China
| | - Jinshen Wang
- Department of Rehabilitation, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Huan Wang
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection; Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, Shandong. China
| | - Yuyang Li
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection; Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, Shandong. China
| | - Dan Wu
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection; Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, Shandong. China
| | - Hongmin Ma
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection; Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, Shandong. China.
| | - Qin Wei
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection; Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, Shandong. China.
| | - Huangxian Ju
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection; Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, Shandong. China; State Key Laboratory of Analytical Chemistry for Life Science, Department of Chemistry, Nanjing University, Nanjing, 210023, PR China
| |
Collapse
|
43
|
Wu W, Li J. Recent Progress on Nanozymes in Electrochemical Sensing. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2023.117391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
44
|
Yu Z, Qiu C, Huang L, Gao Y, Tang D. Microelectromechanical Microsystems-Supported Photothermal Immunoassay for Point-of-Care Testing of Aflatoxin B1 in Foodstuff. Anal Chem 2023; 95:4212-4219. [PMID: 36780374 DOI: 10.1021/acs.analchem.2c05617] [Citation(s) in RCA: 76] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Accurate identification of acutely toxic and low-fatality mycotoxins on a large scale in a quick and cheap manner is critical for reducing population mortality. Herein, a portable photothermal immunosensing platform supported by a microelectromechanical microsystem (MEMS) without enzyme involvement was reported for point-of-care testing of mycotoxins (in the case of aflatoxin B1, AFB1) in food based on the precise satellite structure of Au nanoparticles. The synthesized Au nanoparticles with a well-defined, graded satellite structure exhibited a significantly enhanced photothermal response and were coupled by AFB1 antibodies to form signal conversion probes by physisorption for further target-promoted competitive responses in microplates. In addition, a coin-sized miniature NIR camera device was constructed for temperature acquisition during target testing based on advanced MEMS fabrication technology to address the limitation of expensive signal acquisition components of current photothermal sensors. The proposed MEMS readout-based microphotothermal test method provides excellent AFB1 response in the range of 0.5-500 ng g-1 with detection limits as low as 0.27 ng g-1. In addition, the main reasons for the efficient photothermal transduction efficiency of Au with different graded structures were analyzed by finite element simulations, providing theoretical guidance for the development of new Au-based photothermal agents. In conclusion, the proposed portable micro-photothermal test system offers great potential for point-of-care diagnostics for residents, which will continue to facilitate immediate food safety identification in resource-limited regions.
Collapse
Affiliation(s)
- Zhichao Yu
- Key Laboratory of Analytical Science for Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Chicheng Qiu
- Zijin School of Geology and Mining, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Lingting Huang
- Key Laboratory of Analytical Science for Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Yuan Gao
- Key Laboratory of Analytical Science for Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Dianping Tang
- Key Laboratory of Analytical Science for Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| |
Collapse
|
45
|
Luo X, Huang G, Bai C, Wang C, Yu Y, Tan Y, Tang C, Kong J, Huang J, Li Z. A versatile platform for colorimetric, fluorescence and photothermal multi-mode glyphosate sensing by carbon dots anchoring ferrocene metal-organic framework nanosheet. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130277. [PMID: 36334570 DOI: 10.1016/j.jhazmat.2022.130277] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 10/10/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Concerns regarding pesticide residues have driven attempts to exploit accurate, prompt and straightforward approaches for food safety pre-warning. Herein, a nanozyme-mediated versatile platform with multiplex signal response (colorimetric, fluorescence and temperature) was proposed for visual, sensitive and portable detection of glyphosate (GLP). The platform was constructed based on a N-CDs/FMOF-Zr nanosensor that prepared by in situ anchoring nitrogen-doped carbon dots onto zirconium-based ferrocene metal-organic framework nanosheets. The N-CDs/FMOF-Zr possessed excellent peroxidase (POD)-like activity and thus could oxide colorless 3, 3', 5, 5'-tetramethylbenzidine (TMB) into a blue oxidized TMB (oxTMB) in presence of H2O2. Intriguingly, owing to the blocking effect triggered by multiple interaction between GLP and N-CDs/FMOF-Zr, its POD-like activity of the latter was remarkably suppressed, which can modulate the transformation of TMB into oxTMB, generating tri-signal responses of fluorescence enhancement, absorbance and temperature decrease. More significantly, the temperature mode can be facilely realized by a portable home-made mini-photothermal device and handheld thermometers. The proposed multimodal sensing was capable of providing sensitive results by fluorescence mode and simultaneously realized visual/portable testing by colorimetric and photothermal channels. Consequently, it exhibited more adaptability for practical applications, which can satisfy different testing requirements according to sensitivity and available instruments/meters, presenting a new horizon for exploiting multifunctional sensors.
Collapse
Affiliation(s)
- Xueli Luo
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Gengli Huang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Chenxu Bai
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Chunyan Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Ying Yu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Youwen Tan
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Chenyu Tang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Jia Kong
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Jihong Huang
- Food and Pharmacy College, Xuchang University, Henan 461000, PR China
| | - Zhonghong Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
46
|
Chen C, Chen Y, Wang X, Zhang L, Luo Y, Tang Q, Wang Y, Liang X, Ma C. In situ synthesized nanozyme for photoacoustic-imaging-guided photothermal therapy and tumor hypoxia relief. iScience 2023; 26:106066. [PMID: 36818293 PMCID: PMC9929682 DOI: 10.1016/j.isci.2023.106066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/27/2022] [Accepted: 01/23/2023] [Indexed: 01/27/2023] Open
Abstract
Nanozymes have attracted extensive research interest due to their ideal enzymatic catalytic performance; however, uncontrollable activities and nonspecific accumulation limit their further clinical application. To overcome these obstacles, we proposed in situ synthesized nanozyme, and realized the concept through an intelligent nanosystem (ISSzyme) based on Prussian blue (PB) precursor. PB nanozyme was synthesized at the tumor sites through the interaction of ISSzyme with glutathione, which was demonstrated by comparing with conventional PB nanozyme. ISSzyme is capable of tumor-specific photoacoustic imaging (PAI) and photothermal therapy (PTT), reducing the false-positive signals of PAI and the treatment side effects of PTT. ISSzyme has catalase-like activities, resulting in tumor hypoxia relief and metastasis inhibition. More importantly, the in situ synthesized PB nanozyme has the favorable property of minimal liver accumulation. Considering the above advantages, ISSzyme is expected to shed light on the design of the next-generation artificial enzymes, with many new biomedical applications.
Collapse
Affiliation(s)
- Chaoyi Chen
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing 100084, China
| | - Yuwen Chen
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing 100084, China
| | - Xuanhao Wang
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing 100084, China
| | - Lulu Zhang
- Department of Ultrasound, Peking University Third Hospital, Beijing 100191, China
| | - Yan Luo
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing 100084, China
| | - Qingshuang Tang
- Department of Ultrasound, Peking University Third Hospital, Beijing 100191, China
| | - Yuan Wang
- Department of Ultrasound, Peking University Third Hospital, Beijing 100191, China
| | - Xiaolong Liang
- Department of Ultrasound, Peking University Third Hospital, Beijing 100191, China,Corresponding author
| | - Cheng Ma
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing 100084, China,Institute for Precision Healthcare, Tsinghua University, Beijing 100084, China,Corresponding author
| |
Collapse
|
47
|
Zhang X, Qu Q, Yang A, Wang J, Cheng W, Deng Y, Zhou A, Lu T, Xiong R, Huang C. Chitosan enhanced the stability and antibiofilm activity of self-propelled Prussian blue micromotor. Carbohydr Polym 2023; 299:120134. [PMID: 36876772 DOI: 10.1016/j.carbpol.2022.120134] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/11/2022] [Accepted: 09/17/2022] [Indexed: 11/25/2022]
Abstract
The emergence, spread and difficult removal of bacteria biofilm, represent an ever-increasing persistent infections and medical complications challenge worldwide. Herein, a self-propelled system Prussian blue micromotor (PB MMs) were constructed by gas-shearing technology for efficient degradation of biofilms by combining chemodynamic therapy (CDT) and photothermal therapy (PTT). With the interpenetrating network crosslinked by alginate, chitosan (CS) and metal ions as the substrate, PB was generated and embedded in the micromotor at the same time of crosslinking. The micromotors are more stable and could capture bacteria with the addition of CS. The micromotors show excellent performance, containing photothermal conversion, reactive oxygen species (ROS) generation and bubble produced by catalyzing Fenton reaction for motion, which served as therapeutic agent could chemically kill bacteria and physically destroy biofilm. This research work opens a new path of an innovative strategy to efficiently remove biofilm.
Collapse
Affiliation(s)
- Xiaoli Zhang
- Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, PR China
| | - Qingli Qu
- Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, PR China
| | - Anquan Yang
- Zhejiang OSM Group Co., Ltd, Huzhou 313000, PR China
| | - Jing Wang
- Zhejiang OSM Group Co., Ltd, Huzhou 313000, PR China
| | - Weixia Cheng
- Children's Hospital of Nanjing Medical University, Nanjing 210008, PR China
| | - Yankang Deng
- Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, PR China
| | - Aying Zhou
- Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, PR China
| | - Tao Lu
- Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, PR China
| | - Ranhua Xiong
- Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, PR China
| | - Chaobo Huang
- Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, PR China.
| |
Collapse
|
48
|
Lang Y, Zhang B, Cai D, Tu W, Zhang J, Shentu X, Ye Z, Yu X. Determination Methods of the Risk Factors in Food Based on Nanozymes: A Review. BIOSENSORS 2022; 13:69. [PMID: 36671904 PMCID: PMC9856088 DOI: 10.3390/bios13010069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/14/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Food safety issues caused by foodborne pathogens, chemical pollutants, and heavy metals have aroused widespread concern because they are closely related to human health. Nanozyme-based biosensors have excellent characteristics such as high sensitivity, selectivity, and cost-effectiveness and have been used to detect the risk factors in foods. In this work, the common detection methods for pathogenic microorganisms, toxins, heavy metals, pesticide residues, veterinary drugs, and illegal additives are firstly reviewed. Then, the principles and applications of immunosensors based on various nanozymes are reviewed and explained. Applying nanozymes to the detection of pathogenic bacteria holds great potential for real-time evaluation and detection protocols for food risk factors.
Collapse
Affiliation(s)
| | | | | | | | | | - Xuping Shentu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Xueyuan Street, Xiasha Higher Education District, Hangzhou 310018, China
| | | | | |
Collapse
|
49
|
Chen Y, Yang X, Lu C, Yang Z, Wu W, Wang X. Novel colorimetric, photothermal and up-conversion fluorescence triple-signal sensor for rosmarinic acid detection. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.108099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
50
|
Li Y, Sun J, Huang L, Liu S, Wang S, Zhang D, Zhu M, Wang J. Nanozyme-encoded luminescent detection for food safety analysis: An overview of mechanisms and recent applications. Compr Rev Food Sci Food Saf 2022; 21:5077-5108. [PMID: 36200572 DOI: 10.1111/1541-4337.13055] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 08/25/2022] [Accepted: 09/06/2022] [Indexed: 01/28/2023]
Abstract
With the rapid growth in global food production, delivery, and consumption, reformative food analytical techniques are required to satisfy the monitoring requirements of speed and high sensitivity. Nanozyme-encoded luminescent detections (NLDs) integrating nanozyme-based rapid detections with luminescent output signals have emerged as powerful methods for food safety monitoring, not only because of their preeminent performance in analysis, such as rapid, facile, low background signal, and ultrasensitive, but also due to their strong attractiveness for future sensing research. However, the lack of a full understanding of the fundamentals of NLDs for food safety detection technologies limits their further application. In this review, a systematic overview of the mechanisms of NLDs and their applications in the food industry is summarized, which covers the nanozyme-mimicking types and their luminescent signal generation mechanisms, as well as their applications in monitoring common foodborne contaminants. As demonstrated by previous studies, NLDs are bridging the gap to practical-oriented food analytical technologies and various opportunities to improve their food analytical performance to be considered in the future are proposed.
Collapse
Affiliation(s)
- Yuechun Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Jing Sun
- Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resources, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Lunjie Huang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Sijie Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Shaochi Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Daohong Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Mingqiang Zhu
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, China
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| |
Collapse
|