1
|
Jing XZ, Li HR, Di Z, Liu QX, Li CP. Scavenging Radionuclide by Shapeable Porous Materials. Chempluschem 2024; 89:e202400364. [PMID: 38978154 DOI: 10.1002/cplu.202400364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/02/2024] [Accepted: 07/08/2024] [Indexed: 07/10/2024]
Abstract
Nuclear energy is a competitive and environmentally friendly low-carbon energy source. It is seen as an important avenue for satisfying energy demands, responding to the energy crisis, and mitigating global climate change. However, much attention has been paid to achieving the effective treatment of radionuclide ions produced in nuclear waste. Initially, advanced adsorbents were mainly available in powder form, which meant that additional purification processes were usually required for separation and recovery in industrial applications. Therefore, to meet the practical requirements of industrial applications, materials need to be molded and processed into forms such as beads, membranes, gels, and resins. Here, we summarize the fabrication of porous materials used for capturing typical radionuclide ions, including UO2 2+, TcO4 -, IO3 -, SeO3 2-, and SeO4 2-.
Collapse
Affiliation(s)
- Xue-Zhuo Jing
- College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University, Tianjin, 300387, P. R. China
| | - Hai-Ruo Li
- College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University, Tianjin, 300387, P. R. China
| | - Zhengyi Di
- College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University, Tianjin, 300387, P. R. China
| | - Qing-Xiang Liu
- College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University, Tianjin, 300387, P. R. China
| | - Cheng-Peng Li
- College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University, Tianjin, 300387, P. R. China
| |
Collapse
|
2
|
Rozaini MT, Grekov DI, Bustam MA, Pré P. Low-Hydrophilic HKUST-1/Polymer Extrudates for the PSA Separation of CO 2/CH 4. Molecules 2024; 29:2069. [PMID: 38731559 PMCID: PMC11085341 DOI: 10.3390/molecules29092069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
HKUST-1 is an MOF adsorbent industrially produced in powder form and thus requires a post-shaping process for use as an adsorbent in fixed-bed separation processes. HKUST-1 is also sensitive to moisture, which degrades its crystalline structure. In this work, HKUST-1, in the form of crystalline powder, was extruded into pellets using a hydrophobic polymeric binder to improve its moisture stability. Thermoplastic polyurethane (TPU) was used for that purpose. The subsequent HKUST-1/TPU extrudate was then compared to HKUST-1/PLA extrudates synthesized with more hydrophilic polymer: polylactic acid (PLA), as the binder. The characterization of the composites was determined via XRD, TGA, SEM-EDS, and an N2 adsorption isotherm analysis. Meanwhile, the gas-separation performances of HKUST-1/TPU were investigated and compared with HKUST-1/PLA from measurements of CO2 and CH4 isotherms at three different temperatures, up to 10 bars. Lastly, the moisture stability of the composite materials was investigated via an aging analysis during storage under humid conditions. It is shown that HKUST-1's crystalline structure was preserved in the HKUST-1/TPU extrudates. The composites also exhibited good thermal stability under 523 K, whilst their textural properties were not significantly modified compared with the pristine HKUST-1. Furthermore, both extrudates exhibited larger CO2 and CH4 adsorption capacities in comparison to the pristine HKUST-1. After three months of storage under atmospheric humid conditions, CO2 adsorption capacities were reduced to only 10% for HKUST-1/TPU, whereas reductions of about 25% and 54% were observed for HKUST-1/PLA and the pristine HKUST-1, respectively. This study demonstrates the interest in shaping MOF powders by extrusion using a hydrophobic thermoplastic binder to operate adsorbents with enhanced moisture stability in gas-separation columns.
Collapse
Affiliation(s)
- Muhamad Tahriri Rozaini
- Centre of Research in Ionic Liquids, CORIL, Chemical Engineering Department, Universiti Teknologi Petronas, Bandar Seri Iskandar 32610, Perak, Malaysia or
- GEnie des Procédés Environnement-Agroalimentaire (GEPEA) UMR-CNRS 6144, Department of Energy Systems and Environment, IMT Atlantique, 44300 Nantes, France;
| | - Denys I. Grekov
- GEnie des Procédés Environnement-Agroalimentaire (GEPEA) UMR-CNRS 6144, Department of Energy Systems and Environment, IMT Atlantique, 44300 Nantes, France;
| | - Mohamad Azmi Bustam
- Centre of Research in Ionic Liquids, CORIL, Chemical Engineering Department, Universiti Teknologi Petronas, Bandar Seri Iskandar 32610, Perak, Malaysia or
| | - Pascaline Pré
- GEnie des Procédés Environnement-Agroalimentaire (GEPEA) UMR-CNRS 6144, Department of Energy Systems and Environment, IMT Atlantique, 44300 Nantes, France;
| |
Collapse
|
3
|
S Alivand M, Habiba U, Ghasemian M, Askari S, Webley PA. Amine-Functionalized Meso-Macroporous Polymers for Efficient CO 2 Capture from Ambient Air. ACS APPLIED MATERIALS & INTERFACES 2024; 16:17411-17421. [PMID: 38557056 DOI: 10.1021/acsami.3c17126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Over the past decade, direct air capture (DAC) of carbon dioxide (CO2) using solid nanoadsorbents has garnered attention as a negative emission technology with high energy efficiency. Although operational, the large-scale deployment of DAC technologies has been significantly delayed due to the low performance and high cost of solid DAC nanoadsorbents. Herein, we present a novel family of meso-macroporous melamine formaldehyde (MF) materials with a facile preparation methodology, low capital cost, and unique physicochemical characteristics for DAC. The fabricated MF materials exhibit an extra-large pore volume of 5.19 cm3/g with a 24.6 nm average pore diameter. We show that the synthesized MF materials can be used as substrates and impregnated with different amounts of tetraethylenepentamine (TEPA) to act as chemical nanoadsorbents for DAC. Owing to the ultrahigh pore volume of MF, a substantial amount of 71 wt % TEPA (i.e., MF-TEPA71%) can be loaded, resulting in 2.65 mmol/g of CO2 uptake under DAC conditions. In addition, the superior physicochemical properties of MF lead to a high CO2 loading of 2.07 mmol/g with low TEPA loading in MF-TEPA33%. The prepared MF-TEPA nanoadsorbents can be successfully employed in different shapes (i.e., droplets, pellets, and coatings) and maintain their superiority across different temperatures and CO2 concentrations. This study provides a promising approach for developing meso-macroporous substrates through a straightforward and scalable synthesis method, representing a new avenue for the next generation of DAC nanoadsorbents with superior performance for practical applications.
Collapse
Affiliation(s)
- Masood S Alivand
- Department of Chemical Engineering, Faculty of Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Umma Habiba
- Department of Chemical Engineering, Faculty of Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Mohsen Ghasemian
- Department of Chemical Engineering, Faculty of Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Saeed Askari
- Department of Chemical Engineering, Faculty of Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Paul A Webley
- Department of Chemical Engineering, Faculty of Engineering, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
4
|
Wang Y, Rim G, Song M, Holmes HE, Jones CW, Lively RP. Cold Temperature Direct Air CO 2 Capture with Amine-Loaded Metal-Organic Framework Monoliths. ACS APPLIED MATERIALS & INTERFACES 2024; 16:1404-1415. [PMID: 38109480 PMCID: PMC10788822 DOI: 10.1021/acsami.3c13528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/29/2023] [Accepted: 11/29/2023] [Indexed: 12/20/2023]
Abstract
Zeolites, silica-supported amines, and metal-organic frameworks (MOFs) have been demonstrated as promising adsorbents for direct air CO2 capture (DAC), but the shaping and structuring of these materials into sorbent modules for practical processes have been inadequately investigated compared to the extensive research on powder materials. Furthermore, there have been relatively few studies reporting the DAC performance of sorbent contactors under cold, subambient conditions (temperatures below 20 °C). In this work, we demonstrate the successful fabrication of adsorbent monoliths composed of cellulose acetate (CA) and adsorbent particles such as zeolite 13X and MOF MIL-101(Cr) by a 3D printing technique: solution-based additive manufacturing (SBAM). These monoliths feature interpenetrated macroporous polymeric frameworks in which microcrystals of zeolite 13X or MIL-101(Cr) are evenly distributed, highlighting the versatility of SBAM in fabricating monoliths containing sorbents with different particle sizes and density. Branched poly(ethylenimine) (PEI) is successfully loaded into the CA/MIL-101(Cr) monoliths to impart CO2 uptakes of 1.05 mmol gmonolith-1 at -20 °C and 400 ppm of CO2. Kinetic analysis shows that the CO2 sorption kinetics of PEI-loaded MIL-101(Cr) sorbents are not compromised in the monoliths compared to the powder sorbents. Importantly, these monoliths exhibit promising working capacities (0.95 mmol gmonolith-1) over 14 temperature swing cycles with a moderate regeneration temperature of 60 °C. Dynamic breakthrough experiments at 25 °C under dry conditions reveal a CO2 uptake capacity of 0.60 mmol gmonolith-1, which further increases to 1.05 and 1.43 mmol gmonolith-1 at -20 °C under dry and humid (70% relative humidity) conditions, respectively. Our work showcases the successful implementation of SBAM in making DAC sorbent monoliths with notable CO2 capture performance over a wide range of sorption temperatures, suggesting that SBAM can enable the preparation of efficient sorbent contactors in various form factors for other important chemical separations.
Collapse
Affiliation(s)
- Yuxiang Wang
- School of Chemical & Biomolecular
Engineering, Georgia Institute of Technology, 311 Ferst Dr., Atlanta, Georgia 30332, United States
| | - Guanhe Rim
- School of Chemical & Biomolecular
Engineering, Georgia Institute of Technology, 311 Ferst Dr., Atlanta, Georgia 30332, United States
| | - MinGyu Song
- School of Chemical & Biomolecular
Engineering, Georgia Institute of Technology, 311 Ferst Dr., Atlanta, Georgia 30332, United States
| | - Hannah E. Holmes
- School of Chemical & Biomolecular
Engineering, Georgia Institute of Technology, 311 Ferst Dr., Atlanta, Georgia 30332, United States
| | - Christopher W. Jones
- School of Chemical & Biomolecular
Engineering, Georgia Institute of Technology, 311 Ferst Dr., Atlanta, Georgia 30332, United States
| | - Ryan P. Lively
- School of Chemical & Biomolecular
Engineering, Georgia Institute of Technology, 311 Ferst Dr., Atlanta, Georgia 30332, United States
| |
Collapse
|
5
|
Choe JH, Kim H, Yun H, Kang M, Park S, Yu S, Hong CS. Boc Protection for Diamine-Appended MOF Adsorbents to Enhance CO 2 Recyclability under Realistic Humid Conditions. J Am Chem Soc 2024; 146:646-659. [PMID: 38151051 DOI: 10.1021/jacs.3c10475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Among the various metal-organic framework (MOF) adsorbents, diamine-functionalized Mg2(dobpdc) (dobpdc4- = 4,4-dioxidobiphenyl-3,3'-dicarboxylate) shows remarkable carbon dioxide removal performance. However, applying diamine-functionalized Mg2(dobpdc) in practical applications is premature because it shows persistent performance degradation under real flue gas conditions containing water vapor owing to diamine loss during wet cycles. To address this issue, we employed hydrophobic carbonate compounds to protect diamine groups in een-Mg2(dobpdc) (een-MOF, een = N-ethylethylenediamine). tert-Butyl dicarbonate (Boc) reacted rapidly with diamines at the pore openings of MOF particles to form dense secondary and tertiary hydrophobic amines, effectively preventing moisture ingress. The Boc-protected een-MOF-Boc1 maintained excellent CO2 adsorption even under simulated flue gas conditions containing 10% H2O. This observation indicates that Boc protection renders een groups intact during repeated wet cycles, suggesting that Boc-protected een groups are resistant to replacement by water molecules. To increase the practicability of the MOF adsorbent, we fabricated een-MOF/PAN-Boc1 composite beads by shaping MOF particles with polyacrylonitrile (PAN). Notably, the composite beads maintained their CO2 adsorption performance even after repeating the temperature swing adsorption process more than 150 times in 10% water vapor. Furthermore, breakthrough tests showed that the dynamic CO2 separation performance was retained under humid conditions. These results demonstrate that Boc protection provides an easy and effective way to develop promising adsorbents with high CO2 adsorption capacity, long-term durability, and the properties required for postcombustion applications.
Collapse
Affiliation(s)
- Jong Hyeak Choe
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Hyojin Kim
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Hongryeol Yun
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Minjung Kang
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Sookyung Park
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Sumin Yu
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Chang Seop Hong
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
6
|
Mahamud MA, Galib ASMM, Islam MM, Mahiuddin M, Rahman MA, Rahman MM, Islam MS, Ahmad H, Alam MA. Capturing Acidic CO 2 Using Surface-Active Difunctional Core-Shell Composite Polymer Particles via an Aqueous Medium. ACS OMEGA 2023; 8:44523-44536. [PMID: 38046345 PMCID: PMC10688213 DOI: 10.1021/acsomega.3c02976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 10/05/2023] [Accepted: 10/10/2023] [Indexed: 12/05/2023]
Abstract
Multifunctional surface-active polymeric composites are attractive materials for the adsorption of various small molecules. Herein, dual-functionalized micron-sized surface-active composite polymer particles were prepared by a three-step process for CO2 adsorption. First, polystyrene (PS) seed particles were prepared via the dispersion polymerization of styrene. PS/P(MMA-AAm-EGDMA) composite polymer particles were then synthesized by aqueous seeded copolymerization of methyl methacrylate (MMA) and acrylamide (AAm) in the presence of an ethylene glycol dimethacrylate (EGDMA) cross-linker. Finally, the amide moieties of PS/P(MMA-AAm-EGDMA) composite particles were converted into an amine-functionalized composite by using the Hofmann degradation reaction. The presence of primary amine groups on the surface of aminated composite particles was confirmed by some conventional chemical routes, such as diazotization and Schiff's base formation reactions. The formation and functionality of the PS seed, PS/P(MMA-AAm-EGDMA), and aminated PS/P(MMA-AAm-EGDMA) composite polymer particles were confirmed by Fourier transform infrared (FTIR) spectra analyses. Scanning electron microscopy (SEM) analysis revealed spherical shape, size, and surface morphologies of the PS seed, reference composite, and aminated composites. The elemental surface compositions, surface porosity, pore volume, pore diameter, and surface area of both composite particles were evaluated by energy-dispersive X-ray (EDX) mapping, X-ray photoelectron spectroscopy, and Brunauer-Emmett-Teller (BET) and Barrett-Joyner-Halenda (BJH) analyses. Dynamic light scattering (DLS) and ζ-potential measurements confirmed the pH-dependent surface properties of the functionalized particles. The amount of the adsorbed anionic emulsifier, sodium dodecyl sulfate (SDS), on the surface of aminated PS/P(MMA-AAm-EGDMA) is higher at pH 4 than that at pH 10. A vice versa result was found in the case of cationic surfactant, hexadecyltrimethylammonium bromide (HTABr), adsorption. Synthesized aminated composite particles were used as an adsorbent for CO2 adsorption via bubbling CO2 in an aqueous medium. The changes in dispersion pH were monitored continuously during the adsorption of CO2 under various conditions. The amount of CO2 adsorption by aminated composite particles was found to be 209 mg/g, which is almost double that of reference composite particles.
Collapse
Affiliation(s)
- M. Asheq Mahamud
- Research
Laboratory of Polymer Colloids and Nanomaterials, Department of Chemistry,
Faculty of Science, Rajshahi University, Rajshahi 6205, Bangladesh
| | - A. S. M. Maruf Galib
- Research
Laboratory of Polymer Colloids and Nanomaterials, Department of Chemistry,
Faculty of Science, Rajshahi University, Rajshahi 6205, Bangladesh
| | - Md. Muhyminul Islam
- Research
Laboratory of Polymer Colloids and Nanomaterials, Department of Chemistry,
Faculty of Science, Rajshahi University, Rajshahi 6205, Bangladesh
| | | | - Md. Abdur Rahman
- Research
Laboratory of Polymer Colloids and Nanomaterials, Department of Chemistry,
Faculty of Science, Rajshahi University, Rajshahi 6205, Bangladesh
| | - Md. Mahbubor Rahman
- Research
Laboratory of Polymer Colloids and Nanomaterials, Department of Chemistry,
Faculty of Science, Rajshahi University, Rajshahi 6205, Bangladesh
| | - Md. Shahidul Islam
- Research
Laboratory of Polymer Colloids and Nanomaterials, Department of Chemistry,
Faculty of Science, Rajshahi University, Rajshahi 6205, Bangladesh
| | - Hasan Ahmad
- Research
Laboratory of Polymer Colloids and Nanomaterials, Department of Chemistry,
Faculty of Science, Rajshahi University, Rajshahi 6205, Bangladesh
| | - Md. Ashraful Alam
- Research
Laboratory of Polymer Colloids and Nanomaterials, Department of Chemistry,
Faculty of Science, Rajshahi University, Rajshahi 6205, Bangladesh
| |
Collapse
|
7
|
Naskar S, Fan D, Ghoufi A, Maurin G. Microscopic insight into the shaping of MOFs and its impact on CO 2 capture performance. Chem Sci 2023; 14:10435-10445. [PMID: 37799984 PMCID: PMC10548504 DOI: 10.1039/d3sc04218a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 09/06/2023] [Indexed: 10/07/2023] Open
Abstract
The traditional synthesis method produces microcrystalline powdered MOFs, which prevents direct implementation in real-world applications which demand strict control of shape, morphology and physical properties. Therefore, shaping of MOFs via the use of binders is of paramount interest for their practical use in gas adsorption/separation, catalysis, sensors, etc. However, so far, the binders have been mostly selected by trial-and-error without anticipating the adhesion between the MOF and binder components to ensure the processability of homogeneous and mechanically stable shaped MOFs and the impact of the shaping on the intrinsic properties of the MOFs has been overlooked. Herein, we deliver a first systematic multiscale computational exploration of MOF/binder composites by selecting CALF-20, a prototypical MOF for real application in the field of CO2 capture, and a series of binders that cover a rather broad spectrum of properties in terms of rigidity/flexibility, porosity, and chemical functionality. The adhesion between the two components and hence the effectiveness of the shaping as well as the impact of the overall porosity of the CALF-20/binder on the CO2/N2 selectivity, CO2 sorption capacity and kinetics was analyzed. Shaping of CALF-20 by carboxymethyl cellulose was predicted to enable a fair compromise between excellent adhesion between the two components, whilst maintaining high CO2/N2 selectivity, large CO2 uptake and CO2 transport as fast as in the CALF-20. This multiscale computational tool paves the way towards the selection of an appropriate binder to achieve an optimum shaping of a given MOF in terms of processability whilst maintaining its high level of performance.
Collapse
Affiliation(s)
- Supriyo Naskar
- ICGM, Université de Montpellier, CNRS, ENSCM Montpellier 34293 France
| | - Dong Fan
- ICGM, Université de Montpellier, CNRS, ENSCM Montpellier 34293 France
| | - Aziz Ghoufi
- Institut de Physique de Rennes, IPR, UMR CNRS 6251 263 Avenue du Général Leclerc 35042 Rennes France
- Univ Paris-East Creteil, CNRS, ICMPE (UMR 7182) 2 rue Henri Dunant Thiais F-94320 France
| | - Guillaume Maurin
- ICGM, Université de Montpellier, CNRS, ENSCM Montpellier 34293 France
| |
Collapse
|
8
|
Li H, Dilipkumar A, Abubakar S, Zhao D. Covalent organic frameworks for CO 2 capture: from laboratory curiosity to industry implementation. Chem Soc Rev 2023; 52:6294-6329. [PMID: 37591809 DOI: 10.1039/d2cs00465h] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
CO2 concentration in the atmosphere has increased by about 40% since the 1960s. Among various technologies available for carbon capture, adsorption and membrane processes have been receiving tremendous attention due to their potential to capture CO2 at low costs. The kernel for such processes is the sorbent and membrane materials, and tremendous progress has been made in designing and fabricating novel porous materials for carbon capture. Covalent organic frameworks (COFs), a class of porous crystalline materials, are promising sorbents for CO2 capture due to their high surface area, low density, controllable pore size and structure, and preferable stabilities. However, the absence of synergistic developments between materials and engineering processes hinders achieving the qualitative leap for net-zero emissions. Considering the lack of a timely review on the combination of state-of-the-art COFs and engineering processes, in this Tutorial Review, we emphasize the developments of COFs for meeting the challenges of carbon capture and disclose the strategies of fabricating COFs for realizing industrial implementation. Moreover, this review presents a detailed and basic description of the engineering processes and industrial status of carbon capture. It highlights the importance of machine learning in integrating simulations of molecular and engineering levels. We aim to stimulate both academia and industry communities for joined efforts in bringing COFs to practical carbon capture.
Collapse
Affiliation(s)
- He Li
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore.
| | - Akhil Dilipkumar
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore.
| | - Saifudin Abubakar
- ExxonMobil Asia Pacific Pte. Ltd., 1 HarbourFront Place, #06-00 HarbourFront Tower 1, 098633, Singapore
| | - Dan Zhao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore.
| |
Collapse
|
9
|
Fateminia Z, Chiniforoshan H, Ghafarinia V. Novel Core/Shell Nylon 6,6/La-TMA MOF Electrospun Nanocomposite Membrane and CO 2 Capture Assessments of the Membrane and Pure La-TMA MOF. ACS OMEGA 2023; 8:22742-22751. [PMID: 37396212 PMCID: PMC10308571 DOI: 10.1021/acsomega.3c01616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/30/2023] [Indexed: 07/04/2023]
Abstract
Membrane technology plays a vital, applicable, and essential role in human life and industry. The high adsorption capacity of membranes can be employed for capturing air pollutants and greenhouse gases. In this work, we tried to develop a shaped industrial form of a metal-organic framework as an adsorbent material with the ability to capture CO2 in the laboratory phase. To do so, a core/shell Nylon 6,6/La-TMA MOF nanofiber composite membrane was synthesized. This organic/inorganic nanomembrane is a kind of nonwoven electrospun fiber that was prepared using the coaxial electrospinning approach. FE-SEM, surface area calculations, nitrogen adsorption/desorption, XRD grazing incidence on thin films, and histogram diagrams were applied to assess the quality of the membrane. This composite membrane as well as pure La-TMA MOF were assessed as CO2 adsorbent materials. The CO2 adsorption abilities of the core/shell Nylon 6,6/La-TMA MOF membrane and pure La-TMA MOF were as high as 0.219 and 0.277 mmol/g, respectively. As a result of preparing the nanocomposite membrane from microtubes of La-TMA MOF, the %A of the micro La-TMA MOF (% 43.060) increased to % 48.524 for Nylon 6,6/La-TMA MOF.
Collapse
Affiliation(s)
- Zohreh Fateminia
- Department
of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Hossein Chiniforoshan
- Department
of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Vahid Ghafarinia
- Department
of Electrical and Computer Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| |
Collapse
|
10
|
Moghadaskhou F, Tadjarodi A, Mollahosseini A, Maleki A. Synthesis of UiO-66-Sal-Cu(OH) 2 by a Simple and Novel Method: MOF-Based Metal Thin Film as a Heterogeneous Catalyst for Olefin Oxidation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:4021-4032. [PMID: 36633596 DOI: 10.1021/acsami.2c18907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Metal-organic frameworks (MOFs), particularly UiO-66-NH2, are employed as a catalyst in many industrial catalyst applications. As converting catalysts into thin film significantly increases their catalytic properties for the epoxidation of olefins, we report a general approach to synthesizing MOF thin films (UiO-66-Sal-Cu(OH)2). Using the postsynthesis method (PSM), UiO-66-NH2 was functionalized with salicylaldehyde and entrapped on copper hydroxide nanoparticle surfaces using a modern strategy (MOF thin film). We used field-emission scanning electron microscopy (FE-SEM), EDX (energy-dispersive X-ray analysis), XRD (X-ray diffraction), FT-IR (Fourier transform infrared), BET (Brunauer-Emmett-Teller), TGA (thermogravimetric analysis), XPS (X-ray photoelectron spectroscopy), and ICP-MS (inductively coupled plasma mass spectrometry) to determine the structure and morphology of the synthesized UiO-66-Sal-Cu(OH)2. The oxidation of cyclooctene by the UiO-66-Sal-Cu(OH)2 thin film was studied. Due to its advantages, such as being environmentally friendly (base metal-loaded catalyst, room temperature, solvent-free reaction), reusability, and high yield, this compound can be an appropriate catalyst for the oxidation of olefins.
Collapse
Affiliation(s)
- Fatemeh Moghadaskhou
- Research Laboratory of Inorganic Materials Synthesis, Department of Chemistry, Iran University of Science and Technology, 16846-13114 Tehran, Iran
| | - Azadeh Tadjarodi
- Research Laboratory of Inorganic Materials Synthesis, Department of Chemistry, Iran University of Science and Technology, 16846-13114 Tehran, Iran
| | - Afsaneh Mollahosseini
- Research Laboratory of Spectroscopy & Micro and Nano Extraction, Department of Chemistry, Iran University of Science and Technology, 16846-13114 Tehran, Iran
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, 16846-13114 Tehran, Iran
| |
Collapse
|
11
|
Zhang Q, Yang H, Zhou T, Chen X, Li W, Pang H. Metal-Organic Frameworks and Their Composites for Environmental Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2204141. [PMID: 36106360 PMCID: PMC9661848 DOI: 10.1002/advs.202204141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/17/2022] [Indexed: 06/04/2023]
Abstract
From the point of view of the ecological environment, contaminants such as heavy metal ions or toxic gases have caused harmful impacts on the environment and human health, and overcoming these adverse effects remains a serious and important task. Very recent, highly crystalline porous metal-organic frameworks (MOFs), with tailorable chemistry and excellent chemical stability, have shown promising properties in the field of removing various hazardous pollutants. This review concentrates on the recent progress of MOFs and MOF-based materials and their exploit in environmental applications, mainly including water treatment and gas storage and separation. Finally, challenges and trends of MOFs and MOF-based materials for future developments are discussed and explored.
Collapse
Affiliation(s)
- Qian Zhang
- School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhou225009China
| | - Hui Yang
- School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhou225009China
| | - Ting Zhou
- School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhou225009China
| | - Xudong Chen
- School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhou225009China
| | - Wenting Li
- School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhou225009China
| | - Huan Pang
- School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhou225009China
| |
Collapse
|
12
|
Facile synthesis of Cu-based metal–organic framework/chitosan composite granules for toluene adsorption. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Su W, Tao Y, Wu Q, Li H. Magnetic Stuffed Bun-Structured Metal-Organic Framework Monoliths with Noncompromised Accessible Pores and Highly Efficient Recycling Capability. ACS APPLIED MATERIALS & INTERFACES 2022; 14:39637-39645. [PMID: 35983968 DOI: 10.1021/acsami.2c12331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Development of industrially favorable metal-organic framework (MOF) monoliths is of paramount importance for their real-world applications. However, MOF monoliths prepared with the existing MOF shaping methods usually have seriously compromised accessible pores and suffer from inefficient and energy-intensive recycling, thereby greatly limiting their practical applications. We herein present a magnetic stuffed bun-structured MOF (mSBM) bead consisting of highly porous poly(vinyl alcohol) wraps stuffed with a binder-free powder mixture of UiO-66 and Fe3O4 nanoparticles. Such a unique structure and composition of the mSBM not only make its MOF component have a well-reserved crystal structure, surface area, and porosity and the corresponding accessible pores but also impart it with excellent localized magnetic induction heating (LMIH) capability that enables the sufficient heating and highly efficient recycling of the mSBM. These merits of mSBMs are further exemplified by assessing their atmospheric water adsorption and LMIH-driven water desorption performance. The mSBMs exhibit well-reserved atmospheric water adsorption capacities, up to 100% LMIH-driven water desorption, excellent reusability, and durability toward the practical applications. Our current work, therefore, demonstrates a new MOF shaping strategy to produce MOF monoliths with well-defined shapes, noncompromised accessible pores, and highly efficient recycling capabilities, paving a bright avenue to accelerate the practical applications of MOF monoliths.
Collapse
Affiliation(s)
- Wen Su
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yingle Tao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Qiannan Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Haiqing Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
14
|
Palakkal AS, Pillai RS. Evaluating the performance of Cr-Soc-MOF Super-Adsorbents for CO2 capture from flue gas under humid condition through molecular simulation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
15
|
Zhu X, Xie W, Wu J, Miao Y, Xiang C, Chen C, Ge B, Gan Z, Yang F, Zhang M, O'Hare D, Li J, Ge T, Wang R. Recent advances in direct air capture by adsorption. Chem Soc Rev 2022; 51:6574-6651. [PMID: 35815699 DOI: 10.1039/d1cs00970b] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Significant progress has been made in direct air capture (DAC) in recent years. Evidence suggests that the large-scale deployment of DAC by adsorption would be technically feasible for gigatons of CO2 capture annually. However, great efforts in adsorption-based DAC technologies are still required. This review provides an exhaustive description of materials development, adsorbent shaping, in situ characterization, adsorption mechanism simulation, process design, system integration, and techno-economic analysis of adsorption-based DAC over the past five years; and in terms of adsorbent development, affordable DAC adsorbents such as amine-containing porous materials with large CO2 adsorption capacities, fast kinetics, high selectivity, and long-term stability under ultra-low CO2 concentration and humid conditions. It is also critically important to develop efficient DAC adsorptive processes. Research and development in structured adsorbents that operate at low-temperature with excellent CO2 adsorption capacities and kinetics, novel gas-solid contactors with low heat and mass transfer resistances, and energy-efficient regeneration methods using heat, vacuum, and steam purge is needed to commercialize adsorption-based DAC. The synergy between DAC and carbon capture technologies for point sources can help in mitigating climate change effects in the long-term. Further investigations into DAC applications in the aviation, agriculture, energy, and chemical industries are required as well. This work benefits researchers concerned about global energy and environmental issues, and delivers perspective views for further deployment of negative-emission technologies.
Collapse
Affiliation(s)
- Xuancan Zhu
- Research Center of Solar Power & Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Wenwen Xie
- Institute of Technical Thermodynamics, Karlsruhe Institute of Technology, 76131, Germany
| | - Junye Wu
- Research Center of Solar Power & Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Yihe Miao
- China-UK Low Carbon College, Shanghai Jiao Tong University, No. 3 Yinlian Road, Shanghai 201306, China
| | - Chengjie Xiang
- Research Center of Solar Power & Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Chunping Chen
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Bingyao Ge
- Research Center of Solar Power & Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Zhuozhen Gan
- Research Center of Solar Power & Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Fan Yang
- Research Center of Solar Power & Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Man Zhang
- Research Center of Solar Power & Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Dermot O'Hare
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Jia Li
- China-UK Low Carbon College, Shanghai Jiao Tong University, No. 3 Yinlian Road, Shanghai 201306, China.,Jiangmen Laboratory for Carbon and Climate Science and Technology, No. 29 Jinzhou Road, Jiangmen, 529100, China.,The Hong Kong University of Science and Technology (Guangzhou), No. 2 Huan Shi Road South, Nansha, Guangzhou, 511458, China
| | - Tianshu Ge
- Research Center of Solar Power & Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Ruzhu Wang
- Research Center of Solar Power & Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| |
Collapse
|
16
|
Musa SG, Aljunid Merican ZM, Haruna A. Investigation of isotherms and isosteric heat of adsorption for PW11@HKUST-1 composite. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Binding Materials for MOF Monolith Shaping Processes: A Review towards Real Life Application. ENERGIES 2022. [DOI: 10.3390/en15041489] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Metal–organic frameworks (MOFs) could be utilized for a wide range of applications such as sorption, catalysis, chromatography, energy storage, sensors, drug delivery, and nonlinear optics. However, to date, there are very few examples of MOFs exploited on a commercial scale. Nevertheless, progress in MOF-related research is currently paving the way to new industrial opportunities, fostering applications and processes interconnecting fundamental chemistry with engineering and relevant sectors. Yet, the fabrication of porous MOF materials within resistant structures is a key challenge impeding their wide commercial use for processes such as adsorptive separation. In fact, the integration of nano-scale MOF crystallic structures into bulk components that can maintain the desired characteristics, i.e., size, shape, and mechanical stability, is a prerequisite for their wide practical use in many applications. At the same time, it requires sophisticated shaping techniques that can structure nano/micro-crystalline fine powders of MOFs into diverse types of macroscopic bodies such as monoliths. Under this framework, this review aims to bridge the gap between research advances and industrial necessities for fostering MOF applications into real life. Therefore, it critically explores recent advances in the shaping and production of MOF macro structures with regard to the binding materials that have received little attention to date, but have the potential to give new perspectives in the industrial applicability of MOFs. Moreover, it proposes future paths that can be adopted from both academy and industry and can further boost MOF exploitation.
Collapse
|