1
|
Priyadarshini M, Raj NAN. Green synthesis and in vitro photodynamic efficacy of hypericin: Cytotoxicity assessment on MCF-7 breast cancer cells. Photodiagnosis Photodyn Ther 2024; 50:104411. [PMID: 39579841 DOI: 10.1016/j.pdpdt.2024.104411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/28/2024] [Accepted: 11/20/2024] [Indexed: 11/25/2024]
Abstract
Photodynamic therapy (PDT) is a minimally invasive therapy for treating cancers, infectious diseases and several other conditions. It uses light as an activator and component called photosensitizer. Hypericin is a natural photosensitizer which garnered a lot of attention due to its potential use in PDT for cancer treatment. Historically, hypericin has been used for millennia in herbal therapy because of its antiviral and antidepressant properties. However, the traditional synthesis of hypericin requires certain chemicals that are harmful to the environment and human health. To overcome this problem, scientists have been working towards the developing a green synthesis approach for producing hypericin. This study focuses on the green synthesis and assessment of the photosensitizer hypericin from the dried leaves of Hypericum perforatum (St. John's Wort) and its photodynamic efficacy were evaluated in vitro using MCF7 breast cells. An eco-friendly method was employed for extracting and purifying the hypericin.. This green synthesis approach uses fewer chemicals and solvents that minimize the hazard to the environment and health. The formation of hypericin was characterized using FTIR and UV-Vis-NIR spectrophotometers and the morphology was analyzed by HRTEM. The FTIR spectrum confirmed the presence of hydroxyl and carbonyl groups and the UV-Vis-NIR peaks exhibited the characterstic absorption peak at 589 nm. The spherical shaped morphology was seen in HRTEM. As hypericin is hydrophobic in nature, polyvinylpyrrolidone (PVP), a biodegradable, non-toxic material makes the former hydrophilic by producing hypericin-PVP compound. MTT assay and AO-EB staining assay established that hypericin exhibited the highest cell death in MCF7 cancer cells via apoptosis. The results demonstrate hypericin's efficacy in inducing cancer cell death through apoptosis and oxidative stress. Thus, hypericin proved its potential to be a promising natural photosensitizer in the future.
Collapse
Affiliation(s)
- Monosha Priyadarshini
- Deapartment of Physics, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - N Arunai Nambi Raj
- Deapartment of Physics, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India.
| |
Collapse
|
2
|
Beach M, Nayanathara U, Gao Y, Zhang C, Xiong Y, Wang Y, Such GK. Polymeric Nanoparticles for Drug Delivery. Chem Rev 2024; 124:5505-5616. [PMID: 38626459 PMCID: PMC11086401 DOI: 10.1021/acs.chemrev.3c00705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
The recent emergence of nanomedicine has revolutionized the therapeutic landscape and necessitated the creation of more sophisticated drug delivery systems. Polymeric nanoparticles sit at the forefront of numerous promising drug delivery designs, due to their unmatched control over physiochemical properties such as size, shape, architecture, charge, and surface functionality. Furthermore, polymeric nanoparticles have the ability to navigate various biological barriers to precisely target specific sites within the body, encapsulate a diverse range of therapeutic cargo and efficiently release this cargo in response to internal and external stimuli. However, despite these remarkable advantages, the presence of polymeric nanoparticles in wider clinical application is minimal. This review will provide a comprehensive understanding of polymeric nanoparticles as drug delivery vehicles. The biological barriers affecting drug delivery will be outlined first, followed by a comprehensive description of the various nanoparticle designs and preparation methods, beginning with the polymers on which they are based. The review will meticulously explore the current performance of polymeric nanoparticles against a myriad of diseases including cancer, viral and bacterial infections, before finally evaluating the advantages and crucial challenges that will determine their wider clinical potential in the decades to come.
Collapse
Affiliation(s)
- Maximilian
A. Beach
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Umeka Nayanathara
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yanting Gao
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Changhe Zhang
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yijun Xiong
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yufu Wang
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Georgina K. Such
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
3
|
Kuzmina NS, Fedotova EA, Jankovic P, Gribova GP, Nyuchev AV, Fedorov AY, Otvagin VF. Enhancing Precision in Photodynamic Therapy: Innovations in Light-Driven and Bioorthogonal Activation. Pharmaceutics 2024; 16:479. [PMID: 38675140 PMCID: PMC11053670 DOI: 10.3390/pharmaceutics16040479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 03/29/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024] Open
Abstract
Over the past few decades, photodynamic therapy (PDT) has evolved as a minimally invasive treatment modality offering precise control over cancer and various other diseases. To address inherent challenges associated with PDT, researchers have been exploring two promising avenues: the development of intelligent photosensitizers activated through light-induced energy transfers, charges, or electron transfers, and the disruption of photosensitive bonds. Moreover, there is a growing emphasis on the bioorthogonal delivery or activation of photosensitizers within tumors, enabling targeted deployment and activation of these intelligent photosensitive systems in specific tissues, thus achieving highly precise PDT. This concise review highlights advancements made over the last decade in the realm of light-activated or bioorthogonal photosensitizers, comparing their efficacy and shaping future directions in the advancement of photodynamic therapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Alexey Yu. Fedorov
- Department of Organic Chemistry, Lobachevsky State University of Nizhny Novgorod, Gagarina Av. 23, 603950 Nizhny Novgorod, Russia; (N.S.K.); (E.A.F.); (P.J.); (G.P.G.); (A.V.N.)
| | - Vasilii F. Otvagin
- Department of Organic Chemistry, Lobachevsky State University of Nizhny Novgorod, Gagarina Av. 23, 603950 Nizhny Novgorod, Russia; (N.S.K.); (E.A.F.); (P.J.); (G.P.G.); (A.V.N.)
| |
Collapse
|
4
|
Sobhanan J, Ono K, Okamoto T, Sawada M, Weiss PS, Biju V. Photosensitizer-singlet oxygen sensor conjugated silica nanoparticles for photodynamic therapy and bioimaging. Chem Sci 2024; 15:2007-2018. [PMID: 38332815 PMCID: PMC10848760 DOI: 10.1039/d3sc03877g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 12/10/2023] [Indexed: 02/10/2024] Open
Abstract
Intracellular singlet oxygen (1O2) generation and detection help optimize the outcome of photodynamic therapy (PDT). Theranostics programmed for on-demand phototriggered 1O2 release and bioimaging have great potential to transform PDT. We demonstrate an ultrasensitive fluorescence turn-on sensor-sensitizer-RGD peptide-silica nanoarchitecture and its 1O2 generation-releasing-storing-sensing properties at the single-particle level or in living cells. The sensor and sensitizer in the nanoarchitecture are an aminomethyl anthracene (AMA)-coumarin dyad and a porphyrin or CdSe/ZnS quantum dots (QDs), respectively. The AMA in the dyad quantitatively quenches the fluorescence of coumarin by intramolecular electron transfer, the porphyrin or QD moiety generates 1O2, and the RGD peptide facilitates intracellular delivery. The small size, below 200 nm, as verified by scanning electron microscopy and differential light scattering measurements, of the architecture within the 1O2 diffusion length enables fast and efficient intracellular fluorescence switching by the tandem ultraviolet (UV)-visible or visible-near-infrared (NIR) photo-triggering. While the red emission and 1O2 generation by the porphyrin are continually turned on, the blue emission of coumarin is uncaged into 230-fold intensity enhancement by on-demand photo-triggering. The 1O2 production and release by the nanoarchitecture enable spectro-temporally controlled cell imaging and apoptotic cell death; the latter is verified from cytotoxic data under dark and phototriggering conditions. Furthermore, the bioimaging potential of the TCPP-based nanoarchitecture is examined in vivo in B6 mice.
Collapse
Affiliation(s)
- Jeladhara Sobhanan
- Graduate School of Environmental Science, Hokkaido University Sapporo Hokkaido 060-0810 Japan
- Department of Chemistry, Rice University Houston Texas 77005 USA
| | - Kenji Ono
- Research Institute of Environmental Medicine, Nagoya University Nagoya 464-8601 Japan
| | - Takuya Okamoto
- Graduate School of Environmental Science, Hokkaido University Sapporo Hokkaido 060-0810 Japan
- Research Institute for Electronic Science, Hokkaido University Sapporo Hokkaido 001-0020 Japan
| | - Makoto Sawada
- Research Institute of Environmental Medicine, Nagoya University Nagoya 464-8601 Japan
| | - Paul S Weiss
- California NanoSystems Institute and the Departments of Chemistry and Biochemistry, Bioengineering, and Materials Science and Engineering, University of California Los Angeles CA 90095-1487 USA
| | - Vasudevanpillai Biju
- Graduate School of Environmental Science, Hokkaido University Sapporo Hokkaido 060-0810 Japan
- Research Institute for Electronic Science, Hokkaido University Sapporo Hokkaido 001-0020 Japan
| |
Collapse
|
5
|
Paula CTB, Leandro A, Pereira P, Coelho JFJ, Fonseca AC, Serra AC. Fast-Gelling Polyethylene Glycol/Polyethyleneimine Hydrogels Degradable by Visible-Light. Macromol Biosci 2024; 24:e2300289. [PMID: 37717210 DOI: 10.1002/mabi.202300289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/12/2023] [Indexed: 09/18/2023]
Abstract
The treatment of burn wounds remains a clinical challenge due to the need for repeated dressings changes. Therefore, the development of a dressing system that can be atraumatically removed from the wound bed can be considered a breakthrough and improve treatment times. In this work, the development of an injectable, fast-gelling hydrogel is proposed that can change its mechanical properties when exposed to visible light. The hydrogels are prepared by a "click" amino-yne reaction between poly(ethylene glycol) (PEG) functionalized with propiolic acid and the amino groups of poly(ethyleneimine) (PEI). The hydrogels exhibit a fast gelation time, which can be adjusted by changing the weight percentage and molecular weight of the precursors. They also exhibit good swelling ability and adhesion to living tissues. More importantly, their mechanical properties changed upon irradiation with green light. This loss of properties is achieved by a 1 O2 -mediated mechanism, as confirmed by the degradation of the β-aminoacrylate linker. Moreover, the in vitro cell compatibility results of the hydrogels and their degradation products show good cytocompatibility. Therefore, it is believed that these hydrogels can be considered as materials with great potential for an innovative strategy for the treatment of burn wounds.
Collapse
Affiliation(s)
- Carlos T B Paula
- CEMMPRE, Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima-Pólo II, Coimbra, 3030-790, Portugal
- IPN, Instituto Pedro Nunes, Associação para a Inovação e Desenvolvimento em Ciência e Tecnologia, Rua Pedro Nunes, Coimbra, 3030-199, Portugal
| | - Ana Leandro
- CEMMPRE, Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima-Pólo II, Coimbra, 3030-790, Portugal
| | - Patrícia Pereira
- CEMMPRE, Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima-Pólo II, Coimbra, 3030-790, Portugal
- IPN, Instituto Pedro Nunes, Associação para a Inovação e Desenvolvimento em Ciência e Tecnologia, Rua Pedro Nunes, Coimbra, 3030-199, Portugal
| | - Jorge F J Coelho
- CEMMPRE, Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima-Pólo II, Coimbra, 3030-790, Portugal
- IPN, Instituto Pedro Nunes, Associação para a Inovação e Desenvolvimento em Ciência e Tecnologia, Rua Pedro Nunes, Coimbra, 3030-199, Portugal
| | - Ana C Fonseca
- CEMMPRE, Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima-Pólo II, Coimbra, 3030-790, Portugal
| | - Arménio C Serra
- CEMMPRE, Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima-Pólo II, Coimbra, 3030-790, Portugal
| |
Collapse
|
6
|
Khan ZU, Khan LU, Brito HF, Gidlund M, Malta OL, Di Mascio P. Colloidal Quantum Dots as an Emerging Vast Platform and Versatile Sensitizer for Singlet Molecular Oxygen Generation. ACS OMEGA 2023; 8:34328-34353. [PMID: 37779941 PMCID: PMC10536110 DOI: 10.1021/acsomega.3c03962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/15/2023] [Indexed: 10/03/2023]
Abstract
Singlet molecular oxygen (1O2) has been reported in wide arrays of applications ranging from optoelectronic to photooxygenation reactions and therapy in biomedical proposals. It is also considered a major determinant of photodynamic therapy (PDT) efficacy. Since the direct excitation from the triplet ground state (3O2) of oxygen to the singlet excited state 1O2 is spin forbidden; therefore, a rational design and development of heterogeneous sensitizers is remarkably important for the efficient production of 1O2. For this purpose, quantum dots (QDs) have emerged as versatile candidates either by acting individually as sensitizers for 1O2 generation or by working in conjunction with other inorganic materials or organic sensitizers by providing them a vast platform. Thus, conjoining the photophysical properties of QDs with other materials, e.g., coupling/combining with other inorganic materials, doping with the transition metal ions or lanthanide ions, and conjugation with a molecular sensitizer provide the opportunity to achieve high-efficiency quantum yields of 1O2 which is not possible with either component separately. Hence, the current review has been focused on the recent advances made in the semiconductor QDs, perovskite QDs, and transition metal dichalcogenide QD-sensitized 1O2 generation in the context of ongoing and previously published research work (over the past eight years, from 2015 to 2023).
Collapse
Affiliation(s)
- Zahid U. Khan
- Institute
of Chemistry, University of Sao Paulo (USP), 05508-000 São
Paulo-SP, Brazil
| | - Latif U. Khan
- Institute
of Chemistry, University of Sao Paulo (USP), 05508-000 São
Paulo-SP, Brazil
- Synchrotron-light
for Experimental Science and Applications in the Middle East (SESAME), P.O. Box 7, Allan 19252, Jordan
| | - Hermi F. Brito
- Institute
of Chemistry, University of Sao Paulo (USP), 05508-000 São
Paulo-SP, Brazil
| | - Magnus Gidlund
- Institute
of Biomedical Sciences-IV, University of
Sao Paulo (USP), 05508-000 São Paulo-SP, Brazil
| | - Oscar L. Malta
- Departamento
de Química Fundamental, Universidade
Federal de Pernambuco, Recife, PE 50740-560, Brazil
| | - Paolo Di Mascio
- Institute
of Chemistry, University of Sao Paulo (USP), 05508-000 São
Paulo-SP, Brazil
| |
Collapse
|
7
|
Fooladi S, Nematollahi MH, Iravani S. Nanophotocatalysts in biomedicine: Cancer therapeutic, tissue engineering, biosensing, and drug delivery applications. ENVIRONMENTAL RESEARCH 2023; 231:116287. [PMID: 37263475 DOI: 10.1016/j.envres.2023.116287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/28/2023] [Accepted: 05/30/2023] [Indexed: 06/03/2023]
Abstract
Photocatalysis can be considered as a green technology owing to its excellent potential for sustainability and fulfilling several principles of green chemistry. This process uses light radiation as the primary energy source, preventing or reducing the requirement for artificial light sources and exogenous catalytic entities. Photocatalysis has promising applications in biomedicine such as drug delivery, biosensing, tissue engineering, cancer therapeutics, etc. In targeted cancer therapeutics, photocatalysis can be employed in photodynamic therapy to form reactive oxygen species that damage cancerous cells' structure. Nanophotocatalysts can be used in targeted drug delivery, showing potential applications in nuclear-targeted drug delivery along with specific delivery of chemotherapeutics to cancer cells or tumor sites. On the other hand, in tissue engineering, nanophotocatalysts can be employed in designing scaffolds that promote cell growth and tissue regeneration. However, some important challenges pertaining to the performance of photocatalysis, large-scale production of nanophotocatalysts, optimization of reaction/synthesis conditions, long-term biosafety issues, stability, clinical translation, etc. still need further explorations. Herein, the most recent advancements pertaining to the biomedical applications of nanophotocatalysts are reflected, focusing on drug delivery, tissue engineering, biosensing, and cancer therapeutic potentials.
Collapse
Affiliation(s)
- Saba Fooladi
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Hadi Nematollahi
- Applied Cellular and Molecular Research Center, Kerman University of Medical Sciences, Kerman, Iran; Department of Biochemistry, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| | - Siavash Iravani
- Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, 81746-73461, Isfahan, Iran.
| |
Collapse
|
8
|
Obata M, Hirohara S. RAFT Synthesis and Characterization of Poly(Butyl- co-2-( N, N-Dimethylamino)Ethyl Acrylates)- block-Poly(Polyethylene Glycol Monomethyl Ether Acrylate) as a Photosensitizer Carrier for Photodynamic Therapy. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16114192. [PMID: 37297326 DOI: 10.3390/ma16114192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023]
Abstract
Polymer micelles are promising drug delivery systems for highly hydrophobic photosensitizers in photodynamic therapy (PDT) applications. We previously developed pH-responsive polymer micelles consisting of poly(styrene-co-2-(N,N-dimethylamino)ethyl acrylate)-block-poly(polyethylene glycol monomethyl ether acrylate) (P(St-co-DMAEA)-b-PPEGA) for zinc phthalocyanine (ZnPc) delivery. In this study, poly(butyl-co-2-(N,N-dimethylamino)ethyl acrylates)-block-poly(polyethylene glycol monomethyl ether acrylate) (P(BA-co-DMAEA)-b-PPEGA) was synthesized via reversible addition and fragmentation chain transfer (RAFT) polymerization to explore the role of neutral hydrophobic units in photosensitizer delivery. The composition of DMAEA units in P(BA-co-DMAEA) was adjusted to 0.46, which is comparable to that of P(St-co-DMAEA)-b-PPEGA. The size distribution of the P(BA-co-DMAEA)-b-PPEGA micelles changed when the pH decreased from 7.4 to 5.0, indicating their pH-responsive ability. The photosensitizers, 5,10,15,20-tetrakis(pentafluorophenyl)chlorin (TFPC), 5,10,15,20-tetrakis(pentafluorophenyl)porphyrin (TFPP), protoporphyrin IX (PPIX), and ZnPc were examined as payloads for the P(BA-co-DMAEA)-b-PPEGA micelles. The encapsulation efficiency depended on the nature of the photosensitizer. TFPC-loaded P(BA-co-DMAEA)-b-PPEGA micelles exhibited higher photocytotoxicity than free TFPC in the MNNG-induced mutant of the rat murine RGM-1 gastric epithelial cell line (RGK-1), indicating their superiority for photosensitizer delivery. ZnPc-loaded P(BA-co-DMAEA)-b-PPEGA micelles also exhibited superior photocytotoxicity compared to free ZnPc. However, their photocytotoxicity was lower than that of P(St-co-DMAEA)-b-PPEGA. Therefore, neutral hydrophobic units, as well as pH-responsive units, must be designed for the encapsulation of photosensitizers.
Collapse
Affiliation(s)
- Makoto Obata
- Graduate Faculty of Interdisciplinary Research, University of Yamanashi, 4-4-37 Takeda, Kofu 400-8510, Japan
| | - Shiho Hirohara
- Department of Chemical and Biological Engineering, National Institute of Technology (KOSEN), Ube College, 2-14-1 Tokiwadai, Ube 755-8555, Japan
| |
Collapse
|
9
|
Lu B, Wang L, Tang H, Cao D. Recent advances in type I organic photosensitizers for efficient photodynamic therapy for overcoming tumor hypoxia. J Mater Chem B 2023; 11:4600-4618. [PMID: 37183673 DOI: 10.1039/d3tb00545c] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Photodynamic therapy (PDT) with an oxygen-dependent character is a noninvasive therapeutic method for cancer treatment. However, its clinical therapeutic effect is greatly restricted by tumor hypoxia. What's more, both PDT-mediated oxygen consumption and microvascular damage aggravate tumor hypoxia, thus, further impeding therapeutic outcomes. Compared to type II PDT with high oxygen dependence and high oxygen consumption, type I PDT with less oxygen consumption exhibits great potential to overcome the vicious hypoxic plight in solid tumors. Type I photosensitizers (PSs) are significantly important for determining the therapeutic efficacy of PDT, which performs an electron transfer photochemical reaction with the surrounding oxygen/substrates to generate highly cytotoxic free radicals such as superoxide radicals (˙O2-) as type I ROS. In particular, the primary precursor (˙O2-) would progressively undergo a superoxide dismutase (SOD)-mediated disproportionation reaction and a Haber-Weiss/Fenton reaction, yielding higher cytotoxic species (˙OH) with better anticancer effects. As a result, developing high-performance type I PSs to treat hypoxic tumors has become more and more important and urgent. Herein, the latest progress of organic type I PSs (such as AIE-active cationic/neutral PSs, cationic/neutral PSs, polymer-based PSs and supramolecular self-assembled PSs) for monotherapy or synergistic therapeutic modalities is summarized. The molecular design principles and strategies (donor-acceptor system, anion-π+ incorporation, polymerization and cationization) are highlighted. Furthermore, the future challenges and prospects of type I PSs in hypoxia-overcoming PDT are proposed.
Collapse
Affiliation(s)
- Bingli Lu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, 510641, China.
| | - Lingyun Wang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, 510641, China.
| | - Hao Tang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, 510641, China.
| | - Derong Cao
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, 510641, China.
| |
Collapse
|
10
|
Yu M, Cao R, Ma Z, Zhu M. Development of "smart" drug delivery systems for chemo/PDT synergistic treatment. J Mater Chem B 2023; 11:1416-1433. [PMID: 36734612 DOI: 10.1039/d2tb02248f] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Although chemotherapy and photodynamic therapy (PDT) have been developed for fighting cancer, the complex and heterogeneous nature of tumors makes it difficult for a single therapy to completely inhibit tumor growth. In order to reduce multidrug resistance of cancer cells to chemotherapeutic drugs and overcome low PDT efficiency in the hypoxic tumor microenvironment (TME), chemo/PDT synergistic treatment has received much attention in recent years. Depending on the characteristic signals of TME, various drug delivery systems can be constructed to target tumors and improve the therapeutic efficacy and the pharmacokinetic profile of anticancer drugs. This review highlights the synergistic strategies, treatment protocols, and design of chemo/PDT co-therapy in recent years to explore its scope and limitations. Taking advantage of stimuli-responsive materials and active cancer-targeting agents, cancer-targeting synergistic therapy is presented and discussed, providing ideas and suggestions for the construction of chemo/PDT co-therapy "smart" nanocarriers.
Collapse
Affiliation(s)
- Miaomiao Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China.
| | - Ran Cao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China.
| | - Zhiyuan Ma
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China.
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China.
| |
Collapse
|
11
|
Hasan I, Roy S, Guo B, Du S, Tao W, Chang C. Recent progress in nanomedicines for imaging and therapy of brain tumors. Biomater Sci 2023; 11:1270-1310. [PMID: 36648496 DOI: 10.1039/d2bm01572b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Nowadays, a malignant brain tumor is one of the most life-threatening diseases with poor prognosis, high risk of recurrence, and low survival rate for patients because of the existence of the blood-brain barrier (BBB) and the lack of efficient diagnostic and therapeutic paradigms. So far, many researchers have devoted their efforts to innovating advanced drugs to efficiently cross the BBB and selectively target brain tumors for optimal imaging and therapy outcomes. Herein, we update the most recent developments in nanomedicines for the diagnosis and treatment of brain tumors in preclinical mouse models. The special focus is on burgeoning drug delivery carriers to improve the specificity of visualization and to enhance the efficacy of brain tumor treatment. Also, we highlight the challenges and perspectives for the future development of brain tumor theranostics. This review is expected to receive wide attention from researchers, professors, and students in various fields to participate in future advancements in preclinical research and clinical translation of brain tumor nanomedicines.
Collapse
Affiliation(s)
- Ikram Hasan
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong, 518060, China.
| | - Shubham Roy
- School of Science and Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen, 518055, China.
| | - Bing Guo
- School of Science and Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen, 518055, China.
| | - Shiwei Du
- Department of Neurosurgery, South China Hospital of Shenzhen University, Shenzhen, 518116, P. R. China
| | - Wei Tao
- Department of Neurosurgery, South China Hospital of Shenzhen University, Shenzhen, 518116, P. R. China
| | - Chunqi Chang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong, 518060, China.
| |
Collapse
|
12
|
Xiao S, Wang Y, Ma W, Zhou P, Wang B, Wu Z, Wen Q, Xiong K, Liu Y, Fu S. Intraperitoneal administration of thermosensitive hydrogel Co-loaded with norcantharidin nanoparticles and oxaliplatin inhibits malignant ascites of hepatocellular carcinoma. Drug Deliv 2022; 29:2713-2722. [PMID: 35975331 PMCID: PMC9387330 DOI: 10.1080/10717544.2022.2111480] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Malignant ascites is a common complication of some advanced cancers. Although intraperitoneal (IP) administration of chemotherapy drugs is routinely used to treat cancerous ascites, conventional drugs have poor retention and therefore need to be administered frequently to maintain a sustained anti-tumor effect. In this study, a thermosensitive hydrogel composite loaded with norethindrone nanoparticles (NPs) and oxaliplatin (N/O/Hydrogel) was developed to inhibit ascites of hepatocellular carcinoma (HCC) through IP injection. N/O/Hydrogel induced apoptosis in the H22 cells in vitro, and significantly inhibited ascites formation, tumor cell proliferation and micro-angiogenesis in a mouse model of advanced HCC with ascites, and prolonged the survival of tumor-bearing mice. Histological examination of the major organs indicated that the hydrogel system is safe. Taken together, the N/O/Hydrogel system is a promising platform for in-situ chemotherapy of malignant ascites.
Collapse
Affiliation(s)
- Susu Xiao
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, PR China
| | - Yu Wang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, PR China.,Health Management Center, The Affiliated Hospital of Southwest Medical University, Luzhou, PR China
| | - Wenqiong Ma
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, PR China
| | - Ping Zhou
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Luzhou, PR China
| | - Biqiong Wang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, PR China
| | - Zhouxue Wu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, PR China
| | - Qian Wen
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, PR China
| | - Kang Xiong
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, PR China
| | - Yanlin Liu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, PR China
| | - Shaozhi Fu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, PR China
| |
Collapse
|
13
|
Raza F, Zafar H, Khan MW, Ullah A, Khan AU, Baseer A, Fareed R, Sohail M. Recent advances in the targeted delivery of paclitaxel nanomedicine for cancer therapy. MATERIALS ADVANCES 2022; 3:2268-2290. [DOI: 10.1039/d1ma00961c] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Cancer cases have reached an all-time high in the current era.
Collapse
Affiliation(s)
- Faisal Raza
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Hajra Zafar
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | | | - Aftab Ullah
- Department of Pharmacy, Shantou University Medical College, Shantou, 515041, P. R. China
| | | | - Abdul Baseer
- Department of Pharmacy, Abasyn University, Peshawar, Pakistan
| | - Rameesha Fareed
- Riphah Institute of Pharmaceutical Sciences, Riphah International University Islamabad, Pakistan
| | - Muhammad Sohail
- School of Pharmacy, Yantai University, Shandong, 264005, China
| |
Collapse
|