1
|
Guerrero R, Lemir ID, Carrasco S, Fernández-Ruiz C, Kavak S, Pizarro P, Serrano DP, Bals S, Horcajada P, Pérez Y. Scaling-Up Microwave-Assisted Synthesis of Highly Defective Pd@UiO-66-NH 2 Catalysts for Selective Olefin Hydrogenation under Ambient Conditions. ACS APPLIED MATERIALS & INTERFACES 2024; 16. [PMID: 38669483 PMCID: PMC11082845 DOI: 10.1021/acsami.4c03106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024]
Abstract
The need to develop green and cost-effective industrial catalytic processes has led to growing interest in preparing more robust, efficient, and selective heterogeneous catalysts at a large scale. In this regard, microwave-assisted synthesis is a fast method for fabricating heterogeneous catalysts (including metal oxides, zeolites, metal-organic frameworks, and supported metal nanoparticles) with enhanced catalytic properties, enabling synthesis scale-up. Herein, the synthesis of nanosized UiO-66-NH2 was optimized via a microwave-assisted hydrothermal method to obtain defective matrices essential for the stabilization of metal nanoparticles, promoting catalytically active sites for hydrogenation reactions (760 kg·m-3·day-1 space time yield, STY). Then, this protocol was scaled up in a multimodal microwave reactor, reaching 86% yield (ca. 1 g, 1450 kg·m-3·day-1 STY) in only 30 min. Afterward, Pd nanoparticles were formed in situ decorating the nanoMOF by an effective and fast microwave-assisted hydrothermal method, resulting in the formation of Pd@UiO-66-NH2 composites. Both the localization and oxidation states of Pd nanoparticles (NPs) in the MOF were achieved using high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) and X-ray photoelectron spectroscopy (XPS), respectively. The optimal composite, loaded with 1.7 wt % Pd, exhibited an extraordinary catalytic activity (>95% yield, 100% selectivity) under mild conditions (1 bar H2, 25 °C, 1 h reaction time), not only in the selective hydrogenation of a variety of single alkenes (1-hexene, 1-octene, 1-tridecene, cyclohexene, and tetraphenyl ethylene) but also in the conversion of a complex mixture of alkenes (i.e., 1-hexene, 1-tridecene, and anethole). The results showed a powerful interaction and synergy between the active phase (Pd NPs) and the catalytic porous scaffold (UiO-66-NH2), which are essential for the selectivity and recyclability.
Collapse
Affiliation(s)
- Raúl
M. Guerrero
- Advanced
Porous Materials Unit, IMDEA Energy Institute, Avda. Ramón de la Sagra,
3, Móstoles 28935, Madrid, Spain
- Thermochemical
Processes Unit, IMDEA Energy Institute, Avda. Ramón de la Sagra,
3, Móstoles 28935, Madrid, Spain
| | - Ignacio D. Lemir
- Advanced
Porous Materials Unit, IMDEA Energy Institute, Avda. Ramón de la Sagra,
3, Móstoles 28935, Madrid, Spain
- Thermochemical
Processes Unit, IMDEA Energy Institute, Avda. Ramón de la Sagra,
3, Móstoles 28935, Madrid, Spain
| | - Sergio Carrasco
- Advanced
Porous Materials Unit, IMDEA Energy Institute, Avda. Ramón de la Sagra,
3, Móstoles 28935, Madrid, Spain
| | - Carlos Fernández-Ruiz
- Advanced
Porous Materials Unit, IMDEA Energy Institute, Avda. Ramón de la Sagra,
3, Móstoles 28935, Madrid, Spain
- Thermochemical
Processes Unit, IMDEA Energy Institute, Avda. Ramón de la Sagra,
3, Móstoles 28935, Madrid, Spain
| | - Safiyye Kavak
- EMAT
and NANOlab Center of Excellence, University
of Antwerp, Groenenborgerlaan
171, Antwerp 2020, Belgium
| | - Patricia Pizarro
- Thermochemical
Processes Unit, IMDEA Energy Institute, Avda. Ramón de la Sagra,
3, Móstoles 28935, Madrid, Spain
- Chemical
and Environmental Engineering Group, Rey
Juan Carlos University, C/Tulipán, s/n, Móstoles 28933, Madrid, Spain
| | - David P. Serrano
- Thermochemical
Processes Unit, IMDEA Energy Institute, Avda. Ramón de la Sagra,
3, Móstoles 28935, Madrid, Spain
- Chemical
and Environmental Engineering Group, Rey
Juan Carlos University, C/Tulipán, s/n, Móstoles 28933, Madrid, Spain
| | - Sara Bals
- EMAT
and NANOlab Center of Excellence, University
of Antwerp, Groenenborgerlaan
171, Antwerp 2020, Belgium
| | - Patricia Horcajada
- Advanced
Porous Materials Unit, IMDEA Energy Institute, Avda. Ramón de la Sagra,
3, Móstoles 28935, Madrid, Spain
| | - Yolanda Pérez
- Advanced
Porous Materials Unit, IMDEA Energy Institute, Avda. Ramón de la Sagra,
3, Móstoles 28935, Madrid, Spain
- COMET-NANO
Group, ESCET, Universidad Rey Juan Carlos, C/Tulipán, s/n, Móstoles 28933, Madrid, Spain
| |
Collapse
|
2
|
Ma X, Zhang L, Liu R, Li X, Yan H, Zhao X, Yang Y, Zhu H, Kong X, Yin J, Zhou H, Li X, Kong L, Hao H, Zhong D, Dai F. A Multifunctional Co-Based Metal-Organic Framework as a Platform for Proton Conduction and Ni trophenols Reduction. Inorg Chem 2023. [PMID: 38015879 DOI: 10.1021/acs.inorgchem.3c03313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
The design and development of proton conduction materials for clean energy-related applications is obviously important and highly desired but challenging. An ultrastable cobalt-based metal-organic framework Co-MOF, formulated as [Co2(btzip)2(μ2-OH2)] (namely, LCUH-103, H2btzip = 4, 6-bis(triazol-1-yl)-isophthalic acid) had been successfully synthesized via the hydrothermal method. LCUH-103 exhibits a three-dimensional framework and a one-dimensional microporous channel structure with scu topology based on the binuclear metallic cluster {Co2}. LCUH-103 indicated excellent chemical and thermal stability; peculiarly, it can retain its entire framework in acid and alkali solutions with different pH values for 24 h. The excellent stability is a prerequisite for studying its proton conductivity, and its proton conductivity σ can reach up to 1.25 × 10-3 S·cm-1 at 80 °C and 100% relative humidity (RH). In order to enhance its proton conductivity, the proton-conducting material Im@LCUH-103 had been prepared by encapsulating imidazole molecules into the channels of LCUH-103. Im@LCUH-103 indicated an excellent proton conductivity of 3.18 × 10-2 S·cm-1 at 80 °C and 100% RH, which is 1 order of magnitude higher than that of original LCUH-103. The proton conduction mechanism was systematically studied by various detection means and theoretical calculations. Meanwhile, LCUH-103 is also an excellent carrier for palladium nanoparticles (Pd NPs) via a wetness impregnation strategy, and the nitrophenols (4/3/2-NP) reduction in aqueous solution by Pd@LCUH-103 indicated an outstanding conversion efficiency, high rate constant (k), and exceptional cycling stability. Specifically, the k value of 4-NP reduction by Pd@LCUH-103 is superior to many other reported catalysts, and its k value is as high as 1.34 min-1 and the cycling stability can reach up to 6 cycles. Notably, its turnover frequency (TOF) value is nearly 196.88 times more than that of Pd/C (wt 5%) in the reaction, indicating its excellent stability and catalytic activity.
Collapse
Affiliation(s)
- Xiaoxue Ma
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, School of Pharmacy, and Dongchang College, Liaocheng University, Liaocheng252059, China
| | - Lu Zhang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, School of Pharmacy, and Dongchang College, Liaocheng University, Liaocheng252059, China
| | - Ronghua Liu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, School of Pharmacy, and Dongchang College, Liaocheng University, Liaocheng252059, China
| | - Xin Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, School of Pharmacy, and Dongchang College, Liaocheng University, Liaocheng252059, China
| | - Hui Yan
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, School of Pharmacy, and Dongchang College, Liaocheng University, Liaocheng252059, China
| | - Xin Zhao
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, School of Pharmacy, and Dongchang College, Liaocheng University, Liaocheng252059, China
| | - Yikai Yang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, School of Pharmacy, and Dongchang College, Liaocheng University, Liaocheng252059, China
| | - Hongjie Zhu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, School of Pharmacy, and Dongchang College, Liaocheng University, Liaocheng252059, China
| | - Xiangjin Kong
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, School of Pharmacy, and Dongchang College, Liaocheng University, Liaocheng252059, China
| | - Jie Yin
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, School of Pharmacy, and Dongchang College, Liaocheng University, Liaocheng252059, China
| | - Huawei Zhou
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, School of Pharmacy, and Dongchang College, Liaocheng University, Liaocheng252059, China
| | - Xia Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, School of Pharmacy, and Dongchang College, Liaocheng University, Liaocheng252059, China
| | - Lingqian Kong
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, School of Pharmacy, and Dongchang College, Liaocheng University, Liaocheng252059, China
| | - Hongguo Hao
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, School of Pharmacy, and Dongchang College, Liaocheng University, Liaocheng252059, China
| | - Dichang Zhong
- Institute for New Energy Materials and Low Carbon Technologies School of Materials Science and EngineeringTianjin University of TechnologyTianjin300384, China
| | - Fangna Dai
- College of Science, School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong266580, China
| |
Collapse
|
3
|
Liu Y, Wang G, Ma W, Feng N, Tong J, Kang X, Hu T, Wu H, Yang Q, Xie J. Preparation of magnetically separable and low-cost MC-FePd 3NPs with enhanced catalytic activity in the reduction of p-nitrophenol. NANOTECHNOLOGY 2023; 34:465701. [PMID: 37499636 DOI: 10.1088/1361-6528/aceafd] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 07/27/2023] [Indexed: 07/29/2023]
Abstract
To obtain a magnetically separable, low-cost and highly efficient reduction catalyst, microbial carbon-loaded bimetallic palladium/iron nanoparticles (MC-FePd3NPs) were synthesized in this study by using waste yeast residue doped with iron during the preparation process of microbial carbon-loaded monometallic palladium nanoparticles (MC-Pd NPs). The morphology, crystal structure, magnetic properties and catalytic performance of MC-FePd3NPs for the reduction ofp-nitrophenol (p-NP) were investigated by various characterization techniques, such as SEM-EDS, TEM, XRD, PPMS-9 and UV-vis spectroscopy. The catalytic experiments showed that the MC-FePd3NPs prepared under pyrolysis conditions at 700 °C had an apparent rate constant of 1.85 × 10-1s-1which is better than the rate constants of MC-Pd NPs and other palladium-based nanocatalytic materials reported so far. The amount of palladium used in the synthesis of MC-FePd3NPs was half that of MC-Pd NPs. The catalyst exhibited soft magnetic ordering behavior and still showed a catalytic efficiency of 97.4% after five consecutive reaction cycles. Furthermore, employing MC-FePd3NPs reduces the costs of catalyst preparation and use in production. MC-FePd3NPs with efficient catalytic properties, facile magnetic separation and recyclability, and low costs of preparation and use have considerable potential for industrial applications.
Collapse
Affiliation(s)
- Yuxing Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, People's Republic of China
- Key Laboratory of Biometallurgy of Ministry of Education, Changsha 410083, People's Republic of China
| | - Guozhen Wang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, People's Republic of China
- Key Laboratory of Biometallurgy of Ministry of Education, Changsha 410083, People's Republic of China
| | - Wangrui Ma
- Sino-Platinum Metals Resources (Yimen) Co., Ltd, Yuxi 651100, Yunnan, People's Republic of China
| | - Ningning Feng
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, People's Republic of China
- Key Laboratory of Biometallurgy of Ministry of Education, Changsha 410083, People's Republic of China
| | - Jiaxin Tong
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, People's Republic of China
- Key Laboratory of Biometallurgy of Ministry of Education, Changsha 410083, People's Republic of China
| | - Xinke Kang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, People's Republic of China
- Key Laboratory of Biometallurgy of Ministry of Education, Changsha 410083, People's Republic of China
| | - Tao Hu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, People's Republic of China
- Key Laboratory of Biometallurgy of Ministry of Education, Changsha 410083, People's Republic of China
| | - Haiyan Wu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, People's Republic of China
- Key Laboratory of Biometallurgy of Ministry of Education, Changsha 410083, People's Republic of China
| | - Quan Yang
- Sino-Platinum Metals Resources (Yimen) Co., Ltd, Yuxi 651100, Yunnan, People's Republic of China
| | - Jianping Xie
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, People's Republic of China
- Key Laboratory of Biometallurgy of Ministry of Education, Changsha 410083, People's Republic of China
| |
Collapse
|
4
|
Fan W, Wang A, Wang L, Jiang X, Xue Z, Li J, Wang G. Hollow Carbon Nanopillar Arrays Encapsulated with Pd-Cu Alloy Nanoparticles for the Oxygen Evolution Reaction. ACS APPLIED MATERIALS & INTERFACES 2023; 15:13600-13608. [PMID: 36854095 DOI: 10.1021/acsami.2c21847] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Delicate design and bottom-up synthesis of hollow nanostructures for oxygen evolution electrocatalysts is a promising way to accelerate the reaction kinetics of overall water splitting. Herein, an efficient and versatile strategy for the controllable preparation of Pd-Cu alloy nanoparticles encapsulated in carbon nanopillar arrays (PD-Cu@HPCN) is developed. Core-shell structured MOF@imidazolium-based ionic polymers (ImIPs) have been prepared and adopted as a template, along with the decomposition of the inner Cu-MOFs when an anion exchange occurs between sodium tetrachloropalladate in solution and bromides in the external ImIP shell. Pd nanoparticles will be highly dispersed in the resulting Pd-Cu@HO-ImIP array, and subsequent topotactic transformation generates Pd-Cu@HNPC. No hazardous reagents or tedious steps are used to remove the inner Cu-MOF templates in contrast to the traditional top-down methods. Remarkably, the Pd-Cu@HPCN catalyst possesses outstanding oxygen evolution reaction (OER) activity, including small overpotential with 10 mA cm-2 at an overpotential of 188 mV, a large double layer capacitance (73.8 mF cm-2), and high stability (20 h). This simple, green, and efficient synthesis methodology represents a new way to design metal alloys for OER electrocatalysts or other electrocatalytic devices.
Collapse
Affiliation(s)
- Wenxia Fan
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong 266071, P. R. China
| | - Ani Wang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong 266071, P. R. China
| | - Lei Wang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong 266071, P. R. China
| | - Xin Jiang
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Zhenzhen Xue
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong 266071, P. R. China
| | - Jinhua Li
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong 266071, P. R. China
| | - Guoming Wang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong 266071, P. R. China
| |
Collapse
|
5
|
Wu R, Yu T, Liu S, Shi R, Jiang G, Ren Y, van der Mei HC, Busscher HJ, Liu J. A Heterocatalytic Metal-Organic Framework to Stimulate Dispersal and Macrophage Combat with Infectious Biofilms. ACS NANO 2023; 17:2328-2340. [PMID: 36692081 PMCID: PMC9933606 DOI: 10.1021/acsnano.2c09008] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 01/19/2023] [Indexed: 06/17/2023]
Abstract
Eradication of infectious biofilms is becoming increasingly difficult due to the growing number of antibiotic-resistant strains. This necessitates development of nonantibiotic-based, antimicrobial approaches. To this end, we designed a heterocatalytic metal-organic framework composed of zirconium 1,4-dicarboxybenzene (UiO-66) with immobilized Pt nanoparticles (Pt-NP/UiO-66). Pt-NP/UiO-66 enhanced singlet-oxygen generation compared with Pt nanoparticles or UiO-66, particularly in an acidic environment. Singlet-oxygen generation degraded phosphodiester bonds present in eDNA gluing biofilms together and therewith dispersed biofilms. Remaining biofilms possessed a more open structure. Concurrently, Pt-NP/UiO-66 stimulated macrophages to adapt a more M1-like, "fighting" phenotype, moving faster toward their target bacteria and showing increased bacterial killing. As a combined effect of biofilm dispersal and macrophage polarization, a subcutaneous Staphylococcus aureus biofilm in mice was more readily eradicated by Pt-NP/UiO-66 than by Pt nanoparticles or UiO-66. Therewith, heterocatalytic Pt-NP/UiO-66 metal-organic frameworks constitute a nonantibiotic-based strategy to weaken protective matrices and disperse infectious biofilms, while strengthening macrophages in bacterial killing.
Collapse
Affiliation(s)
- Renfei Wu
- Institute
of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory
for Carbon-Based Functional Materials and Devices, Joint International
Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren’ai Rd., Suzhou, Jiangsu215123, P. R. China
- University
of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AVGroningen, The Netherlands
| | - Tianrong Yu
- Institute
of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory
for Carbon-Based Functional Materials and Devices, Joint International
Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren’ai Rd., Suzhou, Jiangsu215123, P. R. China
- University
of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AVGroningen, The Netherlands
| | - Sidi Liu
- Institute
of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory
for Carbon-Based Functional Materials and Devices, Joint International
Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren’ai Rd., Suzhou, Jiangsu215123, P. R. China
- University
of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AVGroningen, The Netherlands
| | - Rui Shi
- Institute
of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory
for Carbon-Based Functional Materials and Devices, Joint International
Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren’ai Rd., Suzhou, Jiangsu215123, P. R. China
- University
of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AVGroningen, The Netherlands
| | - Guimei Jiang
- Institute
of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory
for Carbon-Based Functional Materials and Devices, Joint International
Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren’ai Rd., Suzhou, Jiangsu215123, P. R. China
- University
of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AVGroningen, The Netherlands
| | - Yijin Ren
- University
of Groningen and University Medical Center of Groningen, Department of Orthodontics, Hanzeplein 1, 9700
RBGroningen, The
Netherlands
| | - Henny C. van der Mei
- University
of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AVGroningen, The Netherlands
| | - Henk J. Busscher
- University
of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AVGroningen, The Netherlands
| | - Jian Liu
- Institute
of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory
for Carbon-Based Functional Materials and Devices, Joint International
Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren’ai Rd., Suzhou, Jiangsu215123, P. R. China
| |
Collapse
|
6
|
Huang W, Xu Y, Wang Z, Liao K, Zhang Y, Sun Y. Dual nanozyme based on ultrathin 2D conductive MOF nanosheets intergraded with gold nanoparticles for electrochemical biosensing of H2O2 in cancer cells. Talanta 2022; 249:123612. [DOI: 10.1016/j.talanta.2022.123612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 05/12/2022] [Accepted: 05/25/2022] [Indexed: 10/31/2022]
|
7
|
Liu Y, Liu H, Shi X, Yan H, Guo W, Wang S, Ma X, Zhang L, Kong L, Chen G, Ju X, Li X, Yang Y, Zhu H, Li Y, Dai F, Hao H. Series of TM-OFs as a Platform for Efficient Catalysis and Multifunctional Luminescence Sensing. Inorg Chem 2022; 61:15880-15894. [PMID: 36154014 DOI: 10.1021/acs.inorgchem.2c01848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Three novel porous transition-metal-organic frameworks (TM-OFs), formulated as [Co3(DCPN)2(μ2-OH2)4(H2O)4](DMF)2 (1), [Cd3(DCPN)2(μ2-OH2)4(H2O)4](DMF)2 (2), and [CdK(DCPN)(DMA)] (3), have been successfully prepared via solvothermal conditions based on a 5-(3',6'-dicarboxylic phenyl) nicotinic carboxylic acid (H3DCPN) ligand. 1 and 2 both have the same porous 3D network structure with the point symbol of {410·614·84}·{45·6}2 based on trinuclear ({Co3} or {Cd3}) clusters, indicating a one-dimensional porous channel, and possess excellent water and thermal stability; 3 also displays a porous 3D network structure with a 4-connected sra topology based on the heteronuclear metal cluster {CdK}. Complex 1 can be used to load Pd nanoparticles (Pd NPs) via a wetness impregnation strategy to obtain Pd@1. The reduction of nitrophenols (2-NP, 3-NP, 4-NP) by Pd@1 in aqueous solution shows outstanding conversion, excellent rate constants (k), and remarkable cycling stability due to the synergistic effect of complex 1 and Pd NPs. Luminescence sensing tests confirmed that 2 is a reliable multifunctional chemical sensor with high selectivity and sensitivity for low concentrations of Fe3+, Cr2O72-, CPFX, and NFX. Specifically, 2 shows a fluorescence enhancement behavior toward fluoroquinolone antibiotics (CPFX and NFX), which has not been reported previously in the literature. Moreover, the rational mechanism of fluorescence sensing was also systematically investigated by various detection means and theoretical calculations.
Collapse
Affiliation(s)
- Yang Liu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, School of Pharmacy, and Dongchang College, Liaocheng University, Liaocheng 252059, People's Republic of China
| | - Hongyan Liu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, School of Pharmacy, and Dongchang College, Liaocheng University, Liaocheng 252059, People's Republic of China
| | - Xiaolei Shi
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, School of Pharmacy, and Dongchang College, Liaocheng University, Liaocheng 252059, People's Republic of China
| | - Hui Yan
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, School of Pharmacy, and Dongchang College, Liaocheng University, Liaocheng 252059, People's Republic of China
| | - Wenxiao Guo
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, School of Pharmacy, and Dongchang College, Liaocheng University, Liaocheng 252059, People's Republic of China
| | - Shufang Wang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, School of Pharmacy, and Dongchang College, Liaocheng University, Liaocheng 252059, People's Republic of China
| | - Xiaoxue Ma
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, School of Pharmacy, and Dongchang College, Liaocheng University, Liaocheng 252059, People's Republic of China
| | - Lu Zhang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, School of Pharmacy, and Dongchang College, Liaocheng University, Liaocheng 252059, People's Republic of China
| | - Lingqian Kong
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, School of Pharmacy, and Dongchang College, Liaocheng University, Liaocheng 252059, People's Republic of China
| | - Guifang Chen
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, School of Pharmacy, and Dongchang College, Liaocheng University, Liaocheng 252059, People's Republic of China
| | - Xiuping Ju
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, School of Pharmacy, and Dongchang College, Liaocheng University, Liaocheng 252059, People's Republic of China
| | - Xia Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, School of Pharmacy, and Dongchang College, Liaocheng University, Liaocheng 252059, People's Republic of China
| | - Yan Yang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, School of Pharmacy, and Dongchang College, Liaocheng University, Liaocheng 252059, People's Republic of China
| | - Hongjie Zhu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, School of Pharmacy, and Dongchang College, Liaocheng University, Liaocheng 252059, People's Republic of China
| | - Yunwu Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, School of Pharmacy, and Dongchang College, Liaocheng University, Liaocheng 252059, People's Republic of China
| | - Fangna Dai
- College of Science, School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, People's Republic of China
| | - Hongguo Hao
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, School of Pharmacy, and Dongchang College, Liaocheng University, Liaocheng 252059, People's Republic of China
| |
Collapse
|
8
|
Wang Y, Chen R, Shen B, Li C, Chen J, Wang Y, Tian S, Li X, Luo N, Liu R, Ding S, Zhu C, Xia Q. Electrochemiluminescent (ECL) biosensor for Burkholderia pseudomallei based on cobalt-doped MOF decorated with gold nanoparticles and N-(4-aminobutyl)-N-(ethylisoluminol). Mikrochim Acta 2022; 189:355. [PMID: 36038693 DOI: 10.1007/s00604-022-05402-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/01/2022] [Indexed: 10/14/2022]
Abstract
A multifunctional catalytic nanomaterial (Co-MOF@AuNP@ABEI) composed of cobalt-doped metal-organic frameworks (Co-MOF), gold nanoparticles (AuNP), and N-(4-aminobutyl)-N-(ethylisoluminol) (ABEI) is reported. Co-MOF@AuNP@ABEI exhibits high synergistic and zero-distance catalytic properties, which are beneficial to the improvement of the detection sensitivity of an electrochemiluminescent (ECL) biosensor. After coupling with the ECL system and 3D magnetic walking nanomachine amplification strategy, the Co-MOF@AuNP@ABEI can achieve an ultrasensitive ECL assay of Burkholderia pseudomallei with the limit of detection (LOD) of 60.3 aM, which is 2 and 4 orders of magnitude lower than individual ECL system without the nanomachine (4.97 fM) and individual walking nanomachine (340 fM), and superior to the pathogenic bacteria analyses in the previous report. Moreover, the LOD of the proposed ECL detection system for the determination of B. pseudomallei in serum sample was as low as 9.0 CFU mL-1. The relative standard deviations (RSD) of ECL intensity for the detection of five B. pseudomallei-spiked serum samples were 4.02%, 0.84%, 0.84%, 1.55%, and 0.21%, respectively. The recoveries of the ECL biosensor for the detection of B. pseudomallei DNA-spiked serum samples were 93.63 ~ 107.83%. Therefore, this work demonstrated that the developed multifunctional catalytic nanomaterial with synergistic and zero-distance catalytic properties can be used as excellent ECL signal reporter to improve the detection sensitivity of ECL biosensor.
Collapse
Affiliation(s)
- Yuexin Wang
- Department of Tropical Diseases of the Second Affiliated Hospital, Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Control of Tropical Diseases, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan, 571199, People's Republic of China
| | - Rui Chen
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Bo Shen
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China.,Department of Laboratory Medicine, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, People's Republic of China
| | - Cai Li
- Department of Tropical Diseases of the Second Affiliated Hospital, Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Control of Tropical Diseases, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan, 571199, People's Republic of China
| | - Junman Chen
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Yanshuang Wang
- Department of Tropical Diseases of the Second Affiliated Hospital, Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Control of Tropical Diseases, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan, 571199, People's Republic of China
| | - Shen Tian
- Department of Tropical Diseases of the Second Affiliated Hospital, Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Control of Tropical Diseases, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan, 571199, People's Republic of China
| | - Xuemiao Li
- Department of Tropical Diseases of the Second Affiliated Hospital, Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Control of Tropical Diseases, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan, 571199, People's Republic of China
| | - Nini Luo
- Department of Tropical Diseases of the Second Affiliated Hospital, Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Control of Tropical Diseases, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan, 571199, People's Republic of China
| | - Rui Liu
- Department of Tropical Diseases of the Second Affiliated Hospital, Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Control of Tropical Diseases, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan, 571199, People's Republic of China
| | - Shijia Ding
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Chuanlong Zhu
- Department of Tropical Diseases of the Second Affiliated Hospital, Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Control of Tropical Diseases, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan, 571199, People's Republic of China.
| | - Qianfeng Xia
- Department of Tropical Diseases of the Second Affiliated Hospital, Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Control of Tropical Diseases, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan, 571199, People's Republic of China.
| |
Collapse
|
9
|
Singh A, Singh N, Kaur N, Jang DO. Gold nanoparticles supported on ionic‐liquid‐functionalized cellulose (Au@CIL): a heterogeneous catalyst for the selective reduction of aromatic nitro compounds. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Anoop Singh
- Department of Chemistry Indian Institute of Technology Ropar Punjab India
| | - Narinder Singh
- Department of Chemistry Indian Institute of Technology Ropar Punjab India
| | - Navneet Kaur
- Department of Chemistry Panjab University Chandigarh India
| | - Doo Ok Jang
- Department of Chemistry Yonsei University Wonju Korea
| |
Collapse
|
10
|
Liu X, Feng H, Li Y, Ma X, Chen F, Yan Q. Ferrocene-based hydrazone energetic transition-metal complexes as multifunctional combustion catalysts for the thermal decomposition of ammonium perchlorate. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
11
|
Encapsulating UiO-66-NH2@Pt with Defective PCN-222 as an Active Armor to Fabricate a Sandwich-Type Nanocatalyst for the Tandem Synthesis via Hydrogenation of Nitroarenes. J Catal 2022. [DOI: 10.1016/j.jcat.2022.01.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|