1
|
Kumar S, Choudhary P, Sharma D, Sajwan D, Kumar V, Krishnan V. Tailored Engineering of Layered Double Hydroxide Catalysts for Biomass Valorization: A Way Towards Waste to Wealth. CHEMSUSCHEM 2024:e202400737. [PMID: 38864756 DOI: 10.1002/cssc.202400737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/09/2024] [Accepted: 06/12/2024] [Indexed: 06/13/2024]
Abstract
Layered double hydroxides (LDH) have significant attention in recent times due to their unique characteristic properties, including layered structure, variable compositions, tunable acidity and basicity, memory effect, and their ability to transform into various kinds of catalysts, which make them desirable for various types of catalytic applications, such as electrocatalysis, photocatalysis, and thermocatalysis. In addition, the upcycling of lignocellulose biomass and its derived compounds has emerged as a promising strategy for the synthesis of valuable products and fine chemicals. The current review focuses on recent advancements in LDH-based catalysts for biomass conversion reactions. Specifically, this review highlights the structural features and advantages of LDH and LDH-derived catalysts for biomass conversion reactions, followed by a detailed summary of the different synthesis methods and different strategies used to tailor their properties. Subsequently, LDH-based catalysts for hydrogenation, oxidation, coupling, and isomerization reactions of biomass-derived molecules are critically summarized in a very detailed manner. The review concludes with a discussion on future research directions in this field which anticipates that further exploration of LDH-based catalysts and integration of cutting-edge technologies into biomass conversion reactions hold promise for addressing future energy challenges, potentially leading to a carbon-neutral or carbon-positive future.
Collapse
Affiliation(s)
- Sahil Kumar
- School of Chemical Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh, 175075, India
| | - Priyanka Choudhary
- School of Chemical Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh, 175075, India
| | - Devendra Sharma
- School of Chemical Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh, 175075, India
| | - Devanshu Sajwan
- School of Chemical Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh, 175075, India
| | - Vinit Kumar
- School of Chemical Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh, 175075, India
| | - Venkata Krishnan
- School of Chemical Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh, 175075, India
| |
Collapse
|
2
|
Li X, Zhang Q, Xu M, Li X. Modulation of metal nanocatalysts for enhanced selectivity of chemoselective reduction and addition hydrogenation. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2023.113028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
3
|
Liu Y, Gu C, Chen L, Zhou W, Liao Y, Wang C, Ma L. Ru-MnO x Interaction for Efficient Hydrodeoxygenation of Levulinic Acid and Its Derivatives. ACS APPLIED MATERIALS & INTERFACES 2023; 15:4184-4193. [PMID: 36626197 DOI: 10.1021/acsami.2c22045] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Metal-oxide interaction was widely observed in supported metal catalysts, playing a significant role in tuning the catalytic performance. Here, we reported that the interaction of Ru and MnOx was able to facilitate the hydrodeoxygenation of levulinic acid (LA) to 2-butanol with a high turnover frequency (1.99 × 106 h-1), turnover number (4411), and yield (98.8%). Moreover, this catalyst was capable of removing the hydroxymethyl group of lactones and diol with high yields of products. The high activity of the Ru-MnOx catalyst was due to the strong Ru-MnOx interaction, which facilitated reduction of Ru oxide to Ru0 and Mn oxide to Mn2+. The increased fractions of Ru0 and Mn2+ provided metal and Lewis acid sites, respectively, and therefore facilitated LA hydrodeoxygenation. A linear correlation between the hydrodeoxygenation activity of the Ru-MnOx catalyst and [Mn2+]ln([Ru0]) was observed.
Collapse
Affiliation(s)
- Yong Liu
- School of Resources & Environment and Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang330031PR China
| | - Canshuo Gu
- Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou510640, PR China
| | - Lungang Chen
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing210096, PR China
| | - Wenguang Zhou
- School of Resources & Environment and Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang330031PR China
| | - Yuhe Liao
- Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou510640, PR China
| | - Chenguang Wang
- Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou510640, PR China
| | - Longlong Ma
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing210096, PR China
| |
Collapse
|
4
|
Leite DS, Strapasson GB, Zanchet D. Unveiling the effect of metallic and oxidized phases of cobalt on acetone hydrodeoxygenation. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
5
|
Shao YR, Zhou L, Yu L, Li ZF, Li YT, Li W, Hu TL. In Situ Construction of a Co/ZnO@C Heterojunction Catalyst for Efficient Hydrogenation of Biomass Derivative under Mild Conditions. ACS APPLIED MATERIALS & INTERFACES 2022; 14:17195-17207. [PMID: 35384659 DOI: 10.1021/acsami.1c25097] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The efficient hydrogenation of biomass-derived levulinic acid (LA) to value-added γ-valerolactone (GVL) based on nonprecious metal catalysts under mild conditions is crucial challenge because of the intrinsic inactivity and instability of these catalysts. Herein, a series of highly active and stable carbon-encapsulated Co/ZnO@C-X (where X = 0.1, 0.3, 0.5, the molar ratios of Zn/(Co+Zn)) heterojunction catalysts were obtained by in situ pyrolysis of bimetal CoZn MOF-74. The optimal Co/ZnO@C-0.3 catalyst could achieve 100% conversion of LA and 98.35% selectivity to GVL under mild conditions (100 °C, 5 bar, 3 h), which outperformed most of the state-of-the-art catalysts reported so far. Detailed characterizations, experimental investigations, and theoretical calculations revealed that the interfacial interaction between Co and ZnO nanoparticles (NPs) could promote the dispersibility and air stability of the active Co0 for the activation of H2. Moreover, the strong Co-ZnO interaction also enhanced the Lewis acidity of the Co/ZnO interface, contributing to the adsorption of LA and the esterification of intermediates. The synergy between the hydrogenation sites and the Lewis acid sites at the Co/ZnO interface enabled the conversion of LA to GVL with high efficiency. In addition, benefiting from the Co-ZnO interfacial interaction as well as the unique carbon-encapsulated structure of the heterojunction catalyst, the recyclability was also greatly improved and the yield of GVL was nearly unchanged even after six cycles.
Collapse
Affiliation(s)
- Ya-Ru Shao
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China
| | - Lei Zhou
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China
| | - Lei Yu
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China
| | - Zhuo-Fei Li
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China
| | - Yan-Ting Li
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China
| | - Wei Li
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China
| | - Tong-Liang Hu
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|
6
|
Chu J, Fan Y, Sun L, Zhuang C, Li Y, Zou X, Min C, Liu X, Wang Y, Zhu G. Exploring the Zn-regulated function in Co–Zn catalysts for efficient hydrogenation of ethyl levulinate to γ-valerolactone. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00244b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A series of CoZn catalysts supported on N-doped porous carbon (CoxZny@NPC-T) prepared at different calcination temperatures are studied for catalytic hydrogenation of biomass-based ethyl levulinate to γ-valerolactone, in which Zn is introduced as a regulator.
Collapse
Affiliation(s)
- Jie Chu
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, School of Chemical Engineering, Southwest Forestry University, Kunming 650224, P. R. China
| | - Yafei Fan
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, School of Chemical Engineering, Southwest Forestry University, Kunming 650224, P. R. China
| | - Lu Sun
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, School of Chemical Engineering, Southwest Forestry University, Kunming 650224, P. R. China
| | - Changfu Zhuang
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, School of Chemical Engineering, Southwest Forestry University, Kunming 650224, P. R. China
| | - Yunxian Li
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, School of Chemical Engineering, Southwest Forestry University, Kunming 650224, P. R. China
| | - Xiaoqin Zou
- Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Chungang Min
- Research Center for Analysis and Measurement, Kunming University of Science and Technology, Kunming 650093, P. R. China
| | - Xiaoteng Liu
- Department of Mechanical and Construction Engineering, Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
| | - Ying Wang
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, School of Chemical Engineering, Southwest Forestry University, Kunming 650224, P. R. China
| | - Guangshan Zhu
- Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| |
Collapse
|
7
|
Zhang Y, Liu T, Jia H, Xia Q, Hong X, Liu G. Brønsted acid-enhanced CoMoS catalysts for hydrodeoxygenation reactions. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00541g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Brønsted solid acids greatly promote the hydrodeoxygenation activity of CoMoS catalysts through weakening Car–O bonds by protonation of the OH group.
Collapse
Affiliation(s)
- Yijin Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China
| | - Tangkang Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China
| | - Hongyan Jia
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, PR China
| | - Qineng Xia
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, PR China
| | - Xinlin Hong
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China
| | - Guoliang Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China
| |
Collapse
|
8
|
Shao S, Yang Y, Sun K, Yang S, Li A, Yang F, Luo X, Hao S, Ke Y. Electron-Rich Ruthenium Single-Atom Alloy for Aqueous Levulinic Acid Hydrogenation. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03004] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Shuai Shao
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
| | - Ying Yang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
| | - Keju Sun
- School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Songtao Yang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
| | - Ang Li
- Beijing Key Laboratory of Microstructure and Properties of Solids, Beijing University of Technology, Beijing 100124, China
| | - Feng Yang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
| | - Xinruo Luo
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
| | - Shijie Hao
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
| | - Yangchuan Ke
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
| |
Collapse
|