1
|
Yonenuma R, Mori H. RAFT-synthesis and self-assembly-induced emission of pendant diphenylalanine-tetraphenylethylene copolymers. SOFT MATTER 2023; 19:8403-8412. [PMID: 37877167 DOI: 10.1039/d3sm00988b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Manipulation of the properties of aggregation-induced emission luminogens (AIEgens) by combining self-assembling motifs has attracted significant interest as a promising approach to developing various advanced materials. In this study, pendant diphenylalanine-tetraphenylethylene (TPE) copolymers exhibiting the ability for self-assembly and AIE properties were synthesized via reversible addition-fragmentation chain-transfer (RAFT) copolymerization. The resulting anionic and non-ionic amphiphilic copolymers with a carbon-carbon main chain bearing diphenylalanine-TPE through-space interactions self-assembled into nanorods and nanofibers, showing blue emissions originating from the aggregation of TPE side chains in the assembled structures. Suitable tuning of the comonomer composition, monomer structure, and environmental conditions (e.g., solvent polarity) enables manipulation of the self-assembled structures, AIE properties, and aggregation-induced circular dichroism by achiral TPE units via through-space interactions with diphenylalanine moieties.
Collapse
Affiliation(s)
- Ryo Yonenuma
- Department of Organic Materials Science, Graduate School of Organic Materials Science, Yamagata University, 4-3-16, Jonan, Yonezawa City, Yamagata Prefecture 992-8510, Japan.
| | - Hideharu Mori
- Department of Organic Materials Science, Graduate School of Organic Materials Science, Yamagata University, 4-3-16, Jonan, Yonezawa City, Yamagata Prefecture 992-8510, Japan.
| |
Collapse
|
2
|
Li J, Shi J, Wang Y, Yao H, Meng L, Liu H. An elaborate biomolecular keypad lock based on electrochromism of viologen derivatives and bioelectrocatalytic reduction of CO 2 at supramolecular hydrogel film electrodes. Biosens Bioelectron 2023; 238:115560. [PMID: 37542980 DOI: 10.1016/j.bios.2023.115560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/01/2023] [Accepted: 07/30/2023] [Indexed: 08/07/2023]
Abstract
Herein, the short peptide N-fluorenemethoxycarbonyl diphenylalanine (Fmoc-FF) was used to immobilize both diallyl viologen (DAV) and the enzyme formate dehydrogenase (FDH) to form Fmoc-FF/DAV/FDH supramolecular hydrogel films on an electrode surface by a simple solvent-controlled self-assembly method. The DAV component in the films exhibited multiple properties, such as electrochromism and electrofluorochromism, and acted as an electrochemical mediator. A high efficiency of bioelectrocatalytic reduction of CO2 to formate (HCOO-) was obtained by the natural FDH enzyme and the artificial coenzyme factor DAV both immobilized in the same films. The supramolecular hydrogel films with CO2, voltage and light as stimulating factors and current, fluorescence and UV-vis extinction as responsive signals, were further applied for the construction of complex biomolecular logic systems and information encryption. A 3-input/7-output biomolecular logic gate and several logic devices, including an encoder/decoder, a parity checker, and a keypad lock, were constructed. Especially, the biomolecular keypad lock with 3 types of signals as outputs significantly enhanced the security level of information encryption. In this work, a supramolecular self-assembly interface was simply fabricated with complex biomolecular computational functions using immobilized molecules as the computational core, greatly broadening the application range of supramolecular hydrogel films and providing an idea for new designs of bioinformation encryption through the use of a simple film system.
Collapse
Affiliation(s)
- Jiaxuan Li
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, People's Republic of China
| | - Jiaqi Shi
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, People's Republic of China
| | - Yizhu Wang
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, People's Republic of China
| | - Huiqin Yao
- School of Public Health, Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, 750004, People's Republic of China
| | - Lingchen Meng
- School of Public Health, Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, 750004, People's Republic of China
| | - Hongyun Liu
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, People's Republic of China.
| |
Collapse
|
3
|
Wang Z, Zhang X, Wang Y, Fang Z, Jiang H, Yang Q, Zhu X, Liu M, Fan X, Kong J. Untethered Soft Microrobots with Adaptive Logic Gates. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206662. [PMID: 36809583 PMCID: PMC10161047 DOI: 10.1002/advs.202206662] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/16/2023] [Indexed: 05/06/2023]
Abstract
Integrating adaptative logic computation directly into soft microrobots is imperative for the next generation of intelligent soft microrobots as well as for the smart materials to move beyond stimulus-response relationships and toward the intelligent behaviors seen in biological systems. Acquiring adaptivity is coveted for soft microrobots that can adapt to implement different works and respond to different environments either passively or actively through human intervention like biological systems. Here, a novel and simple strategy for constructing untethered soft microrobots based on stimuli-responsive hydrogels that can switch logic gates according to the surrounding stimuli of environment is introduced. Different basic logic gates and combinational logic gates are integrated into a microrobot via a straightforward method. Importantly, two kinds of soft microrobots with adaptive logic gates are designed and fabricated, which can smartly switch logic operation between AND gate and OR gate under different surrounding environmental stimuli. Furthermore, a same magnetic microrobot with adaptive logic gate is used to capture and release the specified objects through the change of the surrounding environmental stimuli based on AND or OR logic gate. This work contributes an innovative strategy to integrate computation into small-scale untethered soft robots with adaptive logic gates.
Collapse
Affiliation(s)
- Zichao Wang
- MOE Key Laboratory of Materials Physics and Chemistry in Extraordinary ConditionsShaanxi Key Laboratory of Macromolecular Science and TechnologySchool of Chemistry and Chemical EngineeringNorthwestern Polytechnical UniversityXi'an710072P. R. China
| | - Xuan Zhang
- MOE Key Laboratory of Materials Physics and Chemistry in Extraordinary ConditionsShaanxi Key Laboratory of Macromolecular Science and TechnologySchool of Chemistry and Chemical EngineeringNorthwestern Polytechnical UniversityXi'an710072P. R. China
| | - Yang Wang
- MOE Key Laboratory of Materials Physics and Chemistry in Extraordinary ConditionsShaanxi Key Laboratory of Macromolecular Science and TechnologySchool of Chemistry and Chemical EngineeringNorthwestern Polytechnical UniversityXi'an710072P. R. China
| | - Ziyi Fang
- MOE Key Laboratory of Materials Physics and Chemistry in Extraordinary ConditionsShaanxi Key Laboratory of Macromolecular Science and TechnologySchool of Chemistry and Chemical EngineeringNorthwestern Polytechnical UniversityXi'an710072P. R. China
| | - He Jiang
- MOE Key Laboratory of Materials Physics and Chemistry in Extraordinary ConditionsShaanxi Key Laboratory of Macromolecular Science and TechnologySchool of Chemistry and Chemical EngineeringNorthwestern Polytechnical UniversityXi'an710072P. R. China
| | - Qinglin Yang
- MOE Key Laboratory of Materials Physics and Chemistry in Extraordinary ConditionsShaanxi Key Laboratory of Macromolecular Science and TechnologySchool of Chemistry and Chemical EngineeringNorthwestern Polytechnical UniversityXi'an710072P. R. China
| | - Xuefeng Zhu
- MOE Key Laboratory of Materials Physics and Chemistry in Extraordinary ConditionsShaanxi Key Laboratory of Macromolecular Science and TechnologySchool of Chemistry and Chemical EngineeringNorthwestern Polytechnical UniversityXi'an710072P. R. China
| | - Mingze Liu
- MOE Key Laboratory of Materials Physics and Chemistry in Extraordinary ConditionsShaanxi Key Laboratory of Macromolecular Science and TechnologySchool of Chemistry and Chemical EngineeringNorthwestern Polytechnical UniversityXi'an710072P. R. China
| | - Xiaodong Fan
- MOE Key Laboratory of Materials Physics and Chemistry in Extraordinary ConditionsShaanxi Key Laboratory of Macromolecular Science and TechnologySchool of Chemistry and Chemical EngineeringNorthwestern Polytechnical UniversityXi'an710072P. R. China
| | - Jie Kong
- MOE Key Laboratory of Materials Physics and Chemistry in Extraordinary ConditionsShaanxi Key Laboratory of Macromolecular Science and TechnologySchool of Chemistry and Chemical EngineeringNorthwestern Polytechnical UniversityXi'an710072P. R. China
| |
Collapse
|
4
|
Xiao R, Wei W, Li J, Xiao C, Yao H, Liu H. Constructing combinational and sequential logic devices through an intelligent electrocatalytic interface with immobilized MoS2 quantum dots and enzymes. Talanta 2022; 248:123615. [DOI: 10.1016/j.talanta.2022.123615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/24/2022] [Accepted: 05/25/2022] [Indexed: 10/18/2022]
|
5
|
Yoon J, Lim J, Shin M, Lee JY, Choi JW. Recent progress in nanomaterial-based bioelectronic devices for biocomputing system. Biosens Bioelectron 2022; 212:114427. [PMID: 35653852 DOI: 10.1016/j.bios.2022.114427] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 05/22/2022] [Accepted: 05/24/2022] [Indexed: 11/25/2022]
Abstract
Bioelectronic devices have received the massive attention because of their huge potential to develop the core electronic components for biocomputing system. Up to now, numerous bioelectronic devices have been reported such as biomemory and biologic gate by employment of biomolecules including metalloproteins and nucleic acids. However, the intrinsic limitations of biomolecules such as instability and low signal production hinder the development of novel bioelectronic devices capable of performing various novel computing functions. As a way to overcome these limitations, nanomaterials have the great potential and wide applicability to grant and extend the electronic functions, and improve the inherent properties from biomolecules. Accordingly, lots of nanomaterials including the conductive metal, graphene, and transition metal dichalcogenide nanomaterials are being used to develop the remarkable functional bioelectronic devices like the multi-bit biomemory and resistive random-access biomemory. This review discusses the nanomaterial-based superb bioelectronic devices including the biomemory, biologic gates, and bioprocessors. In conclusion, this review will provide the interdisciplinary information about utilization of various novel nanomaterials applicable for biocomputing system.
Collapse
Affiliation(s)
- Jinho Yoon
- Department of Chemical & Biomolecular Engineering, Sogang University, Seoul, Republic of Korea; Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
| | - Joungpyo Lim
- Department of Chemical & Biomolecular Engineering, Sogang University, Seoul, Republic of Korea
| | - Minkyu Shin
- Department of Chemical & Biomolecular Engineering, Sogang University, Seoul, Republic of Korea
| | - Ji-Young Lee
- Department of Chemical & Biomolecular Engineering, Sogang University, Seoul, Republic of Korea
| | - Jeong-Woo Choi
- Department of Chemical & Biomolecular Engineering, Sogang University, Seoul, Republic of Korea.
| |
Collapse
|
6
|
Zhang X, Wu Y, Li Y, Jiang H, Yang Q, Wang Z, Liu J, Wang Y, Fan X, Kong J. Small-scale soft grippers with environmentally responsive logic gates. MATERIALS HORIZONS 2022; 9:1431-1439. [PMID: 35380150 DOI: 10.1039/d2mh00097k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Small-scale soft grippers are adaptive and deformable, and can be utilized for confined environments (e.g., the human body). Small-scale soft grippers require logic-based computation to achieve intelligent control and perform logical analysis of the surrounding information. However, it is a great challenge to integrate electronic chips and power supplies (i.e., batteries) on their small systems. Here, the approach provides a route to add computational capabilities via environmentally responsive logic gates in small-scale soft grippers, without electronics, external control, or tethering. Various origami-inspired grippers performing YES, NOT, XOR, AND, OR, NOR and NAND gates, respectively, were developed by stimuli-responsive hydrogels as building blocks. Although the hydrogels respond to different kinds of stimuli, their outputs are the same: a change in hydrogel size, leading to the bending of the arms of the grippers. Hence, the logic gates can be integrated easily within a gripper (e.g., connecting an AND gate to another AND gate). Moreover, the gripper fabricated by dual-responsive hydrogels can intelligently and autonomously switch from an AND gate to an OR gate upon varied environmental stimuli. In addition, a magnetic gripper with an AND gate was fabricated that can analyse different stimuli, and capture and release the targeted object via the environmentally responsive logic gates. This strategy provides a new route to incorporate on-board perception, control and computation via environmentally responsive logic gates in small-scale soft robots and machines.
Collapse
Affiliation(s)
- Xuan Zhang
- MOE Key Laboratory of Materials Physics and Chemistry in Extraordinary Conditions, Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China.
| | - Ya Wu
- MOE Key Laboratory of Materials Physics and Chemistry in Extraordinary Conditions, Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China.
| | - Yan Li
- MOE Key Laboratory of Materials Physics and Chemistry in Extraordinary Conditions, Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China.
| | - He Jiang
- MOE Key Laboratory of Materials Physics and Chemistry in Extraordinary Conditions, Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China.
| | - Qinglin Yang
- MOE Key Laboratory of Materials Physics and Chemistry in Extraordinary Conditions, Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China.
| | - Zichao Wang
- MOE Key Laboratory of Materials Physics and Chemistry in Extraordinary Conditions, Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China.
| | - Jiahao Liu
- MOE Key Laboratory of Materials Physics and Chemistry in Extraordinary Conditions, Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China.
| | - Yang Wang
- MOE Key Laboratory of Materials Physics and Chemistry in Extraordinary Conditions, Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China.
| | - Xiaodong Fan
- MOE Key Laboratory of Materials Physics and Chemistry in Extraordinary Conditions, Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China.
| | - Jie Kong
- MOE Key Laboratory of Materials Physics and Chemistry in Extraordinary Conditions, Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China.
| |
Collapse
|
7
|
Chen C, Wu Q, Ke Q, Wang T, Zhang Y, Wei F, Wang X, Liu G. Implementation of novel boolean logic gates for IMPLICATION and XOR functions using riboregulators. Bioengineered 2022; 13:1235-1248. [PMID: 34983299 PMCID: PMC8805959 DOI: 10.1080/21655979.2021.2020493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
To date, several different types of synthetic genetic switches, including riboregulators, riboswitches, and toehold switches, have been developed to construct AND, OR, NOT, NAND, NOR, and NOT IMPLICATION (NIMP) gates. The logic gate can integrate multiple input signals following a set of algorithms and generate a response only if strictly defined conditions are met. However, there are still some logic gates that have not been implemented but are necessary to build complex genetic circuits. Here, based on the toehold switches and three-way-junction (3WJ) repressors, we designed two novel biological Boolean logic gates of IMPLICATION (IMP) and XOR. Subsequently, the outputs of these two logic gates were characterized by fluorescence analysis, indicating that they can achieve the truth tables of logical gates. Furthermore, the fluorescence intensity under the logical TRUE condition was significantly higher than under the logical FALSE condition, suggesting the high dynamic range of the ON/OFF ratios. Because of the programmability of synthetic RNA switches, the constructed RNA logic gates could serve as elementary units to build a versatile and powerful platform for translational regulation and RNA-based biological computation.
Collapse
Affiliation(s)
- Chaoxin Chen
- The iGEM Laboratory of OUC-China, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Qi Wu
- The iGEM Laboratory of OUC-China, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Qingying Ke
- The iGEM Laboratory of OUC-China, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Ting Wang
- The iGEM Laboratory of OUC-China, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Yifan Zhang
- The iGEM Laboratory of OUC-China, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Feiwen Wei
- The iGEM Laboratory of OUC-China, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xiaolong Wang
- The iGEM Laboratory of OUC-China, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Guanglei Liu
- The iGEM Laboratory of OUC-China, College of Marine Life Sciences, Ocean University of China, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China
| |
Collapse
|
8
|
Song X, Zhang Z, Shen Z, Zheng J, Liu X, Ni Y, Quan J, Li X, Hu G, Zhang Y. Facile Preparation of Drug-Releasing Supramolecular Hydrogel for Preventing Postoperative Peritoneal Adhesion. ACS APPLIED MATERIALS & INTERFACES 2021; 13:56881-56891. [PMID: 34797976 DOI: 10.1021/acsami.1c16269] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Hydrogels have attracted widespread attention for breaking the bottlenecks faced during facile drug delivery. To date, the preparation of jelly carriers for hydrophobic drugs remains challenging. In this study, by evaporating ethanol to drive the formation of hydrogen bonds, hydrophilic poly(vinyl alcohol) (PVA) and certain hydrophobic compounds [luteolin (LUT), quercetin (QUE), and myricetin (MYR)] were rapidly prepared into supramolecular hydrogel within 10 min. The gelation performance of these three hydrogels changed regularly with the changing sequence of LUT, QUE, and MYR. An investigation of the gelation pathway of these hybrid gels reveals that the formation of this type of gel follows a simple supramolecular self-assembly process, called "hydrophobe-hydrophile crosslinked gelation". Because the hydrogen bond between PVA and the drug is noncovalent and reversible, the hydrogel has good plasticity and self-healing properties, while the drugs can be controllably released by tuning the output stimuli. Using a rat sidewall-cecum abrasion adhesion model, the as-prepared hydrogel was highly efficient and safe in preventing postsurgical adhesion. This work provides a useful archetypical template for researchers interested in the efficient delivery and controllable release of hydrophobic drugs.
Collapse
Affiliation(s)
- Xianwen Song
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Zequn Zhang
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Tongzipo Road, Changsha, 410013 Hunan, China
| | - Zhaolong Shen
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Tongzipo Road, Changsha, 410013 Hunan, China
| | - Jun Zheng
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Xi Liu
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Tongzipo Road, Changsha, 410013 Hunan, China
| | - Yaqiong Ni
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Jun Quan
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Tongzipo Road, Changsha, 410013 Hunan, China
| | - Xiaorong Li
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Tongzipo Road, Changsha, 410013 Hunan, China
| | - Gui Hu
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Tongzipo Road, Changsha, 410013 Hunan, China
| | - Yi Zhang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| |
Collapse
|
9
|
Ma P, Ma X, Chen F. The Construction of Stimulus‐responsive Film Electrode by the Cu‐catalyzed Radical Polymerization and its Application in Multi‐valued Biologic Systems. ELECTROANAL 2021. [DOI: 10.1002/elan.202100374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Pengcheng Ma
- The Key Laboratory of Space Applied Physics and Chemistry, Ministry of Education Northwestern Polytechnical University Xi'an 710129 PR China
| | - Xiaoyan Ma
- The Key Laboratory of Space Applied Physics and Chemistry, Ministry of Education Northwestern Polytechnical University Xi'an 710129 PR China
| | - Fang Chen
- The Key Laboratory of Space Applied Physics and Chemistry, Ministry of Education Northwestern Polytechnical University Xi'an 710129 PR China
| |
Collapse
|