1
|
Wang S, Liu Y, Liu R, Xie L, Yang H, Ge S, Yu J. Strand displacement amplification triggered 3D DNA roller assisted CRISPR/Cas12a electrochemiluminescence cascaded signal amplification for sensitive detection of Ec-16S rDNA. Anal Chim Acta 2024; 1291:342213. [PMID: 38280789 DOI: 10.1016/j.aca.2024.342213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/01/2024] [Accepted: 01/02/2024] [Indexed: 01/29/2024]
Abstract
BACKGROUND Escherichia coli can cause gastrointestinal infection, urinary tract infection and other infectious diseases. Accurate detection of Escherichia coli 16S rDNA (Ec-16S rDNA) in clinical practice is of great significance for the identification and treatment of related diseases. At present, there are various types of sensors that can achieve accurate detection of Ec-16S rDNA. Electrochemiluminescence (ECL) has attracted considerable attention from researchers, which causes excellent performance in bioanalysis. Based on the previous research, it is significance to develop a novel, sensitive and efficient ECL biosensor. RESULTS In this work, an ECL biosensor for the detection of Ec-16S rDNA was constructed by integrating CRISPR/Cas12a technology with the cascade signal amplification strategy consisting of strand displacement amplification (SDA) and dual-particle three-dimensional (3D) DNA rollers. The amplification products of SDA triggered the operation of the DNA rollers, and the products generated by the DNA rollers activated CRISPR/Cas12a to cleave the signal probe, thereby realizing the change of the ECL signal. The cascade amplification strategy realized the exponential amplification of the target signal and greatly improved the sensitivity. Manganese dioxide nanoflowers (MnO2 NFs) as a co-reaction promoter effectively enhanced the ECL intensity of tin disulfide quantum dots (SnS2 QDs). A new ternary ECL system (SnS2 QDs/S2O82-/MnO2 NFs) was prepared, which made the change of ECL intensity of biosensor more significant. The proposed biosensor had a response range of 100 aM-10 nM and a detection limit of 27.29 aM (S/N = 3). SIGNIFICANCE AND NOVELTY Herein, the cascade signal amplification strategy formed by SDA and dual-particle 3D DNA rollers enabled the ECL biosensor to have high sensitivity and low detection limit. At the same time, the cascade signal amplification strategy was integrated with CRISPR/Cas12a to enable the biosensor to efficiently detect the target. It can provide a new idea for the detection of Ec-16S rDNA in disease diagnosis and clinical analysis.
Collapse
Affiliation(s)
- Shujing Wang
- Institute for Advanced Interdisciplinary Research(iAIR), University of Jinan, Jinan, 250022, PR China
| | - Yaqi Liu
- Institute for Advanced Interdisciplinary Research(iAIR), University of Jinan, Jinan, 250022, PR China
| | - Ruifang Liu
- Institute for Advanced Interdisciplinary Research(iAIR), University of Jinan, Jinan, 250022, PR China
| | - Li Xie
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, PR China.
| | - Hongmei Yang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Shenguang Ge
- Institute for Advanced Interdisciplinary Research(iAIR), University of Jinan, Jinan, 250022, PR China.
| | - Jinghua Yu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| |
Collapse
|
2
|
Sondhi P, Adeniji T, Lingden D, Stine KJ. Advances in endotoxin analysis. Adv Clin Chem 2024; 118:1-34. [PMID: 38280803 DOI: 10.1016/bs.acc.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2024]
Abstract
The outer membrane of gram-negative bacteria is primarily composed of lipopolysaccharide (LPS). In addition to protection, LPS defines the distinct serogroups used to identify bacteria specifically. Furthermore, LPS also act as highly potent stimulators of innate immune cells, a phenomenon essential to understanding pathogen invasion in the body. The complex multi-step process of LPS binding to cells involves several binding partners, including LPS binding protein (LBP), CD14 in both membrane-bound and soluble forms, membrane protein MD-2, and toll-like receptor 4 (TLR4). Once these pathways are activated, pro-inflammatory cytokines are eventually expressed. These binding events are also affected by the presence of monomeric or aggregated LPS. Traditional techniques to detect LPS include the rabbit pyrogen test, the monocyte activation test and Limulus-based tests. Modern approaches are based on protein, antibodies or aptamer binding. Recently, novel techniques including electrochemical methods, HPLC, quartz crystal microbalance (QCM), and molecular imprinting have been developed. These approaches often use nanomaterials such as gold nanoparticles, quantum dots, nanotubes, and magnetic nanoparticles. This chapter reviews current developments in endotoxin detection with a focus on modern novel techniques that use various sensing components, ranging from natural biomolecules to synthetic materials. Highly integrated and miniaturized commercial endotoxin detection devices offer a variety of options as the scientific and technologic revolution proceeds.
Collapse
Affiliation(s)
- Palak Sondhi
- Department of Chemistry and Biochemistry, University of Missouri-Saint Louis, Saint Louis, MO, United States
| | - Taiwo Adeniji
- Department of Chemistry and Biochemistry, University of Missouri-Saint Louis, Saint Louis, MO, United States
| | - Dhanbir Lingden
- Department of Chemistry and Biochemistry, University of Missouri-Saint Louis, Saint Louis, MO, United States
| | - Keith J Stine
- Department of Chemistry and Biochemistry, University of Missouri-Saint Louis, Saint Louis, MO, United States.
| |
Collapse
|
3
|
Xing Z, Guo J, Wu Z, He C, Wang L, Bai M, Liu X, Zhu B, Guan Q, Cheng C. Nanomaterials-Enabled Physicochemical Antibacterial Therapeutics: Toward the Antibiotic-Free Disinfections. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303594. [PMID: 37626465 DOI: 10.1002/smll.202303594] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/17/2023] [Indexed: 08/27/2023]
Abstract
Bacterial infection continues to be an increasing global health problem with the most widely accepted treatment paradigms restricted to antibiotics. However, the overuse and misuse of antibiotics have triggered multidrug resistance of bacteria, frustrating therapeutic outcomes, and leading to higher mortality rates. Even worse, the tendency of bacteria to form biofilms on living and nonliving surfaces further increases the difficulty in confronting bacteria because the extracellular matrix can act as a robust barrier to prevent the penetration of antibiotics and resist environmental damage. As a result, the inability to eliminate bacteria and biofilms often leads to persistent infection, implant failure, and device damage. Therefore, it is of paramount importance to develop alternative antimicrobial agents while avoiding the generation of bacterial resistance to prevent the large-scale growth of bacterial resistance. In recent years, nano-antibacterial materials have played a vital role in the antibacterial field because of their excellent physical and chemical properties. This review focuses on new physicochemical antibacterial strategies and versatile antibacterial nanomaterials, especially the mechanism and types of 2D antibacterial nanomaterials. In addition, this advanced review provides guidance on the development direction of antibiotic-free disinfections in the antibacterial field in the future.
Collapse
Affiliation(s)
- Zhenyu Xing
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Jiusi Guo
- Department of Orthodontics, Department of Endodontics, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Zihe Wu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Chao He
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Liyun Wang
- Department of Medical Ultrasound, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Mingru Bai
- Department of Orthodontics, Department of Endodontics, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Xikui Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Bihui Zhu
- Department of Medical Ultrasound, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qiuyue Guan
- Department of Geriatrics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
4
|
Zhao Y, Wang R, Wang Y, Jie G, Zhou H. Dual-channel molecularly imprinted sensor based on dual-potential electrochemiluminescence of Zn-MOFs for double detection of trace chloramphenicol. Food Chem 2023; 413:135627. [PMID: 36773365 DOI: 10.1016/j.foodchem.2023.135627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
Functionalized metal organometallic frameworks (MOFs) offer unique advantages in the field of sensing due to their versatility and tunable optical properties. In this work, a new dual-potential electrochemiluminescence (ECL) molecularly imprinted sensor using single Zn-MOF signal probe was designed for double detection of trace chloramphenicol (CAP). As dual-signal ECL emitters, Zn-MOFs were firstly modified on the electrode, showing excellent ECL emission in both cathodic and anodic potential. Then the molecularly imprinted polymer (MIP) was electrochemically prepared using o-phenylenediamine (O-PD) and CAP as a template molecule on the Zn-MOFs/electrode. After CAP as a molecular recognition element was eluted and removed from the Zn-MOFs/MIP/electrode, a new ECL sensor was developed for CAP detection by re-adsorption of CAP on the MIP, resulting in "off" of ECL signal. Compared with the conventional single-signal luminophores, Zn-MOFs show more stable and excellent dual ECL signals, which greatly improve the discriminability and accuracy of CAP trace detection. Under the optimal conditions, the linear range of CAP detection was 1 × 10-14-1 × 10-8 M, and the minimum limits of detection (LOD) were 2.1 fM and 2.5 fM for cathode and anode ECL, respectively. This is the first time that Zn-MOFs are used as dual-ECL emitters for molecular sensing systems, and the proposed dual-channel sensing system is flexibly applicable to sensitive detection of other antibiotics, which has broad practical application in food safety.
Collapse
Affiliation(s)
- Yu Zhao
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, PR China; College of Chemistry and Molecular Engineering. Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Runze Wang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, PR China; College of Chemistry and Molecular Engineering. Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Yuehui Wang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, PR China; College of Chemistry and Molecular Engineering. Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Guifen Jie
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, PR China; College of Chemistry and Molecular Engineering. Qingdao University of Science and Technology, Qingdao 266042, PR China.
| | - Hong Zhou
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, PR China; College of Chemistry and Molecular Engineering. Qingdao University of Science and Technology, Qingdao 266042, PR China.
| |
Collapse
|
5
|
Yuan X, Cao H, Zhang H, Mao G, Wei L. Color-encoded Escherichia coli assay via enzyme-induced etching of Au@MnO 2 nanoparticles. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 299:122888. [PMID: 37216818 DOI: 10.1016/j.saa.2023.122888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/12/2023] [Accepted: 05/13/2023] [Indexed: 05/24/2023]
Abstract
Au@MnO2 nanoparticles (NPs), as core-shell nanostructures, have been widely used in ions, molecules and enzyme activities detection due to their stable properties and easy preparation, but their application in bacterial pathogens detection is rarely reported. In this work, Au@MnO2 NPs is employed for Escherichia coli (E. coli) detection through monitoring and measuring β-galactosidase (β-gal) activity based enzyme-induced color-code single particle enumeration (SPE) method. In the existence of E. coli, p-aminophenylβ-D-galactopyranoside (PAPG) can be hydrolyzed to generate p-aminophenol (AP) by the endogenous β-gal of E. coli. MnO2 shell reacts with AP and produces Mn2+, causing the blue shift of the localized surface plasmon resonance (LSPR) peak and color change of the probe from bright yellow to green. With the SPE method, the amount of E. coli can be quantified readily. The detection limit reaches 15 CFU/mL with dynamic range from 100 to 2900 CFU/mL. Besides, this assay is effectively employed to monitor E. coli in river water sample. The designed sensing strategy provides an ultrasensitive and low cost way for E. coli detection and has the possibility to detect other bacteria in environmental monitoring and food quality analysis.
Collapse
Affiliation(s)
- Xiang Yuan
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, National and Local Joint Engineering Laboratory for New Petrochemical Materials and Fine Utilization of Resources, College of Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Huijuan Cao
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, National and Local Joint Engineering Laboratory for New Petrochemical Materials and Fine Utilization of Resources, College of Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Huiling Zhang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, National and Local Joint Engineering Laboratory for New Petrochemical Materials and Fine Utilization of Resources, College of Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Guojiang Mao
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, National and Local Joint Engineering Laboratory for New Petrochemical Materials and Fine Utilization of Resources, College of Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Lin Wei
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, National and Local Joint Engineering Laboratory for New Petrochemical Materials and Fine Utilization of Resources, College of Chemical Engineering, Hunan Normal University, Changsha 410081, China.
| |
Collapse
|
6
|
Saxena S, Punjabi K, Ahamad N, Singh S, Bendale P, Banerjee R. Nanotechnology Approaches for Rapid Detection and Theranostics of Antimicrobial Resistant Bacterial Infections. ACS Biomater Sci Eng 2022; 8:2232-2257. [PMID: 35546526 DOI: 10.1021/acsbiomaterials.1c01516] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
As declared by WHO, antimicrobial resistance (AMR) is a high priority issue with a pressing need to develop impactful technologies to curb it. The rampant and inappropriate use of antibiotics due to the lack of adequate and timely diagnosis is a leading cause behind AMR evolution. Unfortunately, populations with poor economic status and those residing in densely populated areas are the most affected ones, frequently leading to emergence of AMR pathogens. Classical approaches for AMR diagnostics like phenotypic methods, biochemical assays, and molecular techniques are cumbersome and resource-intensive and involve a long turnaround time to yield confirmatory results. In contrast, recent emergence of nanotechnology-assisted approaches helps to overcome challenges in classical approaches and offer simpler, more sensitive, faster, and more affordable solutions for AMR diagnostics. Nanomaterial platforms (metallic, quantum-dot, carbon-based, upconversion, etc.), nanoparticle-based rapid point-of-care platforms, nano-biosensors (optical, mechanical, electrochemical), microfluidic-assisted devices, and importantly, nanotheranostic devices for diagnostics with treatment of AMR infections are examples of rapidly growing nanotechnology approaches used for AMR management. This review comprehensively summarizes the past 10 years of research progress on nanotechnology approaches for AMR diagnostics and for estimating antimicrobial susceptibility against commonly used antibiotics. This review also highlights several bottlenecks in nanotechnology approaches that need to be addressed prior to considering their translation to clinics.
Collapse
Affiliation(s)
- Survanshu Saxena
- Nanomedicine Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Kapil Punjabi
- Nanomedicine Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Nadim Ahamad
- Nanomedicine Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Subhasini Singh
- Nanomedicine Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Prachi Bendale
- Nanomedicine Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Rinti Banerjee
- Nanomedicine Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| |
Collapse
|
7
|
Wang W, Yu Y, Jin Y, Liu X, Shang M, Zheng X, Liu T, Xie Z. Two-dimensional metal-organic frameworks: from synthesis to bioapplications. J Nanobiotechnology 2022; 20:207. [PMID: 35501794 PMCID: PMC9059454 DOI: 10.1186/s12951-022-01395-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/23/2022] [Indexed: 12/19/2022] Open
Abstract
As a typical class of crystalline porous materials, metal-organic framework possesses unique features including versatile functionality, structural and compositional tunability. After being reduced to two-dimension, ultrathin metal-organic framework layers possess more external excellent properties favoring various technological applications. In this review article, the unique structural properties of the ultrathin metal-organic framework nanosheets benefiting from the planar topography were highlighted, involving light transmittance, and electrical conductivity. Moreover, the design strategy and versatile fabrication methodology were summarized covering discussions on their applicability and accessibility, especially for porphyritic metal-organic framework nanosheet. The current achievements in the bioapplications of two-dimensional metal-organic frameworks were presented comprising biocatalysis, biosensor, and theranostic, with an emphasis on reactive oxygen species-based nanomedicine for oncology treatment. Furthermore, current challenges confronting the utilization of two-dimensional metal-organic frameworks and future opportunities in emerging research frontiers were presented.
Collapse
Affiliation(s)
- Weiqi Wang
- School of Pharmacy, Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Yuting Yu
- School of Pharmacy, Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Yilan Jin
- School of Pharmacy, Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Xiao Liu
- School of Pharmacy, Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Min Shang
- School of Pharmacy, Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Xiaohua Zheng
- School of Pharmacy, Nantong University, Nantong, 226001, Jiangsu Province, China.
| | - Tingting Liu
- Department of Medical Imaging, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, China.
| | - Zhigang Xie
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.
| |
Collapse
|
8
|
Li J, Shen J, Qi R. Electrochemiluminescence sensing platform for microorganism detection. BIOSAFETY AND HEALTH 2022; 4:61-63. [PMID: 35287303 PMCID: PMC8908065 DOI: 10.1016/j.bsheal.2022.02.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Affiliation(s)
- Jun Li
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jianliang Shen
- State Key Laboratory of Ophthalmology, Optometry, and Vision Science, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, China
| | - Ruogu Qi
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
9
|
Zhang N, Wang XT, Xiong Z, Huang LY, Jin Y, Wang AJ, Yuan PX, He YB, Feng JJ. Hydrogen Bond Organic Frameworks as a Novel Electrochemiluminescence Luminophore: Simple Synthesis and Ultrasensitive Biosensing. Anal Chem 2021; 93:17110-17118. [PMID: 34913694 DOI: 10.1021/acs.analchem.1c04608] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nowadays, continuous efforts have been devoted to searching highly efficient electrochemiluminescence (ECL) emitters for applications in clinical diagnosis and food safety. In this work, triazinyl-based hydrogen bond organic frameworks (Tr-HOFs) were synthesized by N···H hydrogen bond self-assembly aggregation, where 6,6'-(1,4-phenylene)bis(1,3,5-triazine-2,4-diamine) (phenyDAT) was prepared via the cyclization reaction and behaved as a novel ligand. Impressively, the resulting Tr-HOFs showed strong ECL responses with highly enhanced ECL efficiency (21.3%) relative to the Ru(bpy)32+ standard, while phenyDAT hardly showed any ECL emission in aqueous phase. The Tr-HOFs innovatively worked as a new ECL luminophore to construct a label-free biosensor for assay of kanamycin (Kana). Specifically, the ECL response greatly weakened upon assembly of captured DNA with ferrocene (cDNA-Fc) onto the Tr-HOFs-modified electrode, while the ECL signals were adversely recovered by releasing linked DNA (L-DNA) from double-stranded DNA (dsDNA, hybridization of aptamer DNA (aptDNA) with L-DNA) due to the specific recognition of Kana with the aptDNA combined by the linkage of L-DNA and cDNA-Fc on the electrode. The as-built sensor showed a broadened linear range (1 nM-10 μM) and a limit of detection (LOD) down to 0.28 nM, which also displayed satisfactory results in the analysis of Kana in the milk and diluted human serum samples. This work offers a novel pathway to design an ECL emitter with organic molecules, holding great promise in biomedical analysis and food detection.
Collapse
Affiliation(s)
- Nuo Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Xin-Tao Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Zuping Xiong
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Li-Yan Huang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Yu Jin
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Ai-Jun Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Pei-Xin Yuan
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Ya-Bing He
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Jiu-Ju Feng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
10
|
Han T, Cao Y, Chen HY, Zhu JJ. Versatile porous nanomaterials for electrochemiluminescence biosensing: Recent advances and future perspective. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|