1
|
Lang G, Feng B, Chen X, Zhou Z, Zhao Z, Deng Q, Jiang Z, Feng J. Anchoring CeF 3 nanoparticles on porous carbon nanofibers as self-supporting electrodes for highly sensitive detection of nitrite. Talanta 2024; 275:126133. [PMID: 38669957 DOI: 10.1016/j.talanta.2024.126133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/26/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024]
Abstract
Designing a working electrode is crucial for the reliable electrochemistry detection, which is applied to detect toxic and harmful substances sensitively and rapidly. Here we report the polytetrafluoroethylene decomposition-assisted electrospinning, a combination method for creating nanopore and synthesizing CeF3, to prepare the self-supporting electrode of CeF3 nanoparticles-anchored on porous carbon nanofibers (CeF3/PCNFs) for highly sensitive nitrite detection. The CeF3/PCNFs exhibits remarkable electroactivity toward nitrite detection, featuring a wide concentration range (0.5 μM-6 mM), low detection limit (10 nm) and high sensitivity (2093 μA mM-1 cm-2). It also exhibits excellent selectivity, stability and reproducibility, and powerful reliability for nitrite detection in saliva, pickles, sausages, chips, river water and tap water. This study provides a facile strategy to prepare the metal fluoride-based self-supporting electrode, which overcomes the disadvantages of chemically modified electrodes unstable and poorly reproducible, and is significant for clinical diagnosis, food safety and environmental monitoring.
Collapse
Affiliation(s)
- Gang Lang
- School of Science, Xihua University, Chengdu, 610039, PR China
| | - Bo Feng
- Southwest Computer Co., Ltd, Chongqing, 400060, PR China
| | - Xiaomei Chen
- School of Science, Xihua University, Chengdu, 610039, PR China
| | - Zhiting Zhou
- School of Science, Xihua University, Chengdu, 610039, PR China
| | - Zhicheng Zhao
- School of Science, Xihua University, Chengdu, 610039, PR China
| | - Qin Deng
- School of Science, Xihua University, Chengdu, 610039, PR China
| | - Zhenju Jiang
- School of Science, Xihua University, Chengdu, 610039, PR China; Asymmetric Synthesis and Chiral Technology Key Laboratory of Sichuan Province, Xihua University, Chengdu, 610039, PR China; Research and Application of Small Organic Chiral Molecules Key Laboratory of Yibin City, Yibin Research Institute of Xihua University, Yibin, 644000, PR China
| | - Jing Feng
- School of Science, Xihua University, Chengdu, 610039, PR China; Asymmetric Synthesis and Chiral Technology Key Laboratory of Sichuan Province, Xihua University, Chengdu, 610039, PR China; Research and Application of Small Organic Chiral Molecules Key Laboratory of Yibin City, Yibin Research Institute of Xihua University, Yibin, 644000, PR China.
| |
Collapse
|
2
|
Han WH, Wang QY, Kang YY, Shi LR, Long Y, Zhou X, Hao CC. Cross-linking electrospinning. NANOSCALE 2023; 15:15513-15551. [PMID: 37740390 DOI: 10.1039/d3nr03956k] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Although electrospinning (e-spinning) has witnessed rapid development in recent years, it has also been criticized by environmentalists due to the use of organic solvents. Therefore, aqueous e-spinning (green e-spinning) is considered a more attractive technique. However, considering the poor water resistance and mechanical properties of electrospun (e-spun) nanofibers, cross-linking is a perfect solution. In this review, we systematically discuss the cross-linking e-spinning system for the first time, including cross-linking strategies (in situ, liquid immersion, vapor, and spray cross-linking), cross-linking mechanism (physical and chemical cross-linking) of e-spun nanofibers, and the various applications (e.g., tissue engineering, drug delivery, water treatment, food packaging, and sensors) of cross-linked e-spun nanofibers. Among them, we highlight several cross-linking methods, including UV light cross-linking, electron beam cross-linking, glutaraldehyde (and other commonly used cross-linking agents) chemical cross-linking, thermal cross-linking, and enzymatic cross-linking. Finally, we confirm the significance of cross-linking e-spinning and reveal the problems in the construction of this system.
Collapse
Affiliation(s)
- Wei-Hua Han
- Institute of Advanced Electrical Materials, Qingdao University of Science and Technology, Qingdao, 266042, China.
- Shandong Engineering Research Center of Green and High-Value Marine Fine Chemical, Weifang University of Science and Technology, Weifang 262700, China
| | - Qing-Yu Wang
- Institute of Advanced Electrical Materials, Qingdao University of Science and Technology, Qingdao, 266042, China.
| | - Yuan-Yi Kang
- Institute of Advanced Electrical Materials, Qingdao University of Science and Technology, Qingdao, 266042, China.
| | - Li-Rui Shi
- Institute of Advanced Electrical Materials, Qingdao University of Science and Technology, Qingdao, 266042, China.
| | - Yu Long
- Institute of Advanced Electrical Materials, Qingdao University of Science and Technology, Qingdao, 266042, China.
| | - Xin Zhou
- Institute of Advanced Electrical Materials, Qingdao University of Science and Technology, Qingdao, 266042, China.
| | - Chun-Cheng Hao
- Institute of Advanced Electrical Materials, Qingdao University of Science and Technology, Qingdao, 266042, China.
| |
Collapse
|
3
|
Alharbi N, Brigham A, Guthold M. The Mechanical Properties of Blended Fibrinogen:Polycaprolactone (PCL) Nanofibers. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1359. [PMID: 37110944 PMCID: PMC10145448 DOI: 10.3390/nano13081359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 06/19/2023]
Abstract
Electrospinning is a process to produce versatile nanoscale fibers. In this process, synthetic and natural polymers can be combined to produce novel, blended materials with a range of physical, chemical, and biological properties. We electrospun biocompatible, blended fibrinogen:polycaprolactone (PCL) nanofibers with diameters ranging from 40 nm to 600 nm, at 25:75 and 75:25 blend ratios and determined their mechanical properties using a combined atomic force/optical microscopy technique. Fiber extensibility (breaking strain), elastic limit, and stress relaxation times depended on blend ratios but not fiber diameter. As the fibrinogen:PCL ratio increased from 25:75 to 75:25, extensibility decreased from 120% to 63% and elastic limit decreased from a range between 18% and 40% to a range between 12% and 27%. Stiffness-related properties, including the Young's modulus, rupture stress, and the total and relaxed, elastic moduli (Kelvin model), strongly depended on fiber diameter. For diameters less than 150 nm, these stiffness-related quantities varied approximately as D-2; above 300 nm the diameter dependence leveled off. 50 nm fibers were five-ten times stiffer than 300 nm fibers. These findings indicate that fiber diameter, in addition to fiber material, critically affects nanofiber properties. Drawing on previously published data, a summary of the mechanical properties for fibrinogen:PCL nanofibers with ratios of 100:0, 75:25, 50:50, 25:75 and 0:100 is provided.
Collapse
Affiliation(s)
| | | | - Martin Guthold
- Department of Physics, Wake Forest University, Winston-Salem, NC 27109, USA; (N.A.)
| |
Collapse
|
4
|
Zhao Y, Lang T, Li C, Yin W, Sun Y, Yao R, Ma C, Shi Z, Wang D, Miao Z. Effect of Electrospinning Network Instead of Polymer Network on the Properties of PDLCs. Molecules 2023; 28:molecules28083372. [PMID: 37110605 PMCID: PMC10146375 DOI: 10.3390/molecules28083372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/07/2023] [Accepted: 04/08/2023] [Indexed: 04/29/2023] Open
Abstract
In this study, polymer-dispersed liquid crystal (PDLC) membranes were prepared by combining prepolymer, liquid crystal, and nanofiber mesh membranes under UV irradiation. EM, POM, and electro-optic curves were then used to examine the modified polymer network structure and the electro-optical properties of these samples. As a result, the PDLCs with a specific amount of reticular nanofiber films had considerably improved electro-optical characteristics and antiaging capabilities. The advancement of PDLC incorporated with reticulated nanofiber films, which exhibited a faster response time and superior electro-optical properties, would greatly enhance the technological application prospects of PDLC-based smart windows, displays, power storage, and flexible gadgets.
Collapse
Affiliation(s)
- Yuzhen Zhao
- Xi'an Key Laboratory of Advanced Photo-Electronics Materials and Energy Conversion Device, School of Electronic Information, Xijing University, Xi'an 710123, China
| | - Tingting Lang
- Xi'an Key Laboratory of Advanced Photo-Electronics Materials and Energy Conversion Device, School of Electronic Information, Xijing University, Xi'an 710123, China
| | - Chaonian Li
- Xi'an Key Laboratory of Advanced Photo-Electronics Materials and Energy Conversion Device, School of Electronic Information, Xijing University, Xi'an 710123, China
| | - Wenbo Yin
- Xi'an Key Laboratory of Advanced Photo-Electronics Materials and Energy Conversion Device, School of Electronic Information, Xijing University, Xi'an 710123, China
- Department of Materials Physics and Chemistry, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yitian Sun
- Xi'an Key Laboratory of Advanced Photo-Electronics Materials and Energy Conversion Device, School of Electronic Information, Xijing University, Xi'an 710123, China
| | - Ruijuan Yao
- Xi'an Key Laboratory of Advanced Photo-Electronics Materials and Energy Conversion Device, School of Electronic Information, Xijing University, Xi'an 710123, China
| | - Cheng Ma
- Xi'an Key Laboratory of Advanced Photo-Electronics Materials and Energy Conversion Device, School of Electronic Information, Xijing University, Xi'an 710123, China
| | - Zuhui Shi
- Department of Materials Physics and Chemistry, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Dong Wang
- Department of Materials Physics and Chemistry, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zongcheng Miao
- School of Artificial Intelligence, Optics and Electronics (iOPEN), Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
5
|
Liu Z, Li W, Sheng W, Liu S, Li R, Li Q, Li D, Yu S, Li M, Li Y, Jia X. Tunable Hierarchically Structured Meso-Macroporous Carbon Spheres from a Solvent-Mediated Polymerization-Induced Self-Assembly. J Am Chem Soc 2023; 145:5310-5319. [PMID: 36758639 DOI: 10.1021/jacs.2c12977] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Herein, we report a versatile solvent-mediated polymerization-induced self-assembly (PISA) strategy to directly synthesize highly N-doped hierarchically porous structured carbon spheres with a tunable meso-macroporous configuration. The introduction of intermolecular hydrogen bonds is verified to enhance the interfacial interactions between block copolymers, oil droplets, and polyphenols. Moreover, the dominant hydrogen-bond-driven interactions can be systematically manipulated by selecting different cosolvent systems to generate diverse porous structures from the transformation of micellar and precursor co-assembly. Impressively, hierarchically structured meso-macroporous N-doped carbon spheres present simultaneously tunable sphere sizes and mesopores and macropores, ranging from 1.2 μm, 9/50 and 227 nm to 1.0 μm, 40, and 183 nm and 480, 24, and 95 nm. As a demonstration, dendritic-like N-doped hierarchically meso-macroporous carbon spheres manifest excellent enzyme-like activity, which is attributed to the continuous mass transport from the multiordered porosity. The current study provides a new platform for the synthesis of novel well-defined porous materials.
Collapse
Affiliation(s)
- Zhiqing Liu
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
| | - Wei Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Wenbo Sheng
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Tianshui middle Road 18, Lanzhou 730000, P. R. China
| | - Shiyu Liu
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
| | - Rui Li
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
| | - Qian Li
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
| | - Danya Li
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
| | - Shui Yu
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
| | - Meng Li
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
| | - Yongsheng Li
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China.,Lab of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontier Science Center of the Materials Biology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200231, P. R. China
| | - Xin Jia
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
| |
Collapse
|
6
|
Guo F, Liu Z, Zhang Y, Xiao J, Zeng X, Zhang C, Dong P, Liu T, Zhang Y, Li M. Tiny Ni Nanoparticles Embedded in Boron- and Nitrogen-Codoped Porous Carbon Nanowires for High-Efficiency Water Splitting. ACS APPLIED MATERIALS & INTERFACES 2022; 14:24447-24461. [PMID: 35604016 DOI: 10.1021/acsami.2c04956] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The integration of nickel (Ni) nanoparticle (NP)-embedded carbon layers (Ni@C) into the three-dimensional (3D) hierarchically porous carbon architectures, where ultrahigh boron (B) and nitrogen (N) doping is a potential methodology for boosting Ni catalysts' water splitting performances, was achieved. In this study, the novel 3D ultrafine Ni NP-embedded and B- and N-codoped hierarchically porous carbon nanowires (denoted as Ni@BNPCFs) were successfully synthesized via pyrolysis of the corresponding 3D nickel acetate [Ni(AC)2·4H2O]-hydroxybenzeneboronic acid-polyvinylpyrrolidone precursor networks woven by electrospinning. After optimizing the pyrolysis temperatures, various structural and morphological characterization analyses indicate that the optimal Ni@BNPCFs-900 networks own a large surface area, abundant micro/mesopores, and vast carbon edges/defects, which boost doping a large amount of B (5.81 atom %) and N (5.84 atom %) dopants into carbon frameworks with 6.36 atom % of BC3, pyridinic-N (pyridinic-N-Ni), and graphitic-N active sites. Electrochemical measurements demonstrate that Ni@BNPCFs-900 reveals the best hydrogen evolution reaction (HER) and oxygen reduction reaction catalytic activities in an alkaline solution. The HER potential at 10 mA cm-2 [E10 = -164.2 mV vs reversible hydrogen electrode (RHE)] of the optimal Ni@BNPCFs-900 is just 96.2 mV more negative than that of the state-of-the-art 20 wt % Pt/C (E10 = -68 mV vs RHE). In particular, the OER E10 and Tafel slope of the optimal Ni@BNPCFs-900 (1.517 V vs RHE and 19.31 mV dec-1) are much smaller than those of RuO2 (1.557 V vs RHE and 64.03 mV dec-1). For full water splitting, the catalytic current density achieves 10 mA cm-2 at a low cell voltage of 1.584 V for the (-) Ni@BNPCFs-900||Ni@BNPCFs-900 (+) electrolysis cell, which is 10 mV smaller than that of the (-) 20 wt % Pt/C||RuO2 (+) benchmark (1.594 V) under the same conditions. The synergistic effects of 3D hierarchically porous structures, advanced charge transport ability, and abundant active centers [such as Ni@BNC, BC3, pyridinic-N (pyridinic-N-Ni), and graphitic-N] are responsible for the excellent water-splitting catalytic activity of the Ni@BNPCFs-900 networks. Especially, because of the remarkable structural and chemical stabilities of 3D hierarchically porous Ni@BNPCFs-900 networks, the (-) Ni@BNPCFs-900||Ni@BNPCFs-900 (+) water electrolysis cell displays an excellent stability.
Collapse
Affiliation(s)
- Fei Guo
- National and Local Joint Engineering Laboratory for Lithium-Ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Battery Materials of Yunnan Province, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, PR China
| | - Zhuo Liu
- National and Local Joint Engineering Laboratory for Lithium-Ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Battery Materials of Yunnan Province, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, PR China
| | - Yiyong Zhang
- National and Local Joint Engineering Laboratory for Lithium-Ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Battery Materials of Yunnan Province, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, PR China
| | - Jie Xiao
- National and Local Joint Engineering Laboratory for Lithium-Ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Battery Materials of Yunnan Province, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, PR China
| | - Xiaoyuan Zeng
- National and Local Joint Engineering Laboratory for Lithium-Ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Battery Materials of Yunnan Province, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, PR China
| | - Chengxu Zhang
- National and Local Joint Engineering Laboratory for Lithium-Ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Battery Materials of Yunnan Province, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, PR China
| | - Peng Dong
- National and Local Joint Engineering Laboratory for Lithium-Ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Battery Materials of Yunnan Province, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, PR China
| | - Tingting Liu
- School of Materials and Energy, Yunnan Key Laboratory for Micro/Nano Materials and Technology, Yunnan University, No. 2, Green Lake North Road, Kunming 650091, PR China
| | - Yingjie Zhang
- National and Local Joint Engineering Laboratory for Lithium-Ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Battery Materials of Yunnan Province, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, PR China
| | - Mian Li
- National and Local Joint Engineering Laboratory for Lithium-Ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Battery Materials of Yunnan Province, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, PR China
| |
Collapse
|
7
|
|