1
|
Houser BJ, Camacho AN, Bryner CA, Ziegler M, Wood JB, Spencer AJ, Gautam RP, Okonkwo TP, Wagner V, Smith SJ, Chesnel K, Harrison RG, Pitt WG. Bacterial Binding to Polydopamine-Coated Magnetic Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2024; 16:58226-58240. [PMID: 39420634 DOI: 10.1021/acsami.4c11169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
In medical infections such as blood sepsis and in food quality control, fast and accurate bacteria analysis is required. Using magnetic nanoparticles (MNPs) for bacterial capture and concentration is very promising for rapid analysis. When MNPs are functionalized with the proper surface chemistry, they have the ability to bind to bacteria and aid in the removal and concentration of bacteria from a sample for further analysis. This study introduces a novel approach for bacterial concentration using polydopamine (pDA), a highly adhesive polymer often purported to create antibacterial and antibiofouling coatings on medical devices. Although pDA has been generally studied for its ability to coat surfaces and reduce biofilm growth, we have found that when coated on magnetic nanoclusters (MNCs), more specifically iron oxide nanoclusters, it effectively binds to and can remove from suspension some types of bacteria. This study investigated the binding of pDA-coated MNCs (pDA-MNCs) to various Gram-negative and Gram-positive bacteria, including Staphylococcus aureus, Staphylococcus epidermidis, Pseudomonas aeruginosa, and several E. coli strains. MNCs were successfully coated with pDA, and these functionalized MNCs bound a wide variety of bacterial strains. The efficiency of removing bacteria from a suspension can range from 0.99 for S. aureus to 0.01 for an E. coli strain. Such strong capture and differential capture have important applications in collecting bacteria from dilute samples found in medical diagnostics, food and water quality monitoring, and other industries.
Collapse
Affiliation(s)
- Bowen J Houser
- Department of Chemical Engineering, Brigham Young University, Provo, Utah 84602, United States
| | - Alyson N Camacho
- Department of Chemical Engineering, Brigham Young University, Provo, Utah 84602, United States
| | - Camille A Bryner
- Department of Chemical Engineering, Brigham Young University, Provo, Utah 84602, United States
| | - Masa Ziegler
- Department of Chemical Engineering, Brigham Young University, Provo, Utah 84602, United States
| | - Justin B Wood
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Ashley J Spencer
- Department of Chemical Engineering, Brigham Young University, Provo, Utah 84602, United States
| | - Rajendra P Gautam
- Department of Physics and Astronomy, Brigham Young University, Provo, Utah 84602, United States
| | - Tochukwu P Okonkwo
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Victoria Wagner
- Department of Physics and Astronomy, Brigham Young University, Provo, Utah 84602, United States
| | - Stacey J Smith
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Karine Chesnel
- Department of Physics and Astronomy, Brigham Young University, Provo, Utah 84602, United States
| | - Roger G Harrison
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - William G Pitt
- Department of Chemical Engineering, Brigham Young University, Provo, Utah 84602, United States
| |
Collapse
|
2
|
García-Soriano D, Milán-Rois P, Lafuente-Gómez N, Rodríguez-Díaz C, Navío C, Somoza Á, Salas G. Multicore iron oxide nanoparticles for magnetic hyperthermia and combination therapy against cancer cells. J Colloid Interface Sci 2024; 670:73-85. [PMID: 38759270 DOI: 10.1016/j.jcis.2024.05.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/24/2024] [Accepted: 05/07/2024] [Indexed: 05/19/2024]
Abstract
HYPOTHESIS Multicore flower-like iron oxide nanoparticles (IONPs) are among the best candidates for magnetic hyperthermia applications against cancers. However, they are rarely investigated in physiological environments and their efficacy against cancer cells has been even less studied. The combination of magnetic hyperthermia, using multicore IONPs, with selected bioactive molecules should lead to an enhanced activity against cancer cells. EXPERIMENTS Multicore IONPs were synthesized by a seeded-growth thermal decomposition approach. Then, the cytotoxicity, cell uptake, and efficacy of the magnetic hyperthermia approach were studied with six cancer cell lines: PANC1 (pancreatic carcinoma), Mel202 (uveal melanoma), MCF7 (breast adenocarcinoma), MB231 (triple-negative breast cancer line), A549 (lung cancer), and HCT116 (colon cancer). Finally, IONPs were modified with a chemotherapeutic drug (SN38) and tumor suppressor microRNAs (miR-34a, miR-182, let-7b, and miR-137), to study their activity against cancer cells with and without combination with magnetic hyperthermia. FINDINGS Two types of multicore IONPs with very good heating abilities under magnetic stimulation have been prepared. Their concentration-dependent cytotoxicity and internalization have been established, showing a strong dependence on the cell line and the nanoparticle type. Magnetic hyperthermia causes significant cell death that is dramatically enhanced in combination with the bioactive molecules.
Collapse
Affiliation(s)
- David García-Soriano
- Instituto Madrileño de Estudios Avanzados en Nanociencia, Campus Universitario de Cantoblanco, 28049 Madrid, Spain
| | - Paula Milán-Rois
- Instituto Madrileño de Estudios Avanzados en Nanociencia, Campus Universitario de Cantoblanco, 28049 Madrid, Spain
| | - Nuria Lafuente-Gómez
- Instituto Madrileño de Estudios Avanzados en Nanociencia, Campus Universitario de Cantoblanco, 28049 Madrid, Spain
| | - Ciro Rodríguez-Díaz
- Instituto Madrileño de Estudios Avanzados en Nanociencia, Campus Universitario de Cantoblanco, 28049 Madrid, Spain
| | - Cristina Navío
- Instituto Madrileño de Estudios Avanzados en Nanociencia, Campus Universitario de Cantoblanco, 28049 Madrid, Spain
| | - Álvaro Somoza
- Instituto Madrileño de Estudios Avanzados en Nanociencia, Campus Universitario de Cantoblanco, 28049 Madrid, Spain; Unidad Asociada de Nanobiotecnología (CNB-CSIC e IMDEA Nanociencia), 28049 Madrid, Spain
| | - Gorka Salas
- Instituto Madrileño de Estudios Avanzados en Nanociencia, Campus Universitario de Cantoblanco, 28049 Madrid, Spain; Unidad Asociada de Nanobiotecnología (CNB-CSIC e IMDEA Nanociencia), 28049 Madrid, Spain; Unidad de Nanomateriales Avanzados, IMDEA Nanociencia (Unidad de I+D+I Asociada al Instituto de Ciencia de Materiales de Madrid, CSIC), 28049 Madrid, Spain.
| |
Collapse
|
3
|
Chowdhury M, Esteban DA, Amin R, Román-Freijeiro C, Rösch EL, Etzkorn M, Schilling M, Ludwig F, Bals S, Salgueiriño V, Lak A. Organic Molecular Glues to Design Three-Dimensional Cubic Nano-assemblies of Magnetic Nanoparticles. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2024; 36:6865-6876. [PMID: 39070672 PMCID: PMC11270742 DOI: 10.1021/acs.chemmater.4c00770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/18/2024] [Accepted: 06/21/2024] [Indexed: 07/30/2024]
Abstract
Self-assembled magnetic nanoparticles offer next-generation materials that allow harnessing of their physicochemical properties for many applications. However, how three-dimensional nanoassemblies of magnetic nanoparticles can be synthesized in one-pot synthesis without excessive postsynthesis processes is still a bottleneck. Here, we propose a panel of small organic molecules that glue nanoparticle crystallites during the growth of particles to form large nanoassembled nanoparticles (NANs). We find that both carbonyl and carboxyl functional groups, presenting in benzaldehyde and benzoic acid, respectively, are needed to anchor with metal ions, while aromatic rings are needed to create NANs through π-π stacking. When benzyl alcohol, lacking carbonyl and carboxyl groups, is employed, no NANs are formed. NANs formed by benzoic acid reveal a unique combination of high magnetization and coercivity, whereas NANs formed by benzaldehyde show the largest exchange bias reported in nanoparticles. Surprisingly, our NANs show unconventional colloidal stability due to their unique nanoporous architectures.
Collapse
Affiliation(s)
- Mohammad
Suman Chowdhury
- Institute
for Electrical Measurement Science and Fundamental Electrical Engineering
and Laboratory for Emerging Nanometrology (LENA), Hans-Sommer-Str. 66, Braunschweig 38106, Germany
| | | | - Rabia Amin
- Institute
for Electrical Measurement Science and Fundamental Electrical Engineering
and Laboratory for Emerging Nanometrology (LENA), Hans-Sommer-Str. 66, Braunschweig 38106, Germany
| | | | - Enja Laureen Rösch
- Institute
for Electrical Measurement Science and Fundamental Electrical Engineering
and Laboratory for Emerging Nanometrology (LENA), Hans-Sommer-Str. 66, Braunschweig 38106, Germany
| | - Markus Etzkorn
- Institute
of Applied Physics, TU Braunschweig, Mendelssohnstraße 2, Braunschweig 38106, Germany
| | - Meinhard Schilling
- Institute
for Electrical Measurement Science and Fundamental Electrical Engineering
and Laboratory for Emerging Nanometrology (LENA), Hans-Sommer-Str. 66, Braunschweig 38106, Germany
| | - Frank Ludwig
- Institute
for Electrical Measurement Science and Fundamental Electrical Engineering
and Laboratory for Emerging Nanometrology (LENA), Hans-Sommer-Str. 66, Braunschweig 38106, Germany
| | - Sara Bals
- EMAT,
University of Antwerp, Groenenborgerlaan 171, Antwerp B-2020, Belgium
| | - Verónica Salgueiriño
- CINBIO,
Universidade de Vigo, Vigo 36310, Spain
- Departamento
de Física Aplicada, Universidade
de Vigo, Vigo 36310, Spain
| | - Aidin Lak
- Institute
for Electrical Measurement Science and Fundamental Electrical Engineering
and Laboratory for Emerging Nanometrology (LENA), Hans-Sommer-Str. 66, Braunschweig 38106, Germany
| |
Collapse
|
4
|
Lee SJ, Jang H, Lee DN. Recent advances in nanoflowers: compositional and structural diversification for potential applications. NANOSCALE ADVANCES 2023; 5:5165-5213. [PMID: 37767032 PMCID: PMC10521310 DOI: 10.1039/d3na00163f] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 08/02/2023] [Indexed: 09/29/2023]
Abstract
In recent years, nanoscience and nanotechnology have emerged as promising fields in materials science. Spectroscopic techniques like scanning tunneling microscopy and atomic force microscopy have revolutionized the characterization, manipulation, and size control of nanomaterials, enabling the creation of diverse materials such as fullerenes, graphene, nanotubes, nanofibers, nanorods, nanowires, nanoparticles, nanocones, and nanosheets. Among these nanomaterials, there has been considerable interest in flower-shaped hierarchical 3D nanostructures, known as nanoflowers. These structures offer advantages like a higher surface-to-volume ratio compared to spherical nanoparticles, cost-effectiveness, and environmentally friendly preparation methods. Researchers have explored various applications of 3D nanostructures with unique morphologies derived from different nanoflowers. The nanoflowers are classified as organic, inorganic and hybrid, and the hybrids are a combination thereof, and most research studies of the nanoflowers have been focused on biomedical applications. Intriguingly, among them, inorganic nanoflowers have been studied extensively in various areas, such as electro, photo, and chemical catalysis, sensors, supercapacitors, and batteries, owing to their high catalytic efficiency and optical characteristics, which arise from their composition, crystal structure, and local surface plasmon resonance (LSPR). Despite the significant interest in inorganic nanoflowers, comprehensive reviews on this topic have been scarce until now. This is the first review focusing on inorganic nanoflowers for applications in electro, photo, and chemical catalysts, sensors, supercapacitors, and batteries. Since the early 2000s, more than 350 papers have been published on this topic with many ongoing research projects. This review categorizes the reported inorganic nanoflowers into four groups based on their composition and structure: metal, metal oxide, alloy, and other nanoflowers, including silica, metal-metal oxide, core-shell, doped, coated, nitride, sulfide, phosphide, selenide, and telluride nanoflowers. The review thoroughly discusses the preparation methods, conditions for morphology and size control, mechanisms, characteristics, and potential applications of these nanoflowers, aiming to facilitate future research and promote highly effective and synergistic applications in various fields.
Collapse
Affiliation(s)
- Su Jung Lee
- Ingenium College of Liberal Arts (Chemistry), Kwangwoon University Seoul 01897 Korea
| | - Hongje Jang
- Department of Chemistry, Kwangwoon University Seoul 01897 Korea
| | - Do Nam Lee
- Ingenium College of Liberal Arts (Chemistry), Kwangwoon University Seoul 01897 Korea
| |
Collapse
|
5
|
Pusta A, Tertis M, Crăciunescu I, Turcu R, Mirel S, Cristea C. Recent Advances in the Development of Drug Delivery Applications of Magnetic Nanomaterials. Pharmaceutics 2023; 15:1872. [PMID: 37514058 PMCID: PMC10383769 DOI: 10.3390/pharmaceutics15071872] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/21/2023] [Accepted: 06/25/2023] [Indexed: 07/30/2023] Open
Abstract
With the predicted rise in the incidence of cancer, there is an ever-growing need for new cancer treatment strategies. Recently, magnetic nanoparticles have stood out as promising nanostructures for imaging and drug delivery systems as they possess unique properties. Moreover, magnetic nanomaterials functionalized with other compounds can lead to multicomponent nanoparticles with innovative structures and synergetic performance. The incorporation of chemotherapeutic drugs or RNA in magnetic drug delivery systems represents a promising alternative that can increase efficiency and reduce the side effects of anticancer therapy. This review presents a critical overview of the recent literature concerning the advancements in the field of magnetic nanoparticles used in drug delivery, with a focus on their classification, characteristics, synthesis and functionalization methods, limitations, and examples of magnetic drug delivery systems incorporating chemotherapeutics or RNA.
Collapse
Affiliation(s)
- Alexandra Pusta
- Department of Analytical Chemistry and Instrumental Analysis, Iuliu Hațieganu University of Medicine and Pharmacy, 4 Louis Pasteur Street, 400349 Cluj-Napoca, Romania
- Department of Medical Devices, Iuliu Hațieganu University of Medicine and Pharmacy, 4 Pasteur Street, 400349 Cluj-Napoca, Romania
| | - Mihaela Tertis
- Department of Analytical Chemistry and Instrumental Analysis, Iuliu Hațieganu University of Medicine and Pharmacy, 4 Louis Pasteur Street, 400349 Cluj-Napoca, Romania
| | - Izabell Crăciunescu
- National Institute for Research and Development of Isotopic and Molecular Technologies, 400293 Cluj-Napoca, Romania
| | - Rodica Turcu
- National Institute for Research and Development of Isotopic and Molecular Technologies, 400293 Cluj-Napoca, Romania
| | - Simona Mirel
- Department of Medical Devices, Iuliu Hațieganu University of Medicine and Pharmacy, 4 Pasteur Street, 400349 Cluj-Napoca, Romania
| | - Cecilia Cristea
- Department of Analytical Chemistry and Instrumental Analysis, Iuliu Hațieganu University of Medicine and Pharmacy, 4 Louis Pasteur Street, 400349 Cluj-Napoca, Romania
| |
Collapse
|
6
|
Neumann S, Kuger L, Arlt CR, Franzreb M, Rafaja D. Influence of the hierarchical architecture of multi-core iron oxide nanoflowers on their magnetic properties. Sci Rep 2023; 13:5673. [PMID: 37029132 PMCID: PMC10082203 DOI: 10.1038/s41598-023-31294-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/09/2023] [Indexed: 04/09/2023] Open
Abstract
Magnetic properties of superparamagnetic iron oxide nanoparticles are controlled mainly by their particle size and by their particle size distribution. Magnetic properties of multi-core iron oxide nanoparticles, often called iron oxide nanoflowers (IONFs), are additionally affected by the interaction of magnetic moments between neighboring cores. The knowledge about the hierarchical structure of IONFs is therefore essential for understanding the magnetic properties of IONFs. In this contribution, the architecture of multi-core IONFs was investigated using correlative multiscale transmission electron microscopy (TEM), X-ray diffraction and dynamic light scattering. The multiscale TEM measurements comprised low-resolution and high-resolution imaging as well as geometric phase analysis. The IONFs contained maghemite with the average chemical composition [Formula: see text]-Fe[Formula: see text]O[Formula: see text]. The metallic vacancies located on the octahedral lattice sites of the spinel ferrite structure were partially ordered. Individual IONFs consisted of several cores showing frequently a specific crystallographic orientation relationship between direct neighbors. This oriented attachment may facilitate the magnetic alignment within the cores. Individual cores were composed of partially coherent nanocrystals having almost the same crystallographic orientation. The sizes of individual constituents revealed by the microstructure analysis were correlated with the magnetic particle sizes that were obtained from fitting the measured magnetization curve by the Langevin function.
Collapse
Affiliation(s)
- Stefan Neumann
- Institute of Materials Science, TU Bergakademie Freiberg, 09599, Freiberg, Germany.
| | - Laura Kuger
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, 76344, Eggenstein-Leopoldshafen, Germany
| | - Carsten-Rene Arlt
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, 76344, Eggenstein-Leopoldshafen, Germany
| | - Matthias Franzreb
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, 76344, Eggenstein-Leopoldshafen, Germany
| | - David Rafaja
- Institute of Materials Science, TU Bergakademie Freiberg, 09599, Freiberg, Germany
| |
Collapse
|
7
|
Xie G, Wang L, Li B, Zhang C, Zhang X. Transform commercial magnetic materials into injectable gel for magnetic hyperthermia therapy in vivo. Colloids Surf B Biointerfaces 2023; 224:113185. [PMID: 36758458 DOI: 10.1016/j.colsurfb.2023.113185] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/15/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
Magnetic hyperthermia therapy of tumors employing magnetic materials has been greatly developed due to their low invasiveness, high specificity, few side effects and no limitation of tissue penetration depth. However, traditional nanoscale magnetocaloric materials exhibited the disadvantages of low tumor enrichment efficiency, complex preparation process and difficulty in large-scale production. While eddy current loss-based magnetic hyperthermia tumor ablation with metal implants faces shortcomings such as high invasiveness and low selectivity of tumor shape and volume. Herein, we developed injectable magnetic gels by adding commercial magnetic metal or metal oxide powders (CMMPs) into alginate-Ca2+ (ALG-Ca2+) gel through an ultra-simple mixing strategy for magneto-thermal therapy of tumors in vivo. The ALG-Ca2+ gel can not only turn the water-insoluble CMMPs into injectable gel, but also retain the inherent magnetic loss-based heating capacity. Besides, CMMPs in the gels are easily retained at the tumor site after peritumoral injection because of their large size and strong hydrophobicity, which benefits the efficiency and accuracy of the treatment and reduces side effects to the surrounding tissues. The prepared ALG-Ca2+-CMMPs give full play to the inherent magneto-thermal capacity of CMMPs, which possesses super high loading ability (>100 mg magnetic materials/mL), superior large-scale production capability (>1 kg in laboratory synthesis), low cost, satisfactory syringeability and biological safety. Collectively, this study provides a convenient and universal strategy for the construction of magnetocaloric materials for biological applications.
Collapse
Affiliation(s)
- Guangchao Xie
- School of Medical Imaging, Tianjin Medical University, Tianjin 300203, China
| | - Lishi Wang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Bingjie Li
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Cai Zhang
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Centre for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China.
| | - Xuejun Zhang
- School of Medical Imaging, Tianjin Medical University, Tianjin 300203, China.
| |
Collapse
|
8
|
Besenhard MO, Pal S, Gkogkos G, Gavriilidis A. Non-fouling flow reactors for nanomaterial synthesis. REACT CHEM ENG 2023. [DOI: 10.1039/d2re00412g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
This review provides a holistic description of flow reactor fouling for wet-chemical nanomaterial syntheses. Fouling origins and consequences are discussed together with the variety of flow reactors for its prevention.
Collapse
Affiliation(s)
| | - Sayan Pal
- Department of Chemical Engineering, University College London, London, WC1E 7JE, UK
| | - Georgios Gkogkos
- Department of Chemical Engineering, University College London, London, WC1E 7JE, UK
| | - Asterios Gavriilidis
- Department of Chemical Engineering, University College London, London, WC1E 7JE, UK
| |
Collapse
|
9
|
Besenhard MO, Pal S, Storozhuk L, Dawes S, Thanh NTK, Norfolk L, Staniland S, Gavriilidis A. A versatile non-fouling multi-step flow reactor platform: demonstration for partial oxidation synthesis of iron oxide nanoparticles. LAB ON A CHIP 2022; 23:115-124. [PMID: 36454245 DOI: 10.1039/d2lc00892k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In the last decade flow reactors for material synthesis were firmly established, demonstrating advantageous operating conditions, reproducible and scalable production via continuous operation, as well as high-throughput screening of synthetic conditions. Reactor fouling, however, often restricts flow chemistry and the common fouling prevention via segmented flow comes at the cost of inflexibility. Often, the difficulty of feeding reagents into liquid segments (droplets or slugs) constrains flow syntheses using segmented flow to simple synthetic protocols with a single reagent addition step prior or during segmentation. Hence, the translation of fouling prone syntheses requiring multiple reagent addition steps into flow remains challenging. This work presents a modular flow reactor platform overcoming this bottleneck by fully exploiting the potential of three-phase (gas-liquid-liquid) segmented flow to supply reagents after segmentation, hence facilitating fouling free multi-step flow syntheses. The reactor design and materials selection address the operation challenges inherent to gas-liquid-liquid flow and reagent addition into segments allowing for a wide range of flow rates, flow ratios, temperatures, and use of continuous phases (no perfluorinated solvents needed). This "Lego®-like" reactor platform comprises elements for three-phase segmentation and sequential reagent addition into fluid segments, as well as temperature-controlled residence time modules that offer the flexibility required to translate even complex nanomaterial synthesis protocols to flow. To demonstrate the platform's versatility, we chose a fouling prone multi-step synthesis, i.e., a water-based partial oxidation synthesis of iron oxide nanoparticles. This synthesis required I) the precipitation of ferrous hydroxides, II) the addition of an oxidation agent, III) a temperature treatment to initiate magnetite/maghemite formation, and IV) the addition of citric acid to increase the colloidal stability. The platform facilitated the synthesis of colloidally stable magnetic nanoparticles reproducibly at well-controlled synthetic conditions and prevented fouling using heptane as continuous phase. The biocompatible particles showed excellent heating abilities in alternating magnetic fields (ILP values >3 nH m2 kgFe-1), hence, their potential for magnetic hyperthermia cancer treatment. The platform allowed for long term operation, as well as screening of synthetic conditions to tune particle properties. This was demonstrated via the addition of tetraethylenepentamine, confirming its potential to control particle morphology. Such a versatile reactor platform makes it possible to translate even complex syntheses into flow, opening up new opportunities for material synthesis.
Collapse
Affiliation(s)
- Maximilian O Besenhard
- Department of Chemical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK.
| | - Sayan Pal
- Department of Chemical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK.
| | - Liudmyla Storozhuk
- Biophysics Group, Department of Physics and Astronomy, University College London, Gower Street, London, WC1E 6BT, UK
| | - Simon Dawes
- Department of Chemical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK.
| | - Nguyen Thi Kim Thanh
- Biophysics Group, Department of Physics and Astronomy, University College London, Gower Street, London, WC1E 6BT, UK
- UCL Healthcare Biomagnetics and Nanomaterials Laboratories, University College London, 21 Albemarle Street, London W1S 4BS, UK
| | - Laura Norfolk
- Department of Chemistry, The University of Sheffield, Dainton Building, Brook Hill, Sheffield, S3 7HF, UK
| | - Sarah Staniland
- Department of Chemistry, The University of Sheffield, Dainton Building, Brook Hill, Sheffield, S3 7HF, UK
| | - Asterios Gavriilidis
- Department of Chemical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK.
| |
Collapse
|
10
|
Bertuit E, Menguy N, Wilhelm C, Rollet AL, Abou-Hassan A. Angular orientation between the cores of iron oxide nanoclusters controls their magneto-optical properties and magnetic heating functions. Commun Chem 2022; 5:164. [PMID: 36698002 PMCID: PMC9814453 DOI: 10.1038/s42004-022-00787-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/24/2022] [Indexed: 12/03/2022] Open
Abstract
Oriented attachment of nanobricks into hierarchical multi-scale structures such as inorganic nanoclusters is one of the crystallization mechanisms that has revolutionized the field of nano and materials science. Herein, we show that the mosaicity, which measures the misalignment of crystal plane orientation between the nanobricks, governs their magneto-optical properties as well as the magnetic heating functions of iron oxide nanoclusters. Thanks to high-temperature and time-resolved millifluidic, we were able to isolate and characterize (structure, properties, function) the different intermediates involved in the diverse steps of the nanocluster's formation, to propose a detailed dynamical mechanism of their formation and establish a clear correlation between changes in mosaicity at the nanoscale and their resulting physical properties. Finally, we demonstrate that their magneto-optical properties can be described using simple molecular theories.
Collapse
Affiliation(s)
- Enzo Bertuit
- grid.462844.80000 0001 2308 1657Sorbonne Université, UMR CNRS 8234, PHysico-chimie des Électrolytes et Nanosystèmes InterfaciauX (PHENIX), F-75005 Paris, France
| | - Nicolas Menguy
- grid.462844.80000 0001 2308 1657Sorbonne Université, UMR 7590 CNRS—Sorbonne Université—IRD-MNHN, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Case 115, 4 Place Jussieu, 75252 Cedex 5 Paris, France
| | - Claire Wilhelm
- grid.418596.70000 0004 0639 6384PSL Research University—Sorbonne Université—CNRS, UMR168, Laboratoire Physico Chimie Curie, Institut Curie, 75005 Paris, France
| | - Anne-Laure Rollet
- grid.462844.80000 0001 2308 1657Sorbonne Université, UMR CNRS 8234, PHysico-chimie des Électrolytes et Nanosystèmes InterfaciauX (PHENIX), F-75005 Paris, France
| | - Ali Abou-Hassan
- grid.462844.80000 0001 2308 1657Sorbonne Université, UMR CNRS 8234, PHysico-chimie des Électrolytes et Nanosystèmes InterfaciauX (PHENIX), F-75005 Paris, France ,grid.440891.00000 0001 1931 4817Institut Universitaire de France (IUF), 75231 Cedex 05 Paris, France
| |
Collapse
|
11
|
Miola M, Multari C, Vernè E. Iron Oxide-Au Magneto-Plasmonic Heterostructures: Advances in Their Eco-Friendly Synthesis. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7036. [PMID: 36234377 PMCID: PMC9573543 DOI: 10.3390/ma15197036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/06/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
In recent years, nanotechnologies have attracted considerable interest, especially in the biomedical field. Among the most investigated particles, magnetic based on iron oxides and Au nanoparticles gained huge interest for their magnetic and plasmonic properties, respectively. These nanoparticles are usually produced starting from processes and reagents that can be the cause of potential human health and environmental concerns. For this reason, there is a need to develop simple, green, low-cost, and non-toxic synthesis methods and reagents. This review aims at providing an overview of the most recently developed processes to produce iron oxide magnetic nanoparticles, Au nanoparticles, and their magneto-plasmonic heterostructures using eco-friendly approaches, focusing the attention on the microorganisms and plant-assisted syntheses and showing the first results of the development of magneto-plasmonic heterostructures.
Collapse
|
12
|
de la Encarnación C, Jimenez de Aberasturi D, Liz-Marzán LM. Multifunctional plasmonic-magnetic nanoparticles for bioimaging and hyperthermia. Adv Drug Deliv Rev 2022; 189:114484. [PMID: 35944586 DOI: 10.1016/j.addr.2022.114484] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/28/2022] [Accepted: 08/03/2022] [Indexed: 01/24/2023]
Abstract
Multicompartment nanoparticles have raised great interest for different biomedical applications, thanks to the combined properties of different materials within a single entity. These hybrid systems have opened new avenues toward diagnosis and combination therapies, thus becoming preferred theranostic agents. When hybrid nanoparticles comprise magnetic and plasmonic components, both magnetic and optical properties can be achieved, which are potentially useful for multimodal bioimaging, hyperthermal therapies and magnetically driven selective delivery. Nanostructures comprising iron oxide and gold are usually selected for biomedical applications, as they display size-dependent properties, biocompatibility, and unique physical and chemical characteristics that can be tuned through highly precise synthetic protocols. We provide herein an overview of the most recent synthetic protocols to prepare magnetic-plasmonic nanostructures made of iron oxide and gold, to then highlight the progress made on multifunctional magnetic-plasmonic bioimaging and heating-based therapies. We discuss the advantages and limitations of the various systems in these directions.
Collapse
Affiliation(s)
- Cristina de la Encarnación
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, 20014 Donostia-San Sebastián, Spain; Department of Applied Chemistry, University of the Basque Country, 20018 Donostia-San Sebastián, Spain
| | - Dorleta Jimenez de Aberasturi
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, 20014 Donostia-San Sebastián, Spain; CIBER-BBN, ISCIII, 20014 Donostia-San Sebastián, Spain; Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain.
| | - Luis M Liz-Marzán
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, 20014 Donostia-San Sebastián, Spain; CIBER-BBN, ISCIII, 20014 Donostia-San Sebastián, Spain; Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain.
| |
Collapse
|
13
|
Thong PQ, Thu Huong LT, Tu ND, My Nhung HT, Khanh L, Manh DH, Nam PH, Phuc NX, Alonso J, Qiao J, Sridhar S, Thu HP, Phan MH, Kim Thanh NT. Multifunctional nanocarriers of Fe 3O 4@PLA-PEG/curcumin for MRI, magnetic hyperthermia and drug delivery. Nanomedicine (Lond) 2022; 17:1677-1693. [PMID: 36621896 DOI: 10.2217/nnm-2022-0070] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Background: Despite medicinal advances, cancer is still a big problem requiring better diagnostic and treatment tools. Magnetic nanoparticle (MNP)-based nanosystems for multiple-purpose applications were developed for these unmet needs. Methods: This study fabricated novel trifunctional MNPs of Fe3O4@PLA-PEG for drug release, MRI and magnetic fluid hyperthermia. Result: The MNPs provided a significant loading of curcumin (∼11%) with controllable release ability, a high specific absorption rate of 82.2 W/g and significantly increased transverse relaxivity (r2 = 364.75 mM-1 s-1). The in vivo study confirmed that the MNPs enhanced MRI contrast in tumor observation and low-field magnetic fluid hyperthermia could effectively reduce the tumor size in mice bearing sarcoma 180. Conclusion: The nanocarrier has potential for drug release, cancer treatment monitoring and therapy.
Collapse
Affiliation(s)
- Phan Quoc Thong
- Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, 11355, Vietnam.,University of Khanh Hoa, 1 Nguyen Chanh, Nha Trang, 57100, Vietnam
| | - Le Thi Thu Huong
- Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, 11355, Vietnam.,Faculty of Natural Resources and Environment, Vietnam National University of Agriculture, Trau Quy, Gia Lam, Hanoi, 12400, Vietnam
| | - Nguyen Dac Tu
- Hanoi University of Science, Vietnam National University, 334 Nguyen Trai, Hanoi, 11400, Vietnam
| | - Hoang Thi My Nhung
- Hanoi University of Science, Vietnam National University, 334 Nguyen Trai, Hanoi, 11400, Vietnam
| | - Lam Khanh
- 108 Military Central Hospital, 1 Tran Hung Dao, Hanoi, 11000, Vietnam
| | - Do Hung Manh
- Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, 11355, Vietnam
| | - Pham Hong Nam
- Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, 11355, Vietnam.,Graduate University of Science & Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, 12400, Vietnam
| | - Nguyen Xuan Phuc
- Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, 11355, Vietnam.,Duy Tan University, 3 Quang Trung, Danang, 50300, Vietnam
| | - Javier Alonso
- Department of CITIMAC, Universidad de Cantabria, Santander, 39005, Spain.,Department of Physics, University of South Florida, Tampa, FL 33620, USA
| | - Ju Qiao
- Department of Physics, Bioengineering & Chemical Engineering, Northeastern University, Boston, MA 02115, USA
| | - Srinivas Sridhar
- Department of Physics, Bioengineering & Chemical Engineering, Northeastern University, Boston, MA 02115, USA
| | - Ha Phuong Thu
- Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, 11355, Vietnam
| | - Manh Huong Phan
- Department of Physics, University of South Florida, Tampa, FL 33620, USA
| | - Nguyen Thi Kim Thanh
- Biophysics Group, Department of Physics and Astronomy, University College London, Gower Street, WC1E 6BT, London.,UCL Healthcare Biomagnetics & Nanomaterials Laboratories, 21 Albemarle Street, London W1S 4BS, UK
| |
Collapse
|
14
|
Formation of hydrated PEG layers on magnetic iron oxide nanoflowers shows internal magnetisation dynamics and generates high in-vivo efficacy for MRI and magnetic hyperthermia. Acta Biomater 2022; 152:393-405. [PMID: 36007780 PMCID: PMC10141539 DOI: 10.1016/j.actbio.2022.08.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 11/24/2022]
Abstract
Multicore magnetic iron oxide nanoparticles, nanoflowers (NFs), have potential biomedical applications as efficient mediators for AC-magnetic field hyperthermia and as contrast agents for magnetic resonance imaging due to their strong magnetic responses arising from complex internal magnetic ordering. To realise these applications amenable surface chemistry must be engineered that maintain particle dispersion. Here a catechol-derived grafting approach is described to strongly bind polyethylene glycol (PEG) to NFs and provide stable hydrogen-bonded hydrated layers that ensure good long-term colloidal stability in buffers and media even at clinical MRI field strength and high concentration. The approach enables the first comprehensive study into the MRI (relaxivity) and hyperthermic (SAR) efficiencies of fully dispersed NFs. The predominant role of internal magnetisation dynamics in providing high relaxivity and SAR is confirmed, and it is shown that these properties are unaffected by PEG molecular weight or corona formation in biological environments. This result is in contrast to traditional single core nanoparticles which have significantly reduced SAR and relaxivity upon PEGylation and on corona formation, attributed to reduced Brownian contributions and weaker NP solvent interactions. The PEGylated NF suspensions described here exhibit usable blood circulation times and promising retention of relaxivity in-vivo due to the strongly anchored PEG layer. This approach to biomaterials design addresses the challenge of maintaining magnetic efficiency of magnetic nanoparticles in-vivo for applications as theragnostic agents. STATEMENT OF SIGNIFICANCE: : Application of multicore magnetic iron-oxide nanoflowers (NFs) as efficient mediators for AC-field hyperthermia and as contrast agents for MR imaging has been limited by lack of colloidal stability in complex media and biosystems. The optimized materials design presented is shown to reproducibly provide PEG grafted NF suspensions of exceptional colloidal stability in buffers and complex media, with significant hyperthermic and MRI utility which is unaffected by PEG length, anchoring group or bio-molecular adsorption. Deposition in the selected pancreatic model mirrors liposomal formulations providing a quantifiable probe of tissue-level liposome deposition and relaxivity is retained in the tumour microenvironment. Hence the biomaterials design addresses the longstanding challenges of maintaining the in vivo magnetic efficiency of nanoparticles as theragnostic agents.
Collapse
|
15
|
Basina G, Diamantopoulos G, Devlin E, Psycharis V, Alhassan SM, Pissas M, Hadjipanayis G, Tomou A, Bouras A, Hadjipanayis C, Tzitzios V. LAPONITE® nanodisk-"decorated" Fe 3O 4 nanoparticles: a biocompatible nano-hybrid with ultrafast magnetic hyperthermia and MRI contrast agent ability. J Mater Chem B 2022; 10:4935-4943. [PMID: 35535802 DOI: 10.1039/d2tb00139j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Magnetic Fe3O4 nanoparticles "decorated" by LAPONITE® nanodisks have been materialized utilizing the Schikorr reaction following a facile approach and tested as mediators of heat for localized magnetic hyperthermia (MH) and as magnetic resonance imaging (MRI) agents. The synthetic protocol involves the interaction between two layered inorganic compounds, ferrous hydroxide, Fe(OH)2, and the synthetic smectite LAPONITE® clay Na0.7+[(Si8Mg5.5Li0.3)O20(OH)4]0.7-, towards the formation of superparamagnetic Fe3O4 nanoparticles, which are well decorated by the diamagnetic clay nanodisks. The latter imparts high negative ζ-potential values (up to -34.1 mV) to the particles, which provide stability against flocculation and precipitation, resulting in stable water dispersions. The obtained LAPONITE®-"decorated" Fe3O4 nanohybrids were characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), Mössbauer spectroscopy, dynamic light scattering (DLS) and vibrating sample magnetometry (VSM) at room temperature, revealing superior magnetic hyperthermia performance with specific absorption rate (SAR) values reaching 540 W gFe-1 (28 kA m-1, 150 kHz) for the hybrid material with a magnetic loading of 50 wt% Fe3O4/LAPONITE®. Toxicity studies were also performed with human glioblastoma (GBM) cells and human foreskin fibroblasts (HFF), which show negligible to no toxicity. Furthermore, T2-weighted MR imaging of rodent brain shows that the LAPONITE®-"decorated" Fe3O4 nanohybrids predominantly affected the transverse T2 relaxation time of tissue water, which resulted in a signal drop on the MRI T2-weighted imaging, allowing for imaging of the magnetic nanoparticles.
Collapse
Affiliation(s)
- Georgia Basina
- Department of Physics and Astronomy, University of Delaware, Newark, DE 19711, USA. .,Institute of Nanoscience and Nanotechnology, NCSR Demokritos, 15310, Athens, Greece.
| | - George Diamantopoulos
- Institute of Nanoscience and Nanotechnology, NCSR Demokritos, 15310, Athens, Greece.
| | - Eamonn Devlin
- Institute of Nanoscience and Nanotechnology, NCSR Demokritos, 15310, Athens, Greece.
| | - Vassilis Psycharis
- Institute of Nanoscience and Nanotechnology, NCSR Demokritos, 15310, Athens, Greece.
| | - Saeed M Alhassan
- Department of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Michael Pissas
- Institute of Nanoscience and Nanotechnology, NCSR Demokritos, 15310, Athens, Greece.
| | - George Hadjipanayis
- Department of Physics and Astronomy, University of Delaware, Newark, DE 19711, USA.
| | - Aphrodite Tomou
- Institute of Nanoscience and Nanotechnology, NCSR Demokritos, 15310, Athens, Greece. .,Goodfellow Cambridge Ltd., Ermine Business Park, Huntingdon PE29 6WR, Cambridge, UK
| | - Alexandros Bouras
- Brain Tumor Nanotechnology Laboratory, Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Constantinos Hadjipanayis
- Brain Tumor Nanotechnology Laboratory, Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Vasileios Tzitzios
- Institute of Nanoscience and Nanotechnology, NCSR Demokritos, 15310, Athens, Greece. .,Department of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| |
Collapse
|
16
|
Lopes FAC, Fernandes AVF, Rodrigues JM, Queiroz MJRP, Almeida BG, Pires A, Pereira AM, Araújo JP, Castanheira EMS, Rodrigues ARO, Coutinho PJG. Magnetoliposomes Containing Multicore Nanoparticles and a New Antitumor Thienopyridine Compound with Potential Application in Chemo/Thermotherapy. Biomedicines 2022; 10:biomedicines10071547. [PMID: 35884856 PMCID: PMC9313298 DOI: 10.3390/biomedicines10071547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/16/2022] [Accepted: 06/27/2022] [Indexed: 12/20/2022] Open
Abstract
Multicore magnetic nanoparticles of manganese ferrite were prepared using carboxymethyl dextran as an agglutinating compound or by an innovative method using melamine as a cross-coupling agent. The nanoparticles prepared using melamine exhibited a flower-shape structure, a saturation magnetization of 6.16 emu/g and good capabilities for magnetic hyperthermia, with a specific absorption rate (SAR) of 0.14 W/g. Magnetoliposome-like structures containing the multicore nanoparticles were prepared, and their bilayer structure was confirmed by FRET (Förster Resonance Energy Transfer) assays. The nanosystems exhibited sizes in the range of 250–400 nm and a low polydispersity index. A new antitumor thienopyridine derivative, 7-[4-(pyridin-2-yl)-1H-1,2,3-triazol-1-yl]thieno[3,2-b]pyridine, active against HeLa (cervical carcinoma), MCF-7 (breast adenocarcinoma), NCI-H460 (non-small-cell lung carcinoma) and HepG2 (hepatocellular carcinoma) cell lines, was loaded in these nanocarriers, obtaining a high encapsulation efficiency of 98 ± 2.6%. The results indicate that the new magnetoliposomes can be suitable for dual cancer therapy (combined magnetic hyperthermia and chemotherapy).
Collapse
Affiliation(s)
- Fábio A. C. Lopes
- Physics Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (F.A.C.L.); (A.V.F.F.); (B.G.A.)
- LaPMET (Laboratory of Physics for Materials and Emergent Technologies), Associate Laboratory, 4710-057 Braga, Portugal; (A.P.); (A.M.P.); (J.P.A.)
| | - André V. F. Fernandes
- Physics Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (F.A.C.L.); (A.V.F.F.); (B.G.A.)
- LaPMET (Laboratory of Physics for Materials and Emergent Technologies), Associate Laboratory, 4710-057 Braga, Portugal; (A.P.); (A.M.P.); (J.P.A.)
| | - Juliana M. Rodrigues
- Centre of Chemistry (CQUM), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (J.M.R.); (M.-J.R.P.Q.)
| | - Maria-João R. P. Queiroz
- Centre of Chemistry (CQUM), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (J.M.R.); (M.-J.R.P.Q.)
| | - Bernardo G. Almeida
- Physics Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (F.A.C.L.); (A.V.F.F.); (B.G.A.)
- LaPMET (Laboratory of Physics for Materials and Emergent Technologies), Associate Laboratory, 4710-057 Braga, Portugal; (A.P.); (A.M.P.); (J.P.A.)
| | - Ana Pires
- LaPMET (Laboratory of Physics for Materials and Emergent Technologies), Associate Laboratory, 4710-057 Braga, Portugal; (A.P.); (A.M.P.); (J.P.A.)
- IFIMUP—Instituto de Física dos Materiais, Universidade do Porto, R. Campo Alegre, 4169-007 Porto, Portugal
| | - André M. Pereira
- LaPMET (Laboratory of Physics for Materials and Emergent Technologies), Associate Laboratory, 4710-057 Braga, Portugal; (A.P.); (A.M.P.); (J.P.A.)
- IFIMUP—Instituto de Física dos Materiais, Universidade do Porto, R. Campo Alegre, 4169-007 Porto, Portugal
| | - João P. Araújo
- LaPMET (Laboratory of Physics for Materials and Emergent Technologies), Associate Laboratory, 4710-057 Braga, Portugal; (A.P.); (A.M.P.); (J.P.A.)
- IFIMUP—Instituto de Física dos Materiais, Universidade do Porto, R. Campo Alegre, 4169-007 Porto, Portugal
| | - Elisabete M. S. Castanheira
- Physics Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (F.A.C.L.); (A.V.F.F.); (B.G.A.)
- LaPMET (Laboratory of Physics for Materials and Emergent Technologies), Associate Laboratory, 4710-057 Braga, Portugal; (A.P.); (A.M.P.); (J.P.A.)
- Correspondence: (E.M.S.C.); (A.R.O.R.); (P.J.G.C.)
| | - Ana Rita O. Rodrigues
- Physics Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (F.A.C.L.); (A.V.F.F.); (B.G.A.)
- LaPMET (Laboratory of Physics for Materials and Emergent Technologies), Associate Laboratory, 4710-057 Braga, Portugal; (A.P.); (A.M.P.); (J.P.A.)
- Correspondence: (E.M.S.C.); (A.R.O.R.); (P.J.G.C.)
| | - Paulo J. G. Coutinho
- Physics Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (F.A.C.L.); (A.V.F.F.); (B.G.A.)
- LaPMET (Laboratory of Physics for Materials and Emergent Technologies), Associate Laboratory, 4710-057 Braga, Portugal; (A.P.); (A.M.P.); (J.P.A.)
- Correspondence: (E.M.S.C.); (A.R.O.R.); (P.J.G.C.)
| |
Collapse
|
17
|
Popescu T, Oktaviani Matei C, Culita DC, Maraloiu VA, Rostas AM, Diamandescu L, Iacob N, Savopol T, Ilas MC, Feder M, Lupu AR, Iacoban AC, Vlaicu ID, Moisescu MG. Facile synthesis of low toxicity iron oxide/TiO 2 nanocomposites with hyperthermic and photo-oxidation properties. Sci Rep 2022; 12:6887. [PMID: 35477987 PMCID: PMC9046213 DOI: 10.1038/s41598-022-11003-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 04/18/2022] [Indexed: 12/20/2022] Open
Abstract
The present study aimed to assess the feasibility of developing low-cost multipurpose iron oxide/TiO2 nanocomposites (NCs) for use in combined antitumor therapies and water treatment applications. Larger size (≈ 100 nm) iron oxide nanoparticles (IONPs) formed magnetic core-TiO2 shell structures at high Fe/Ti ratios and solid dispersions of IONPs embedded in TiO2 matrices when the Fe/Ti ratio was low. When the size of the iron phase was comparable to the size of the crystallized TiO2 nanoparticles (≈ 10 nm), the obtained nanocomposites consisted of randomly mixed aggregates of TiO2 and IONPs. The best inductive heating and ROS photogeneration properties were shown by the NCs synthesized at 400 °C which contained the minimum amount of α-Fe2O3 and sufficiently crystallized anatase TiO2. Their cytocompatibility was assessed on cultured human and murine fibroblast cells and analyzed in relation to the adsorption of bovine serum albumin from the culture medium onto their surface. The tested nanocomposites showed excellent cytocompatibility to human fibroblast cells. The results also indicated that the environment (i.e. phosphate buffer or culture medium) used to disperse the nanomaterials prior to performing the viability tests can have a significant impact on their cytotoxicity.
Collapse
Affiliation(s)
- Traian Popescu
- National Institute of Materials Physics, Str. Atomistilor 405A, POB MG 7, 077125, Magurele, Ilfov, Romania
| | - Christien Oktaviani Matei
- Biophysics and Cellular Biotechnology Department, Excellence Centre for Research in Biophysics and Cellular Biotechnology, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd., 050474, Bucharest, Romania
| | - Daniela Cristina Culita
- Ilie Murgulescu Institute of Physical Chemistry, Romanian Academy, 202 Splaiul Independentei, 060021, Bucharest, Romania
| | - Valentin-Adrian Maraloiu
- National Institute of Materials Physics, Str. Atomistilor 405A, POB MG 7, 077125, Magurele, Ilfov, Romania
| | - Arpad Mihai Rostas
- National Institute of Materials Physics, Str. Atomistilor 405A, POB MG 7, 077125, Magurele, Ilfov, Romania
| | - Lucian Diamandescu
- National Institute of Materials Physics, Str. Atomistilor 405A, POB MG 7, 077125, Magurele, Ilfov, Romania
| | - Nicusor Iacob
- National Institute of Materials Physics, Str. Atomistilor 405A, POB MG 7, 077125, Magurele, Ilfov, Romania
| | - Tudor Savopol
- Biophysics and Cellular Biotechnology Department, Excellence Centre for Research in Biophysics and Cellular Biotechnology, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd., 050474, Bucharest, Romania
| | - Monica Cristiana Ilas
- National Institute of Materials Physics, Str. Atomistilor 405A, POB MG 7, 077125, Magurele, Ilfov, Romania
| | - Marcel Feder
- National Institute of Materials Physics, Str. Atomistilor 405A, POB MG 7, 077125, Magurele, Ilfov, Romania
| | - Andreea-Roxana Lupu
- "Victor Babes" National Institute of Pathology, Splaiul Independentei 99-101, Bucharest, Romania
| | - Alexandra Corina Iacoban
- National Institute of Materials Physics, Str. Atomistilor 405A, POB MG 7, 077125, Magurele, Ilfov, Romania
| | - Ioana Dorina Vlaicu
- National Institute of Materials Physics, Str. Atomistilor 405A, POB MG 7, 077125, Magurele, Ilfov, Romania.
| | - Mihaela Georgeta Moisescu
- Biophysics and Cellular Biotechnology Department, Excellence Centre for Research in Biophysics and Cellular Biotechnology, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd., 050474, Bucharest, Romania
| |
Collapse
|
18
|
Chen C, Wang P, Chen H, Wang X, Halgamuge MN, Chen C, Song T. Smart Magnetotactic Bacteria Enable the Inhibition of Neuroblastoma under an Alternating Magnetic Field. ACS APPLIED MATERIALS & INTERFACES 2022; 14:14049-14058. [PMID: 35311270 DOI: 10.1021/acsami.1c24154] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Magnetotactic bacteria are ubiquitous microorganisms in nature that synthesize intracellular magnetic nanoparticles called magnetosomes in a gene-controlled way and arrange them in chains. From in vitro to in vivo, we demonstrate that the intact body of Magnetospirillum magneticum AMB-1 has potential as a natural magnetic hyperthermia material for cancer therapy. Compared to chains of magnetosomes and individual magnetosomes, the entire AMB-1 cell exhibits superior heating capability under an alternating magnetic field. When incubating with tumor cells, the intact AMB-1 cells disperse better than the other two types of magnetosomes, decreasing cellular viability under the control of an alternating magnetic field. Furthermore, in vivo experiments in nude mice with neuroblastoma found that intact AMB-1 cells had the best antitumor activity with magnetic hyperthermia therapy compared to other treatment groups. These findings suggest that the intact body of magnetotactic bacteria has enormous promise as a natural material for tumor magnetic hyperthermia. In biomedical applications, intact and living magnetotactic bacteria play an increasingly essential function as a targeting robot due to their magnetotaxis.
Collapse
Affiliation(s)
- Changyou Chen
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
- France-China International Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, Beijing 100190, China
| | - Pingping Wang
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
- France-China International Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, Beijing 100190, China
| | - Haitao Chen
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
- France-China International Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, Beijing 100190, China
| | - Xue Wang
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
- France-China International Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, Beijing 100190, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Malka N Halgamuge
- Department of Computer Science and Information Technology, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Chuanfang Chen
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
- France-China International Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, Beijing 100190, China
| | - Tao Song
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
- France-China International Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, Beijing 100190, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
19
|
Christou E, Pearson JR, Beltrán AM, Fernández-Afonso Y, Gutiérrez L, de la Fuente JM, Gámez F, García-Martín ML, Caro C. Iron–Gold Nanoflowers: A Promising Tool for Multimodal Imaging and Hyperthermia Therapy. Pharmaceutics 2022; 14:pharmaceutics14030636. [PMID: 35336012 PMCID: PMC8955043 DOI: 10.3390/pharmaceutics14030636] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/26/2022] [Accepted: 03/11/2022] [Indexed: 12/17/2022] Open
Abstract
The development of nanoplatforms prepared to perform both multimodal imaging and combined therapies in a single entity is a fast-growing field. These systems are able to improve diagnostic accuracy and therapy success. Multicomponent Nanoparticles (MCNPs), composed of iron oxide and gold, offer new opportunities for Magnetic Resonance Imaging (MRI) and Computed Tomography (CT) diagnosis, as well as combined therapies based on Magnetic Hyperthermia (MH) and Photothermal Therapy (PT). In this work, we describe a new seed-assisted method for the synthesis of Au@Fe Nanoparticles (NPs) with a flower-like structure. For biomedical purposes, Au@Fe NPs were functionalized with a PEGylated ligand, leading to high colloidal stability. Moreover, the as-obtained Au@Fe-PEG NPs exhibited excellent features as both MRI and CT Contrast Agents (CAs), with high r2 relaxivity (60.5 mM−1⋅s−1) and X-ray attenuation properties (8.8 HU mM−1⋅HU). In addition, these nanoflowers presented considerable energy-to-heat conversion under both Alternating Magnetic Fields (AMFs) (∆T ≈ 2.5 °C) and Near-Infrared (NIR) light (∆T ≈ 17 °C). Finally, Au@Fe-PEG NPs exhibited very low cytotoxicity, confirming their potential for theranostics applications.
Collapse
Affiliation(s)
- Evangelia Christou
- BIONAND—Centro Andaluz de Nanomedicina y Biotecnología (Junta de Andalucía-Universidad de Málaga), C/Severo Ochoa, 35, 29590 Málaga, Spain; (E.C.); (J.R.P.)
| | - John R. Pearson
- BIONAND—Centro Andaluz de Nanomedicina y Biotecnología (Junta de Andalucía-Universidad de Málaga), C/Severo Ochoa, 35, 29590 Málaga, Spain; (E.C.); (J.R.P.)
| | - Ana M. Beltrán
- Departamento de Ingeniería y Ciencia de los Materiales y del Transporte, Escuela Politécnica Superior, Universidad de Sevilla, Virgen de Á frica 7, 41011 Sevilla, Spain;
| | - Yilian Fernández-Afonso
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain; (Y.F.-A.); (L.G.); (J.M.d.l.F.)
| | - Lucía Gutiérrez
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain; (Y.F.-A.); (L.G.); (J.M.d.l.F.)
- Biomedical Research Networking Center in Bioengineering, Biomaterials & Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - Jesús M. de la Fuente
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain; (Y.F.-A.); (L.G.); (J.M.d.l.F.)
- Biomedical Research Networking Center in Bioengineering, Biomaterials & Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - Francisco Gámez
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain;
| | - María L. García-Martín
- BIONAND—Centro Andaluz de Nanomedicina y Biotecnología (Junta de Andalucía-Universidad de Málaga), C/Severo Ochoa, 35, 29590 Málaga, Spain; (E.C.); (J.R.P.)
- Biomedical Research Networking Center in Bioengineering, Biomaterials & Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
- Correspondence: (M.L.G.-M.); (C.C.)
| | - Carlos Caro
- BIONAND—Centro Andaluz de Nanomedicina y Biotecnología (Junta de Andalucía-Universidad de Málaga), C/Severo Ochoa, 35, 29590 Málaga, Spain; (E.C.); (J.R.P.)
- Correspondence: (M.L.G.-M.); (C.C.)
| |
Collapse
|
20
|
Harvell-Smith S, Tung LD, Thanh NTK. Magnetic particle imaging: tracer development and the biomedical applications of a radiation-free, sensitive, and quantitative imaging modality. NANOSCALE 2022; 14:3658-3697. [PMID: 35080544 DOI: 10.1039/d1nr05670k] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Magnetic particle imaging (MPI) is an emerging tracer-based modality that enables real-time three-dimensional imaging of the non-linear magnetisation produced by superparamagnetic iron oxide nanoparticles (SPIONs), in the presence of an external oscillating magnetic field. As a technique, it produces highly sensitive radiation-free tomographic images with absolute quantitation. Coupled with a high contrast, as well as zero signal attenuation at-depth, there are essentially no limitations to where that can be imaged within the body. These characteristics enable various biomedical applications of clinical interest. In the opening sections of this review, the principles of image generation are introduced, along with a detailed comparison of the fundamental properties of this technique with other common imaging modalities. The main feature is a presentation on the up-to-date literature for the development of SPIONs tailored for improved imaging performance, and developments in the current and promising biomedical applications of this emerging technique, with a specific focus on theranostics, cell tracking and perfusion imaging. Finally, we will discuss recent progress in the clinical translation of MPI. As signal detection in MPI is almost entirely dependent on the properties of the SPION employed, this work emphasises the importance of tailoring the synthetic process to produce SPIONs demonstrating specific properties and how this impacts imaging in particular applications and MPI's overall performance.
Collapse
Affiliation(s)
- Stanley Harvell-Smith
- Biophysics Group, Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK.
- UCL Healthcare Biomagnetic and Nanomaterials Laboratories, University College London, 21 Albemarle Street, London W1S 4BS, UK
| | - Le Duc Tung
- Biophysics Group, Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK.
- UCL Healthcare Biomagnetic and Nanomaterials Laboratories, University College London, 21 Albemarle Street, London W1S 4BS, UK
| | - Nguyen Thi Kim Thanh
- Biophysics Group, Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK.
- UCL Healthcare Biomagnetic and Nanomaterials Laboratories, University College London, 21 Albemarle Street, London W1S 4BS, UK
| |
Collapse
|