1
|
Chu J, Deng Z, Pan J, Yang A, Wang Q, Yuan H, Yuan H, Xin F, Rong M, Wang X. Parameter Optimization of Semiconductor Gas Sensor under AC Impedance Measurement. ACS Sens 2024; 9:5561-5569. [PMID: 39413027 DOI: 10.1021/acssensors.4c01903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
Semiconductor gas sensors were confirmed to perform high linearity and a stable baseline under alternating current (AC) impedance measurements. However, a procedure to determine the optimal parameters of AC impedance measurements is still lacking. Taking the detection of SF6 decomposition gas as an example, this work has established a model of semiconductor gas sensors under AC impedance measurement. Employing four types of sensors to detect three gases (H2S, SO2, and CO), the effectiveness of the optimization method has been validated, as well. With the high linearity and stable baseline obtained from AC impedance measurement, it enables rapid correction of temperature drift within environmental temperatures ranging from 10 to 30 °C. Overall, the proposed method can provide a novel approach to inhibit the drift failure of semiconductor gas sensors.
Collapse
Affiliation(s)
- Jifeng Chu
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zhuoli Deng
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jianbin Pan
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, China
| | - Aijun Yang
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, China
| | - Qiongyuan Wang
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, China
| | - Hongye Yuan
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, China
| | - Huan Yuan
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, China
| | - Feng Xin
- State Grid Beijing Electric Power Company, Beijing 100032, China
| | - Mingzhe Rong
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xiaohua Wang
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
2
|
Odebowale AA, Abdulghani A, Berhe AM, Somaweera D, Akter S, Abdo S, As'ham K, Saadabad RM, Tran TT, Bishop DP, Solntsev AS, Miroshnichenko AE, Hattori HT. Emerging Low Detection Limit of Optically Activated Gas Sensors Based on 2D and Hybrid Nanostructures. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1521. [PMID: 39330677 PMCID: PMC11435144 DOI: 10.3390/nano14181521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/06/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024]
Abstract
Gas sensing is essential for detecting and measuring gas concentrations across various environments, with applications in environmental monitoring, industrial safety, and healthcare. The integration of two-dimensional (2D) materials, organic materials, and metal oxides has significantly advanced gas sensor technology, enhancing its sensitivity, selectivity, and response times at room temperature. This review examines the progress in optically activated gas sensors, with emphasis on 2D materials, metal oxides, and organic materials, due to limited studies on their use in optically activated gas sensors, in contrast to other traditional gas-sensing technologies. We detail the unique properties of these materials and their impact on improving the figures of merit (FoMs) of gas sensors. Transition metal dichalcogenides (TMDCs), with their high surface-to-volume ratio and tunable band gap, show exceptional performance in gas detection, especially when activated by UV light. Graphene-based sensors also demonstrate high sensitivity and low detection limits, making them suitable for various applications. Although organic materials and hybrid structures, such as metal-organic frameworks (MoFs) and conducting polymers, face challenges related to stability and sensitivity at room temperature, they hold potential for future advancements. Optically activated gas sensors incorporating metal oxides benefit from photoactive nanomaterials and UV irradiation, further enhancing their performance. This review highlights the potential of the advanced materials in developing the next generation of gas sensors, addressing current research gaps and paving the way for future innovations.
Collapse
Affiliation(s)
- Ambali Alade Odebowale
- School of Engineering and Technology, The University of New South Wales at Canberra, Campbell, ACT 2612, Australia
| | - Amer Abdulghani
- School of Engineering and Technology, The University of New South Wales at Canberra, Campbell, ACT 2612, Australia
| | - Andergachew Mekonnen Berhe
- School of Engineering and Technology, The University of New South Wales at Canberra, Campbell, ACT 2612, Australia
| | - Dinelka Somaweera
- School of Engineering and Technology, The University of New South Wales at Canberra, Campbell, ACT 2612, Australia
| | - Sanjida Akter
- School of Engineering and Technology, The University of New South Wales at Canberra, Campbell, ACT 2612, Australia
| | - Salah Abdo
- School of Engineering and Technology, The University of New South Wales at Canberra, Campbell, ACT 2612, Australia
| | - Khalil As'ham
- School of Engineering and Technology, The University of New South Wales at Canberra, Campbell, ACT 2612, Australia
| | - Reza Masoudian Saadabad
- School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Toan T Tran
- School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - David P Bishop
- School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Alexander S Solntsev
- School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Andrey E Miroshnichenko
- School of Engineering and Technology, The University of New South Wales at Canberra, Campbell, ACT 2612, Australia
| | - Haroldo T Hattori
- School of Engineering and Technology, The University of New South Wales at Canberra, Campbell, ACT 2612, Australia
| |
Collapse
|
3
|
Jia X, Qiao P, Wang X, Yan M, Chen Y, An BL, Hu P, Lu B, Xu J, Xue Z, Xu J. Building Feedback-Regulation System Through Atomic Design for Highly Active SO 2 Sensing. NANO-MICRO LETTERS 2024; 16:136. [PMID: 38411773 PMCID: PMC10899126 DOI: 10.1007/s40820-024-01350-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 01/12/2024] [Indexed: 02/28/2024]
Abstract
Reasonably constructing an atomic interface is pronouncedly essential for surface-related gas-sensing reaction. Herein, we present an ingenious feedback-regulation system by changing the interactional mode between single Pt atoms and adjacent S species for high-efficiency SO2 sensing. We found that the single Pt sites on the MoS2 surface can induce easier volatilization of adjacent S species to activate the whole inert S plane. Reversely, the activated S species can provide a feedback role in tailoring the antibonding-orbital electronic occupancy state of Pt atoms, thus creating a combined system involving S vacancy-assisted single Pt sites (Pt-Vs) to synergistically improve the adsorption ability of SO2 gas molecules. Furthermore, in situ Raman, ex situ X-ray photoelectron spectroscopy testing and density functional theory analysis demonstrate the intact feedback-regulation system can expand the electron transfer path from single Pt sites to whole Pt-MoS2 supports in SO2 gas atmosphere. Equipped with wireless-sensing modules, the final Pt1-MoS2-def sensors array can further realize real-time monitoring of SO2 levels and cloud-data storage for plant growth. Such a fundamental understanding of the intrinsic link between atomic interface and sensing mechanism is thus expected to broaden the rational design of highly effective gas sensors.
Collapse
Affiliation(s)
- Xin Jia
- NEST Lab, Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Panzhe Qiao
- Shanghai Synchrotron Radiation Facility, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, People's Republic of China
| | - Xiaowu Wang
- NEST Lab, Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Muyu Yan
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, People's Republic of China
| | - Yang Chen
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Bao-Li An
- NEST Lab, Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Pengfei Hu
- Shanghai University, Instrumental Analysis & Research Center of Shanghai University, Shanghai, 200444, People's Republic of China
| | - Bo Lu
- Shanghai University, Instrumental Analysis & Research Center of Shanghai University, Shanghai, 200444, People's Republic of China
| | - Jing Xu
- Shanghai University, Instrumental Analysis & Research Center of Shanghai University, Shanghai, 200444, People's Republic of China
| | - Zhenggang Xue
- NEST Lab, Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, People's Republic of China.
| | - Jiaqiang Xu
- NEST Lab, Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, People's Republic of China.
| |
Collapse
|
4
|
Li L, Xu D, Xu X, Tian Z, Zhou X, Yang S, Zhang Z. Modulation of active center distance of hybrid perovskite for boosting photocatalytic reduction of carbon dioxide to ethylene. Proc Natl Acad Sci U S A 2024; 121:e2318970121. [PMID: 38315838 PMCID: PMC10873559 DOI: 10.1073/pnas.2318970121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/22/2023] [Indexed: 02/07/2024] Open
Abstract
Solar-driven photocatalytic CO2 reduction is an energy-efficient and sustainable strategy to mitigate CO2 levels in the atmosphere. However, efficient and selective conversion of CO2 into multi-carbon products, like C2H4, remains a great challenge due to slow multi-electron-proton transfer and sluggish C-C coupling. Herein, a two-dimensional thin-layered hybrid perovskite is fabricated through filling of oxygen into iodine vacancy in pristine DMASnI3 (DMA = dimethylammonium). The rational-designed DMASnI3(O) induces shrinkage of active sites distance and facilitates dimerization of C-C coupling of intermediates. Upon simulated solar irradiation, the DMASnI3(O) photocatalyst achieves a high selectivity of 74.5%, corresponding to an impressive electron selectivity of 94.6%, for CO2 to C2H4 conversion and an effective C2H4 yield of 11.2 μmol g-1 h-1. In addition, the DMASnI3(O) inherits excellent water stability and implements long-term photocatalytic CO2 reduction to C2H4 in a water medium. This work establishes a unique paradigm to convert CO2 to C2+ hydrocarbons in a perovskite-based photocatalytic system.
Collapse
Affiliation(s)
- Linjuan Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai200062, China
| | - Dawei Xu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai200062, China
| | - Xiankui Xu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai200062, China
| | - Zheng Tian
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai200062, China
| | - Xue Zhou
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai200062, China
| | - Shenbo Yang
- Hongzhiwei Technology (Shanghai) Co. Ltd., Shanghai200240, China
| | - Zhonghai Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai200062, China
- State Key Laboratory of Petroleum Molecular and Process Engineering (SKLPMPE), Sinopec Research Institute of Petroleum Processing Co., Ltd., Beijing100083, China
- State Key Laboratory of Petroleum Molecular and Process Engineering (SKLPMPE), East China Normal University, Shanghai200062, China
| |
Collapse
|
5
|
Ghadage P, Shinde KP, Nadargi D, Nadargi J, Shaikh H, Alam MA, Mulla I, Tamboli MS, Park JS, Suryavanshi S. Bismuth ferrite based acetone gas sensor: evaluation of graphene oxide loading. RSC Adv 2024; 14:1367-1376. [PMID: 38174272 PMCID: PMC10763655 DOI: 10.1039/d3ra06733e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024] Open
Abstract
We report a BiFeO3/graphene oxide (BFO/GO) perovskite, synthesized using a CTAB-functionalized glycine combustion route, as a potential material for acetone gas sensing applications. The physicochemical properties of the developed perovskite were analysed using XRD, FE-SEM, TEM, HRTEM, EDAX and XPS. The gas sensing performance was analysed for various test gases, including ethanol, acetone, propanol, ammonia, nitric acid, hydrogen sulphide and trimethylamine at a concentration of 500 ppm. Among the test gases, the developed BFO showed the best selectivity towards acetone, with a response of 61% at an operating temperature of 250 °C. All the GO-loaded BFO samples showed an improved gas sensing performance compared with pristine BFO in terms of sensitivity, the response/recovery times, the transient response curves and the stability. The 1 wt% GO-loaded BiFeO3 sensor showed the highest sensitivity of 89% towards acetone (500 ppm) at an operating temperature of 250 °C. These results show that the developed perovskites have significant potential for use in acetone gas sensing applications.
Collapse
Affiliation(s)
- Pandurang Ghadage
- School of Physical Sciences, Punyashlok Ahilyadevi Holkar Solapur University Solapur 413255 India
| | - K P Shinde
- Department of Materials Science and Engineering, Hanbat National University Daejeon 34158 South Korea
| | - Digambar Nadargi
- School of Physical Sciences, Punyashlok Ahilyadevi Holkar Solapur University Solapur 413255 India
- Centre for Materials for Electronics Technology, C-MET Thrissur 680581 India
| | - Jyoti Nadargi
- Department of Physics, Santosh Bhimrao Patil College Mandrup Solapur 413221 India
| | - Hamid Shaikh
- SABIC Polymer Research Centre, Department of Chemical Engineering, King Saud University P.O. Box 800 Riyadh 11421 Saudi Arabia
| | - Mohammad Asif Alam
- Center of Excellence for Research in Engineering Materials (CEREM), King Saud University P.O. Box 800 Riyadh 11421 Saudi Arabia
| | - Imtiaz Mulla
- Former Emeritus Scientist (CSIR), NCL Pune 411008 India
| | - Mohaseen S Tamboli
- Korea Institute of Energy Technology (KENTECH) 21 KENTECH-gil Naju Jeollanam-do 58330 Republic of Korea
| | - J S Park
- Department of Materials Science and Engineering, Hanbat National University Daejeon 34158 South Korea
| | - Sharad Suryavanshi
- School of Physical Sciences, Punyashlok Ahilyadevi Holkar Solapur University Solapur 413255 India
| |
Collapse
|
6
|
Hooshmand S, Kassanos P, Keshavarz M, Duru P, Kayalan CI, Kale İ, Bayazit MK. Wearable Nano-Based Gas Sensors for Environmental Monitoring and Encountered Challenges in Optimization. SENSORS (BASEL, SWITZERLAND) 2023; 23:8648. [PMID: 37896744 PMCID: PMC10611361 DOI: 10.3390/s23208648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/04/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023]
Abstract
With a rising emphasis on public safety and quality of life, there is an urgent need to ensure optimal air quality, both indoors and outdoors. Detecting toxic gaseous compounds plays a pivotal role in shaping our sustainable future. This review aims to elucidate the advancements in smart wearable (nano)sensors for monitoring harmful gaseous pollutants, such as ammonia (NH3), nitric oxide (NO), nitrous oxide (N2O), nitrogen dioxide (NO2), carbon monoxide (CO), carbon dioxide (CO2), hydrogen sulfide (H2S), sulfur dioxide (SO2), ozone (O3), hydrocarbons (CxHy), and hydrogen fluoride (HF). Differentiating this review from its predecessors, we shed light on the challenges faced in enhancing sensor performance and offer a deep dive into the evolution of sensing materials, wearable substrates, electrodes, and types of sensors. Noteworthy materials for robust detection systems encompass 2D nanostructures, carbon nanomaterials, conducting polymers, nanohybrids, and metal oxide semiconductors. A dedicated section dissects the significance of circuit integration, miniaturization, real-time sensing, repeatability, reusability, power efficiency, gas-sensitive material deposition, selectivity, sensitivity, stability, and response/recovery time, pinpointing gaps in the current knowledge and offering avenues for further research. To conclude, we provide insights and suggestions for the prospective trajectory of smart wearable nanosensors in addressing the extant challenges.
Collapse
Affiliation(s)
- Sara Hooshmand
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul 34956, Turkey
| | - Panagiotis Kassanos
- The Hamlyn Centre, Institute of Global Health Innovation, Imperial College London, South Kensington, London SW7 2AZ, UK;
- Department of Electrical and Electronic Engineering, Imperial College London, South Kensington, London SW7 2AZ, UK
| | - Meysam Keshavarz
- The Hamlyn Centre, Institute of Global Health Innovation, Imperial College London, South Kensington, London SW7 2AZ, UK;
- Department of Electrical and Electronic Engineering, Imperial College London, South Kensington, London SW7 2AZ, UK
| | - Pelin Duru
- Faculty of Engineering and Natural Science, Sabanci University, Istanbul 34956, Turkey; (P.D.); (C.I.K.)
| | - Cemre Irmak Kayalan
- Faculty of Engineering and Natural Science, Sabanci University, Istanbul 34956, Turkey; (P.D.); (C.I.K.)
| | - İzzet Kale
- Applied DSP and VLSI Research Group, Department of Computer Science and Engineering, University of Westminster, London W1W 6UW, UK;
| | - Mustafa Kemal Bayazit
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul 34956, Turkey
- Faculty of Engineering and Natural Science, Sabanci University, Istanbul 34956, Turkey; (P.D.); (C.I.K.)
| |
Collapse
|
7
|
Lai CY, Liu CF, Lin TL, Chen MY, Huang YC, Huang HH, Dong CL, Wang DY, Yeh PH, Wu WW. Defect-Rich SnO 2 Nanofiber as an Oxygen-Defect-Driven Photoenergy Shield against UV Light Cell Damage. ACS APPLIED MATERIALS & INTERFACES 2023; 15:42868-42880. [PMID: 37647236 DOI: 10.1021/acsami.3c08926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Usually, most studies focus on toxic gas and photosensors by using electrospinning and metal oxide polycrystalline SnO2 nanofibers (PNFs), while fewer studies discuss cell-material interactions and photoelectric effect. In this work, the controllable surface morphology and oxygen defect (VO) structure properties were provided to show the opportunity of metal oxide PNFs to convert photoenergy into bio-energy for bio-material applications. Using the photobiomodulation effect of defect-rich polycrystalline SnO2 nanofibers (PNFs) is the main idea to modulate the cell-material interactions, such as adhesion, growth direction, and reactive oxygen species (ROS) density. The VO structures, including out-of-plane oxygen defects (op-VO), bridge oxygen defects (b-VO), and in-plane oxygen defects (ip-VO), were studied using synchrotron analysis to investigate the electron transfer between the VO structures and conduction bands. These intragrain VO structures can be treated as generation-recombination centers, which can convert various photoenergies (365-520 nm) into different current levels that form distinct surface potential levels; this is referred to as the photoelectric effect. PNF conductivity was enhanced 53.6-fold by enlarging the grain size (410 nm2) by increasing the annealing temperature, which can improve the photoelectric effect. In vitro removal of reactive oxygen species (ROS) can be achieved by using the photoelectric effect of PNFs. Also, the viability and shape of human bone marrow mesenchymal stem cells (hMSCs-BM) were also influenced significantly by the photobiomodulation effect. The cell damage and survival rate can be prevented and enhanced by using PNFs; metal oxide nanofibers are no longer only environmental sensors but can also be a bio-material to convert the photoenergy into bio-energy for biomedical science applications.
Collapse
Affiliation(s)
- Chun-Yen Lai
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Chia-Fei Liu
- Department of Dentistry, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Tzu-Ling Lin
- Department of Physics, Tamkang University, New Taipei 25137, Taiwan
| | - Mei-Yu Chen
- Department of Physics, Tamkang University, New Taipei 25137, Taiwan
| | - Yu-Cheng Huang
- Department of Electrophysics, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Her-Hsiung Huang
- Department of Dentistry, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Chung-Li Dong
- Department of Physics, Tamkang University, New Taipei 25137, Taiwan
| | - Ding-Yeong Wang
- Department of Electrical Engineering, Feng Chia University, Taichung 407802, Taiwan
| | - Ping-Hung Yeh
- Department of Physics, Tamkang University, New Taipei 25137, Taiwan
| | - Wen-Wei Wu
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
- Center for the Intelligent Semiconductor Nano-system Technology Research, Hsinchu 30078, Taiwan
| |
Collapse
|
8
|
Junxi L, Bomiao Q, Mengmeng L, Fupeng Z, Fang R, Zhibin L, Shaofeng P, Shujuan M, Yanbin W, Qiong S. Insights into selectivity of some oxygen containing gases by the CHCl •– anion from molecular simulation. MOLECULAR SIMULATION 2023. [DOI: 10.1080/08927022.2023.2189983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Affiliation(s)
- Liang Junxi
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, College of Chemical Engineering, Northwest Minzu University, Lanzhou, People’s Republic of China
| | - Qi Bomiao
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, College of Chemical Engineering, Northwest Minzu University, Lanzhou, People’s Republic of China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, People’s Republic of China
| | - Lu Mengmeng
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, College of Chemical Engineering, Northwest Minzu University, Lanzhou, People’s Republic of China
| | - Zhang Fupeng
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, College of Chemical Engineering, Northwest Minzu University, Lanzhou, People’s Republic of China
| | - Ren Fang
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, College of Chemical Engineering, Northwest Minzu University, Lanzhou, People’s Republic of China
| | - Lu Zhibin
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, People’s Republic of China
| | - Pang Shaofeng
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, College of Chemical Engineering, Northwest Minzu University, Lanzhou, People’s Republic of China
| | - Meng Shujuan
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, College of Chemical Engineering, Northwest Minzu University, Lanzhou, People’s Republic of China
| | - Wang Yanbin
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, College of Chemical Engineering, Northwest Minzu University, Lanzhou, People’s Republic of China
| | - Su Qiong
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, College of Chemical Engineering, Northwest Minzu University, Lanzhou, People’s Republic of China
| |
Collapse
|
9
|
Sun M, Guo W, Meng M, Zhang Q. Construction of sub-micron eccentric Ag@PANI particles by interface and redox potential engineering. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
10
|
Abstract
Our demand for ubiquitous and reliable gas detection is spurring the design of intelligent and enabling gas sensors for the next-generation Internet of Things and Artificial Intelligence. The desire to introduce gas sensors everywhere is fueled by opportunities to create room-temperature semiconductor gas sensors with ultralow power consumption. In this Perspective, we provide an overview of the recent achievement of room-temperature gas sensors that have been translated from the advances in the design of the chemical and physical properties of low-dimensional semiconductor nanomaterials. The emergence of solution-processable nanomaterials opens up remarkable opportunities to integrate into high-performance and flexible room-temperature gas sensors by using low-temperature, large-area, solution-based methods instead of costly, high-vacuum, high-temperature device manufacturing processes. We review the fundamental factors which affect the receptor and transducer functions of semiconductor gas sensors. We also discuss challenges that must be addressed in the move to the continuous miniaturization and evolution of semiconductor gas sensors.
Collapse
Affiliation(s)
- Yanting Tang
- School of Optical and Electronic Information, School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Optics Valley Laboratory, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Yunong Zhao
- School of Optical and Electronic Information, School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Optics Valley Laboratory, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Huan Liu
- School of Optical and Electronic Information, School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Optics Valley Laboratory, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, China
| |
Collapse
|
11
|
Che S, Xu A, Shou Q, Yin L, Zhou C, Fu H, She Y. A fluorescent and colorimetric sensor based on ionic liquids for the on-site monitoring trace gaseous SO2. Anal Chim Acta 2022; 1232:340396. [DOI: 10.1016/j.aca.2022.340396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/08/2022] [Accepted: 09/11/2022] [Indexed: 11/29/2022]
|