1
|
Yu H, Guo D, Chen X, Liang X, Yang Z, Han L, Xiao W. Feasibility of biomass-based flexible and transparent AuNPs-acetylcellulose membrane for multifarious surface-enhanced Raman spectroscopy detection. Anal Chim Acta 2024; 1327:343157. [PMID: 39266062 DOI: 10.1016/j.aca.2024.343157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 08/17/2024] [Accepted: 08/25/2024] [Indexed: 09/14/2024]
Abstract
BACKGROUND Lignocellulosic biomass-based derivatives coupled with surface-enhanced Raman spectroscopy (SERS) technology have emerged as an appealing and indispensable tool in food safety and environmental monitoring for rapidly detecting trace contaminants like pesticide residues. The membrane material, serving as a substrate, ensures both sampling flexibility and test accuracy by directing the diffusion-adsorption process of the molecules. However, the existing membrane substrates, critical for the practical application of SERS, suffer from issues such as costly, intricate fabrication procedures, or restricted detection capabilities. RESULTS Herein, we present a flexible, transparent, and biodegradable cellulose acetate membrane with gold nanoparticles (AuNPs) uniformly embedded, fabricated using a simple scraping method. This membrane achieved a limit of detection (LOD) of thiram pesticide in water at 10-8 g mL-1. The unique optical transparency of the substrates allowed for in-situ detection on surfaces, with an LOD of thiram reaching 30 ng cm-2. SIGNIFICANCE Furthermore, SERS substrates made from corn stover-derived cellulose acetate enable the detection of various contaminants, highlighting their cost-effectiveness and eco-friendliness because of the abundance and low environmental impact of the raw materials.
Collapse
Affiliation(s)
- Haitao Yu
- College of Engineering, China Agricultural University (East Campus), Beijing, 100083, China; College of Information Engineering, Jiangsu Vocational College of Agricultural and Forestry, Zhenjiang, Jiangsu, 212400, China
| | - Dongyi Guo
- College of Engineering, China Agricultural University (East Campus), Beijing, 100083, China
| | - Xueli Chen
- Laboratory of Renewable Resources Engineering (LORRE) and Department of Agricultural andBiological Engineering, Purdue University, West Lafayette, IN, 47907, United States
| | - Xueyan Liang
- College of Engineering, China Agricultural University (East Campus), Beijing, 100083, China
| | - Zengling Yang
- College of Engineering, China Agricultural University (East Campus), Beijing, 100083, China
| | - Lujia Han
- College of Engineering, China Agricultural University (East Campus), Beijing, 100083, China
| | - Weihua Xiao
- College of Engineering, China Agricultural University (East Campus), Beijing, 100083, China.
| |
Collapse
|
2
|
Li W, Guan J, Fang H, Jiang Y, Zhong Y, Shi S, Cheng F. Continuously enhanced versatile nanocellulose films enabled by sustaining CO 2 capture and in-situ calcification. Carbohydr Polym 2024; 342:122362. [PMID: 39048191 DOI: 10.1016/j.carbpol.2024.122362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/24/2024] [Accepted: 06/02/2024] [Indexed: 07/27/2024]
Abstract
Cellulose possesses numerous favorable peculiarities to replace petroleum-based materials. Nevertheless, the extremely high hygroscopicity of cellulose severely degrades their mechanical performance, which is a major obstacle to the production of high-strength, multi-functional cellulose-based materials. In this work, a simple strategy was proposed to fabricate durable versatile nanocellulose films based on sustaining CO2 capture and in-situ calcification. In this strategy, Ca(OH)2 was in-situ formed on the films by Ca2+ crosslinking and subsequent introduction of OH-, which endowed the films with high mechanical strength and carbon sequestration ability. The following CO2 absorption process continuously improved the water resistance and durability of the films, and enabled them to maintain excellent mechanical properties and promising light management ability. After a 30-day CO2 absorption process, the water contact angle of the films can be increased from 43° to 79°, and the weight gain rate of the films in a 30 h water-absorption process can be sharply decreased from 331.2 % to 52.2 %. The films could maintain a high tensile strength of 340 MPa, and result in a CO2 absorption rate of 3.5 mmol/gcellulose after 30 days. In this study, the improvement of durability and carbon sequestration of nanocellulose films was achieved by a simple and effective method.
Collapse
Affiliation(s)
- Wenjing Li
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Jilun Guan
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Huayang Fang
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Yuheng Jiang
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Yu Zhong
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Shaohong Shi
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China.
| | - Fangchao Cheng
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China; College of Material Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China.
| |
Collapse
|
3
|
Shigrekar M, Amdoskar V. A review on recent progress and techniques used for fabricating superhydrophobic coatings derived from biobased materials. RSC Adv 2024; 14:32668-32699. [PMID: 39421684 PMCID: PMC11483902 DOI: 10.1039/d4ra04767b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/07/2024] [Indexed: 10/19/2024] Open
Abstract
Superhydrophobic coatings with remarkable water repellence have emerged as an increasingly prominent field of research with the growth of the material engineering and coating industries. Superhydrophobic coatings address the requirements of several application areas with characteristics including corrosion resistance, drag reduction, anti-icing, anti-fogging, and self-cleaning properties. Furthermore, the range of applications for superhydrophobic coatings has been substantially broadened by the inclusion of key performance features such as flame retardancy, thermal insulation, resistance to water penetration, UV resistance, transparency, anti-reflection, and many more. Numerous research endeavours have been focused on biomimetic superhydrophobic materials because of their distinct surface wettability. To develop superhydrophobic coatings with a long lifespan, scientists have refined the processes of material preparation and selection. To accomplish water repellency, superhydrophobic coatings are usually fabricated using harmful fluorinated chemicals or synthetic polymers. Utilising materials derived from biomass offers a sustainable alternative that uses renewable resources in order to eliminate the consumption of these hazardous substances. This paper provides an insight of several researches reported on the construction of superhydrophobic coatings using biomass materials such as lignin, cellulose, chitosan and starch along with the techniques used for the constructing superhydrophobic coatings. This study is a useful resource that offers guidance on the selection of various biobased polymers for superhydrophobic coatings tailored to specific applications. The further part of the paper put a light on different application of superhydrophobic coatings employed in various disciplines and the future perspectives of the superhydrophobic coatings.
Collapse
Affiliation(s)
- Mugdha Shigrekar
- SK Somaiya College, Somaiya Vidyavihar University Vidyavihar Mumbai Maharashtra 400077 India
| | - Vaijayanti Amdoskar
- SK Somaiya College, Somaiya Vidyavihar University Vidyavihar Mumbai Maharashtra 400077 India
| |
Collapse
|
4
|
Li S, Cui B, Jia X, Wang W, Cui Y, Ding J, Yang C, Fang Y, Song Y, Zhang X. A cellulose-based light-management film incorporated with benzoxazine resin/tannic acid exhibiting UV/blue light double blocking and enhanced mechanical property. Int J Biol Macromol 2024; 278:134461. [PMID: 39153676 DOI: 10.1016/j.ijbiomac.2024.134461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/14/2024] [Accepted: 08/01/2024] [Indexed: 08/19/2024]
Abstract
Cellulose, as a biomass resource, has attracted increasingly attention and extensive research by virtue of its widely sources, ideal degradability, good mechanical properties and easy modification due to its rich hydroxyl groups. Nevertheless, it is still a challenge to attain high performance cellulose-based composite film materials with diverse functional combinations. In this work, we developed a multifunctional cellulose-based film via a facile impregnation-curing strategy. Here, benzoxazine resin (BR) is used as an optically functional component to endow the microfibrillated cellulose (MFC) film with powerful light management capabilities including UV and blue light double shielding, high transmittance, and high haze. Meanwhile, the introduction of tannic acid (TA) substantially enhanced the mechanical properties of the film, including tensile strength and toughness, by constructing energy-sacrificial bonds. An effective self-healing of the film was achieved by controlling the degree of BR curing. The final films exhibited 98.24 % UV shielding and 89.98 % blue light blocking, good mechanical properties including a tensile strength of 202.21 MPa and tensile strain of 7.1 %, as well as desirable thermal healing properties supported by incompletely cured BR. This work may provide new insights into the high-value utilization of biomass resources.
Collapse
Affiliation(s)
- Shuang Li
- Key Laboratory of Bio-Based Material Science and Technology (Ministry of Education), Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China
| | - Boyu Cui
- Key Laboratory of Bio-Based Material Science and Technology (Ministry of Education), Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China
| | - Xue Jia
- Key Laboratory of Bio-Based Material Science and Technology (Ministry of Education), Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China
| | - Weihong Wang
- Key Laboratory of Bio-Based Material Science and Technology (Ministry of Education), Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China.
| | - Yutong Cui
- Key Laboratory of Bio-Based Material Science and Technology (Ministry of Education), Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China
| | - Jiayan Ding
- Key Laboratory of Bio-Based Material Science and Technology (Ministry of Education), Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China
| | - Chunmao Yang
- Key Laboratory of Bio-Based Material Science and Technology (Ministry of Education), Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China
| | - Yiqun Fang
- Key Laboratory of Bio-Based Material Science and Technology (Ministry of Education), Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China
| | - Yongming Song
- Key Laboratory of Bio-Based Material Science and Technology (Ministry of Education), Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China
| | - Xianquan Zhang
- Key Laboratory of Bio-Based Material Science and Technology (Ministry of Education), Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
5
|
Zhang H, Li M, Liu Z, Li R, Cao Y. Heat-sealable, transparent, and degradable arabinogalactan/polyvinyl alcohol films with UV-shielding, antibacterial, and antioxidant properties. Int J Biol Macromol 2024; 275:133535. [PMID: 38945318 DOI: 10.1016/j.ijbiomac.2024.133535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 06/11/2024] [Accepted: 06/27/2024] [Indexed: 07/02/2024]
Abstract
Petroleum-based packaging materials are nondegradable and unsustainable and thus are harmful to the environment. Renewable packaging films prepared from bio-based raw materials are promising alternatives to petroleum-based packaging materials. In this study, colorless and transparent bio-based films were successfully cast using a solution containing a mixture of arabinogalactan (AG) and poly (vinyl alcohol) (PVA). Vanillin was incorporated into the mixture to endow the films with UV-shielding, antioxidant, and antibacterial properties. The morphological, physical, antioxidant, and antibacterial properties of the blend films were then characterized. At an AG:PVA weight ratio of 1:3, and the vanillin content was 0.15 %, the tensile strength of the AG/PVA/Vanillin (APV) films reached ~28 MPa, while their elongation at break reached ~475 %. The addition of vanillin significantly affected the antioxidant and antibacterial properties of the blend films, which exhibited superb UV barrier capacity. The APV films exhibited extremely low oxygen transmittance, delaying the onset of mold/rot in strawberries and reducing their weight loss. Because of the heat sealability of the blend films, they can be used for encapsulating various substances, such as concentrated laundry liquid. Moreover, the blend films were recyclable and biodegradable. Thus, these films have great potential for applications that require sustainable packaging.
Collapse
Affiliation(s)
- Hongzhuang Zhang
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab Pulp & Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, PR China.
| | - Mengqing Li
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab Pulp & Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, PR China.
| | - Zhulan Liu
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab Pulp & Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, PR China; Huatai Group Corp Ltd., Dongying 257335, PR China.
| | - Ren'ai Li
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab Pulp & Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, PR China.
| | - Yunfeng Cao
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab Pulp & Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, PR China.
| |
Collapse
|
6
|
Dong X, Shang J, Xiao T, Song R, Sheng X, Li N, Zhang J, Ping Q. A facile method to fabricate sustainable bamboo ethanol lignin/carboxymethylcellulose films with efficient anti-ultraviolet and insulation properties. Int J Biol Macromol 2024; 273:132959. [PMID: 38848848 DOI: 10.1016/j.ijbiomac.2024.132959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
Given the environmental concerns related to the non-degradability of conventional petroleum-based polymer films, the synthesis of biodegradable films utilizing natural polymers derived from biomass has emerged as a promising alternative, garnering significant attention in recent research endeavors. This research introduced an environmentally friendly and efficient method, utilizing extract liquid from the green ethanol pulping process as the solvent to completely dissolve carboxymethylcellulose into the film-forming liquid, and employing the solution pouring technique to successfully fabricate bamboo ethanol lignin/carboxymethylcellulose films (LCF). The findings revealed that the lignin content significantly influenced the LCF, endowing them with tunable mechanical properties, effective UV-blocking, and thermal insulation capabilities. With a lignin addition of 3.75 %, LCF-3.75 exhibited enhanced mechanical properties, characterized by a tensile strength of 19.4 MPa, along with superior UV-blocking efficiency, blocking 100 % of UVB and 99.81 % of UVA rays. Furthermore, relative to LCF-0, LCF-3.75 had been shown to possess enhanced hydrophobicity and thermal stability, culminating in the development of the composite films that showcased exceptional thermal insulation properties and biodegradability. The films not only harbored extensive application prospects as an anti-ultraviolet and heat-insulating glass films but also represented a potential avenue for the efficient utilization of lignin, thereby contributing to sustainable development.
Collapse
Affiliation(s)
- Xu Dong
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China; College of Light Industry and Textile, Qiqihar University, 42 Culture Street, Qiqihar 161006, China
| | - Jin Shang
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Tianyuan Xiao
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China; College of Light Industry and Textile, Qiqihar University, 42 Culture Street, Qiqihar 161006, China
| | - Rui Song
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Xueru Sheng
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Na Li
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Jian Zhang
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Qingwei Ping
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
7
|
Godoy Zúniga MM, Ding R, Oh E, Nguyen TB, Tran TT, Nam JD, Suhr J. Avocado seed starch utilized in eco-friendly, UV-blocking, and high-barrier polylactic acid (PLA) biocomposites for active food packaging applications. Int J Biol Macromol 2024; 265:130837. [PMID: 38503372 DOI: 10.1016/j.ijbiomac.2024.130837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/22/2024] [Accepted: 03/11/2024] [Indexed: 03/21/2024]
Abstract
Efficient and effective use of biopolymers, such as starch, has increasingly prompted interest due to the current environmental challenges. However, starch-based composites still show poor ductility along with water and oxygen permeability, which may not meet the requirements for food packaging standards. In this study, modified starch (m-St), isolated from the avocado seed and synthesized with tert-butyl acetoacetate (t-BAA), was embedded into polylactic acid (PLA) to design new eco-friendly composites. The developed biocomposites were found to exhibit high performance with outstanding mechanical properties in conjunction with remarkable light, water vapor, and oxygen blocking features for food packaging applications. PLA/m-St(1:6) 20 wt% composites showed a dramatic increase in elongation at break (EB%) from 3.35 to 27.80 % (about 730 % enhancement) and exhibited remarkable UV-blocking performance from 16.21 to 83.86 % for UVB, relative to pure PLA. Equally importantly, these biocomposites revealed significant improvement in oxygen and water vapor barrier performance by reducing their values from 1331 to 32.9 cc m-2 day-1 (indicating a remarkable reduction of 97.53 %) and 61.9 to 28 g m-2 day-1, respectively. This study can show the great potential of extracting starch from biowaste resources and transforming it into sustainable bio-based composites as a promising solution for food packaging applications.
Collapse
Affiliation(s)
- Marcela María Godoy Zúniga
- Department of Polymer Science & Engineering, Sungkyunkwan University, 2066, Seoburo, Jangan-gu, Gyeonggi-do 16419, Republic of Korea
| | - Ruonan Ding
- Department of Energy Science, Sungkyunkwan University, 2066, Seoburo, Jangan-gu, Gyeonggi-do 16419, Republic of Korea; Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Laoshan District, Qingdao, Shandong, China, 266104
| | - Eunyoung Oh
- School of Mechanical Engineering, Sungkyunkwan University, 2066, Seoburo, Jangan-gu, Gyeonggi-do 16419, Republic of Korea
| | - Tan Binh Nguyen
- Department of Polymer Science & Engineering, Sungkyunkwan University, 2066, Seoburo, Jangan-gu, Gyeonggi-do 16419, Republic of Korea
| | - Trung Tien Tran
- School of Mechanical Engineering, Sungkyunkwan University, 2066, Seoburo, Jangan-gu, Gyeonggi-do 16419, Republic of Korea
| | - Jae-Do Nam
- Department of Polymer Science & Engineering, Sungkyunkwan University, 2066, Seoburo, Jangan-gu, Gyeonggi-do 16419, Republic of Korea; Department of Energy Science, Sungkyunkwan University, 2066, Seoburo, Jangan-gu, Gyeonggi-do 16419, Republic of Korea
| | - Jonghwan Suhr
- Department of Polymer Science & Engineering, Sungkyunkwan University, 2066, Seoburo, Jangan-gu, Gyeonggi-do 16419, Republic of Korea; School of Mechanical Engineering, Sungkyunkwan University, 2066, Seoburo, Jangan-gu, Gyeonggi-do 16419, Republic of Korea.
| |
Collapse
|
8
|
Zhang Y, Li DQ, Yang CX, Xiong ZW, Tohti M, Zhang YQ, Chen HJ, Li J. Polymerization strategy for cellulose nanocrystals-based photonic crystal films with water resisting property. Int J Biol Macromol 2024; 265:130793. [PMID: 38503368 DOI: 10.1016/j.ijbiomac.2024.130793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/26/2024] [Accepted: 03/09/2024] [Indexed: 03/21/2024]
Abstract
Cellulose nanocrystals (CNCs) can form a liquid crystal film with a chiral nematic structure by evaporative-induced self-assembly (EISA). It has attracted much attention as a new class of photonic liquid crystal material because of its intrinsic, unique structural characteristics, and excellent optical properties. However, the CNCs-based photonic crystal films are generally prepared via the physical crosslinking strategy, which present water sensitivity. Here, we developed CNCs-g-PAM photonic crystal film by combining free radical polymerization and EISA. FT-IR, SEM, POM, XRD, TG-DTG, and UV-Vis techniques were employed to characterize the physicochemical properties and microstructure of the as-prepared films. The CNCs-g-PAM films showed a better thermo-stability than CNCs-based film. Also, the mechanical properties were significantly improved, viz., the elongation at break was 9.4 %, and tensile strength reached 18.5 Mpa, which was a much better enhancement than CNCs-based film. More importantly, the CNCs-g-PAM films can resist water dissolution for more than 24 h, which was impossible for the CNCs-based film. The present study provided a promising strategy to prepare CNCs-based photonic crystal film with high flexibility, water resistance, and optical properties for applications such as decoration, light management, and anti-counterfeiting.
Collapse
Affiliation(s)
- Yue Zhang
- College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumchi 830052, China
| | - De-Qiang Li
- College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumchi 830052, China.
| | - Cai-Xia Yang
- College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumchi 830052, China
| | - Zi-Wei Xiong
- College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumchi 830052, China
| | - Maryamgul Tohti
- College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumchi 830052, China
| | - Yu-Qing Zhang
- College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumchi 830052, China
| | - Hong-Jie Chen
- College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumchi 830052, China
| | - Jun Li
- College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumchi 830052, China.
| |
Collapse
|
9
|
Li S, Cui B, Jia X, Wang W, Cui Y, Ding J, Yang C, Fang Y, Song Y, Zhang X. Cellulose-based light-management film exhibiting flame-retardant and thermal-healing properties. Int J Biol Macromol 2024; 265:130447. [PMID: 38458280 DOI: 10.1016/j.ijbiomac.2024.130447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/28/2024] [Accepted: 02/23/2024] [Indexed: 03/10/2024]
Abstract
The increased use and expansion of biomass applications offer a viable approach to diminish reliance on petroleum-derived resources and promote carbon neutrality. Cellulose, being the most abundant natural polymer on Earth, has garnered considerable attention. This study introduces a straightforward method to fabricate a cellulose-based multifunctional composite film designed for efficient light management, specifically featuring flame retardant and thermal-healing capabilities. The film incorporates a microfibrillated cellulose (MFC) matrix with functional components, namely benzoxazine resin (BR) and 2-hydroxyethyl methacrylate phosphate (HEMAP). Utilizing dynamic covalent crosslinking, the composite films exhibit satisfactory self-healing properties. The combined effects of BR and HEMAP contribute to the effective flame retardancy of the composite film. Furthermore, the resulting film shields ultraviolet and blue light, offering comfortable interior lighting by mitigating harsh light and extending light propagation. The film also demonstrates favorable water resistance and high tensile strength. The exceptional multifunctional properties, coupled with its safety and extended service life, position it as a potential optical management film for smart building materials.
Collapse
Affiliation(s)
- Shuang Li
- Key Laboratory of Bio-Based Material Science and Technology (Ministry of Education), Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China
| | - Boyu Cui
- Key Laboratory of Bio-Based Material Science and Technology (Ministry of Education), Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China
| | - Xue Jia
- Key Laboratory of Bio-Based Material Science and Technology (Ministry of Education), Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China
| | - Weihong Wang
- Key Laboratory of Bio-Based Material Science and Technology (Ministry of Education), Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China.
| | - Yutong Cui
- Key Laboratory of Bio-Based Material Science and Technology (Ministry of Education), Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China
| | - Jiayan Ding
- Key Laboratory of Bio-Based Material Science and Technology (Ministry of Education), Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China
| | - Chunmao Yang
- Key Laboratory of Bio-Based Material Science and Technology (Ministry of Education), Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China
| | - Yiqun Fang
- Key Laboratory of Bio-Based Material Science and Technology (Ministry of Education), Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China
| | - Yongming Song
- Key Laboratory of Bio-Based Material Science and Technology (Ministry of Education), Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China
| | - Xianquan Zhang
- Key Laboratory of Bio-Based Material Science and Technology (Ministry of Education), Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
10
|
Zhang S, Zhang X, Wan X, Zhang H, Tian J. Fabrication of biodegradable films with UV-blocking and high-strength properties from spent coffee grounds. Carbohydr Polym 2023; 321:121290. [PMID: 37739526 DOI: 10.1016/j.carbpol.2023.121290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/31/2023] [Accepted: 08/09/2023] [Indexed: 09/24/2023]
Abstract
Utilizing spent coffee grounds (SCG) to produce high value-added materials is attractive and meaningful. In this work, a multi-functional biomass film is prepared from SCG and dissolving pulp through a dissolution and regeneration process. Importantly, dissolving pulp as a reinforcing additive can significantly enhance the mechanical strength of the regenerated SCG film. The prepared composite films with SCG contents ranging from 33.33 wt% to 81.82 wt% demonstrate excellent optical and mechanical properties. The composite film with 66.67 wt% SCG exhibits outstanding UV blocking capability (99.43 % for UVB and 96.59 % for UVA) and high haze (69.22%); meanwhile, the composite film with 33.33 wt% SCG performs better mechanical strength (58.69 MPa tensile strength and 3.13 GPa Young's modulus) and superior biodegradability (fully degraded within 26 days by being buried in soil) than commercial plastic. This work generally introduces a facile and practical approach to converting waste SCG into promising materials in various fields.
Collapse
Affiliation(s)
- Shaokai Zhang
- State Key Lab of Pulp and Papermaking Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Xue Zhang
- State Key Lab of Pulp and Papermaking Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510641, China; China National Pulp and Paper Research Institute Co., Ltd., Beijing 100102, China
| | - Xiaofang Wan
- State Key Lab of Pulp and Papermaking Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Hongjie Zhang
- China National Pulp and Paper Research Institute Co., Ltd., Beijing 100102, China.
| | - Junfei Tian
- State Key Lab of Pulp and Papermaking Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510641, China.
| |
Collapse
|
11
|
Nawaz H, Chen S, Zhang X, Li X, You T, Zhang J, Xu F. Cellulose-Based Fluorescent Material for Extreme pH Sensing and Smart Printing Applications. ACS NANO 2023; 17:3996-4008. [PMID: 36786234 DOI: 10.1021/acsnano.2c12846] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Environment-responsive fluorescence materials are being widely investigated for instrument-free determination of various environmental factors. However, developing an eco-friendly cellulose-based fluorescent pH sensor for sensing extreme acidity and alkalinity is still challenging. Herein, a highly fluorescent and multifunctional material is developed from biopolymer-based cellulose acetate. A biopolymer-based structure containing responsive functional groups such as -C═O and -NH is constructed by chemically bonding 5-amino-2,3-dihydrophthalazine-1,4-dione (luminol) onto cellulose acetate using 4,4'-diphenylmethane diisocyanate (MDI) as a cross-linking agent. The prepared material (Lum-MDI-CA) is characterized by UV-vis, Fourier transform infrared, 1H NMR, 13C NMR spectroscopies, and fluorescence techniques. The material exhibits excellent aqua blue fluorescence and demonstrates extreme pH sensing applications. Interesting results are further revealed after adding a pH-unresponsive dye such as MTPP as the reference to develop the ratiometric method. The ratiometric system clearly differentiates the extreme acidic pH 1 from pH 2 and extreme alkaline pH 12, 13, and 14 by visual and fluorescence color change response under a narrow pH range. In addition, the material is fabricated into transparent flexible fluorescent films which demonstrate an outstanding UV shielding, security printing, and haze properties for smart food packaging and printing applications.
Collapse
Affiliation(s)
- Haq Nawaz
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Sheng Chen
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Xun Zhang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Xin Li
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Tingting You
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Jun Zhang
- CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China
| | - Feng Xu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
12
|
Cellulose-Based Light-Management Films with Improved Properties Directly Fabricated from Green Tea. POLYSACCHARIDES 2022. [DOI: 10.3390/polysaccharides3040045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Tea polyphenols are a phenolic bioactive compound extracted from tea leaves and have been widely used as additives to prepare functional materials used in packaging, adsorption and energy fields. Nevertheless, tea polyphenols should be extracted first from the leaves before use, leading to energy consumption and the waste of tea. Therefore, completely and directly utilizing the tea leaf to fabricate novel composite materials is more attractive and meaningful. Herein, semi-transparent green-tea-based all-biomass light-management films with improved strength, a tunable haze (60–80%) and UV-shielding properties (24.23% for UVA and 4.45% for UVB) were directly manufactured from green tea by adding high-degree polymerization wood pulps to form entanglement networks. Additionally, the green-tea-based composite films can be produced on a large scale by adding green tea solution units to the existing continuous production process of pure cellulose films. Thus, a facile and feasible approach was proposed to realize the valorization of green tea by preparing green-tea-based all-biomass light-management films that have great prospects in flexible devices and energy-efficient buildings.
Collapse
|
13
|
Li S, Cui B, Xie H, Jia X, Hao S, Wang W. Strong Cellulose-Based Light-Management Film with Ultraviolet Blocking and Near-Infrared Shielding Performance. ACS APPLIED MATERIALS & INTERFACES 2022; 14:42522-42530. [PMID: 36084176 DOI: 10.1021/acsami.2c12561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Light-management materials play a great significant role in efficient-energy buildings because they reduce indoor energy consumption by adjusting to natural sunlight, enhancing heat insulation, and creating comfortable indoor lighting. Here, we fabricated an ecofriendly and sustainable lignocellulose-based light-management film via a facile homogenization and mechanical hot-pressing method without complicated treatment or toxic reagents. The resulting film exhibited a favorable ultraviolet (UV) blocking performance of 82.25% for UVA, high visible light transmittance, and high haze, with a desirable tensile strength of 197 MPa, which was significantly higher than those of most petroleum-based plastics. Accordingly, the film was further endowed with near-infrared absorption performance by spray-coating with lanthanum hexaboride (LaB6) nanoparticles─there were almost no adverse effects on its light transmittance or mechanical strength. Meanwhile, the high haze of the film implied that it met the requirement for privacy protection in smart buildings. The MFC/lignin/LaB6 composite film has potential applications in energy-saving buildings and optoelectronic devices.
Collapse
Affiliation(s)
- Shuang Li
- Key Laboratory of Bio-Based Material Science and Technology (Ministry of Education), Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China
| | - Boyu Cui
- Key Laboratory of Bio-Based Material Science and Technology (Ministry of Education), Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China
| | - Hao Xie
- Key Laboratory of Bio-Based Material Science and Technology (Ministry of Education), Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China
| | - Xue Jia
- Key Laboratory of Bio-Based Material Science and Technology (Ministry of Education), Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China
| | - Shuo Hao
- Key Laboratory of Bio-Based Material Science and Technology (Ministry of Education), Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China
| | - Weihong Wang
- Key Laboratory of Bio-Based Material Science and Technology (Ministry of Education), Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
14
|
Yong Q, Xu J, Wang L, Tirri T, Gao H, Liao Y, Toivakka M, Xu C. Synthesis of galactoglucomannan-based latex via emulsion polymerization. Carbohydr Polym 2022; 291:119565. [DOI: 10.1016/j.carbpol.2022.119565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 04/27/2022] [Accepted: 04/29/2022] [Indexed: 11/02/2022]
|
15
|
Zheng T, Yang L, Li J, Cao M, Shu L, Yang L, Zhang XF, Yao J. Lignocellulose hydrogels fabricated from corncob residues through a green solvent system. Int J Biol Macromol 2022; 217:428-434. [PMID: 35843394 DOI: 10.1016/j.ijbiomac.2022.07.077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/23/2022] [Accepted: 07/09/2022] [Indexed: 11/29/2022]
Abstract
It is still a challenge to find an effective solvent system that can simultaneously dissolve the cellulose and lignin in biomass residues to fabricate lignocellulose hydrogels (LHs). Herein, corncob residues from furfural production were pretreated with alkaline peroxide to regulate the lignin content. The lignin/cellulose composites with various lignin content were then dissolved and regenerated by a green and facile ZnCl2/CaCl2 solvent system. The inorganic salt solvents were served as linkers and flexible LHs were obtained. Substrate material containing 10.75% lignin shows the best compressive stress (76.71 kPa). Inspired by its superior ionic conductivity, the hydrogels were assembled into a solid-state electrolyte for a zinc-ion hybrid supercapacitor. This research develops a feasible, simple, and low-cost route for lignin-containing hydrogel preparation and offers insights into the high-value application of agro-industrial lignocellulosic wastes.
Collapse
Affiliation(s)
- Tianran Zheng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Luan Yang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jingqiu Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Mengjue Cao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Lian Shu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Lvye Yang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xiong-Fei Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jianfeng Yao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
16
|
Yu S, Gan M, Chen Y, Hu Z, Xie Y, Feng Q. Fabrication of lignin-containing cellulose bio-composite based on unbleached corncob and wheat straw pulp. Int J Biol Macromol 2022; 208:741-747. [PMID: 35367472 DOI: 10.1016/j.ijbiomac.2022.03.192] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 11/05/2022]
Abstract
In contemporary life, plastic, a kind of petroleum carbon source, has been produced and used in varieties of applications. However, the vast consumption of petroleum-based plastic and the burning of agricultural wastes make the environmental problems increasingly severe. Furthermore, a large number of lignocellulosic resources (such as corncob and wheat straw) are often wasted and burned, which will aggravate the environmental damage. In this paper, we use unbleached corncob and wheat straw pulp to fabricate the lignin-containing cellulose bio-composites (LCBs) to reduce non-renewable energy consumption and utilize agricultural wastes. The LCBs were obtained by a direct manufacturing process in benzyltrimethyl ammonium hydroxide (BzMe3NOH) aqueous solution under mild conditions, constituting an entwined composite structure of cellulose micro/nano-fibers. This unique micro/nano-structure provides bio-composites with the outstanding mechanical performance of 96.7 MPa and a high haze of 90.1%. Meanwhile, with the inherent lignin, the LCBs could filter over 81.8% UV-C. As the raw material used is pure natural lignocellulose, the bio-composites prepared have innate environmental friendliness. With exceptional mechanical strength, UV-shielding property, and innate environmental friendliness, the LCBs are possible and potential substitutes for traditional petroleum-based plastic that is easily aging or non-biodegradable.
Collapse
Affiliation(s)
- Shixu Yu
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, Hubei University of Technology, Wuhan 430068, China
| | - Meixue Gan
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, Hubei University of Technology, Wuhan 430068, China
| | - Yiruo Chen
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, Hubei University of Technology, Wuhan 430068, China
| | - Zhipeng Hu
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, Hubei University of Technology, Wuhan 430068, China
| | - Yimin Xie
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, Hubei University of Technology, Wuhan 430068, China
| | - Qinghua Feng
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, Hubei University of Technology, Wuhan 430068, China; Key Laboratory of Pulp and Paper Science and Technology of Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| |
Collapse
|
17
|
Liu J, Moreno A, Chang J, Morsali M, Yuan J, Sipponen MH. Fully Biobased Photothermal Films and Coatings for Indoor Ultraviolet Radiation and Heat Management. ACS APPLIED MATERIALS & INTERFACES 2022; 14:12693-12702. [PMID: 35230795 PMCID: PMC8931727 DOI: 10.1021/acsami.2c00718] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/17/2022] [Indexed: 05/16/2023]
Abstract
Sustainable materials are needed to mitigate against the increase in energy consumption resulting from population growth and urbanization. Here, we report fully biobased nanocomposite films and coatings that display efficient photothermal activity and selective absorption of ultraviolet (UV) radiation. The nanocomposites with 20 wt % of lignin nanoparticles (LNPs) embedded in a chitosan matrix displayed an efficient UV blocking of 97% at 400 nm along with solar energy-harvesting properties. The reflectance spectra of the nanocomposite films revealed the importance of well-dispersed nanoparticles in the matrix to achieve efficient UV-blocking properties. Finally, yet importantly, we demonstrate the nanocomposites with 20 wt % LNPs as photothermal glass coatings for passive cooling of indoor temperature by simply tailoring the coating thickness. Under simulated solar irradiation of 100 mW/cm2, the 20 μm coating achieved a 58% decrease in the temperature increment in comparison to the system with uncoated glass. These renewable nanocomposite films and coatings are highly promising sustainable solutions to facilitate indoor thermal management and improve human health and well-being.
Collapse
Affiliation(s)
- Jinrong Liu
- Department of Materials and
Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16C, SE-106 91 Stockholm, Sweden
| | - Adrian Moreno
- Department of Materials and
Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16C, SE-106 91 Stockholm, Sweden
| | - Jian Chang
- Department of Materials and
Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16C, SE-106 91 Stockholm, Sweden
| | - Mohammad Morsali
- Department of Materials and
Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16C, SE-106 91 Stockholm, Sweden
| | - Jiayin Yuan
- Department of Materials and
Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16C, SE-106 91 Stockholm, Sweden
| | - Mika H. Sipponen
- Department of Materials and
Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16C, SE-106 91 Stockholm, Sweden
| |
Collapse
|