1
|
Guo Y, Hu Z, Zhan L, Liu Y, Sun L, Ma Y. Stretchable Thermochromic Fluorescent Fibers Based on Self-Crystallinity Phase Change for Smart Wearable Displays. Polymers (Basel) 2024; 16:3575. [PMID: 39771427 PMCID: PMC11678549 DOI: 10.3390/polym16243575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/12/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
Smart fibers with tunable luminescence properties, as a new form of visual output, present the potential to revolutionize personal living habits in the future and are receiving more and more attention. However, a huge challenge of smart fibers as wearable materials is their stretching capability for seamless integration with the human body. Herein, stretchable thermochromic fluorescent fibers are prepared based on self-crystallinity phase change, using elastic polyurethane (PU) as the fiber matrix, to meet the dynamic requirements of the human body. The switching fluorescence-emitting characteristic of the fibers is derived from the reversible conversion of the dispersion/aggregation state of the fluorophore coumarin 6 (C6) and the quencher methylene blue (MB) in the phase-change material hexadecanoic acid (HcA) during heating/cooling processes. Considering the important role of phase-change materials, thermochromic fluorescent dye is encapsuled in the solid state via the piercing-solidifying method to avoid the dissolution of HcA by the organic solvent of the PU spinning solution and maintain excellent thermochromic behavior in the fibers. The fibers obtained by wet spinning exhibit good fluorescent emission contrast and reversibility, as well as high elasticity of 800% elongation. This work presents a strategy for constructing stretchable smart luminescence fibers for human-machine interaction and communications.
Collapse
Affiliation(s)
- Yongmei Guo
- Fujian Key Laboratory of Novel Functional Textile Fibers and Materials, Clothing and Design Faculty, Minjiang University, Fuzhou 350108, China
| | - Zixi Hu
- Engineering Research Center of Technical Textiles, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China; (Z.H.); (L.Z.); (Y.L.); (L.S.)
| | - Luyao Zhan
- Engineering Research Center of Technical Textiles, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China; (Z.H.); (L.Z.); (Y.L.); (L.S.)
| | - Yongkun Liu
- Engineering Research Center of Technical Textiles, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China; (Z.H.); (L.Z.); (Y.L.); (L.S.)
| | - Luping Sun
- Engineering Research Center of Technical Textiles, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China; (Z.H.); (L.Z.); (Y.L.); (L.S.)
| | - Ying Ma
- Engineering Research Center of Technical Textiles, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China; (Z.H.); (L.Z.); (Y.L.); (L.S.)
| |
Collapse
|
2
|
Wen K, Zhang C, Zhang G, Wang M, Mei G, Zhang Z, Zhao W, Guo W, Zhou Q, Liu E, Zhu Y, Bai J, Zhu M, Wang W, Liu Z, Zhou X. Jellyfish-Inspired Artificial Spider Silk for Luminous Surgical Sutures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2314158. [PMID: 39081084 DOI: 10.1002/adma.202314158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 07/08/2024] [Indexed: 09/19/2024]
Abstract
The development of functional surgical sutures with excellent mechanical properties, good fluorescence, and high cytocompatibility is highly required in the field of medical surgeries. Achieving fibers that simultaneously exhibit high mechanical robustness, good spinnability, and durable fluorescence emission has remained challenging up to now. Taking inspiration from the spinning process of spider silk and the luminescence mechanism of jellyfish, this work reports a luminous artificial spider silk prepared with the aim of balancing the fiber spinnability and mechanical robustness. This is realized by employing highly hydrated segments with aggregation-induced luminescence for enhancing the fiber spinnability and polyhydroxyl segments for increasing the fiber mechanical robustness. Twist insertion during fiber spinning improves the fiber strength, toughness, and fluorescence emission. Furthermore, coating the fiber with an additional polymer layer results in a "sheath-core" architecture with improved mechanical properties and capacity to withstand water. This work provides a new design strategy for performing luminescent and robust surgical sutures.
Collapse
Affiliation(s)
- Kai Wen
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Tianjin Key Laboratory of Functional Polymer Materials, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Chao Zhang
- Department of Science, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Guanghao Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Tianjin Key Laboratory of Functional Polymer Materials, College of Chemistry, Nankai University, Tianjin, 300071, China
- College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot, 010051, China
| | - Meilin Wang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Tianjin Key Laboratory of Functional Polymer Materials, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Guangkai Mei
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Tianjin Key Laboratory of Functional Polymer Materials, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Zhenzhen Zhang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Weiqiang Zhao
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Tianjin Key Laboratory of Functional Polymer Materials, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Wenjin Guo
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Tianjin Key Laboratory of Functional Polymer Materials, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Qiang Zhou
- Department of Orthopaedics, Tianjin First Central Hospital, Nankai University, Tianjin, 300071, China
| | - Enzhao Liu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, the Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Yutian Zhu
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, China
| | - Jie Bai
- College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot, 010051, China
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Wei Wang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Tianjin Key Laboratory of Functional Polymer Materials, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Zunfeng Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Tianjin Key Laboratory of Functional Polymer Materials, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xiang Zhou
- Department of Science, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
- College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot, 010051, China
| |
Collapse
|
3
|
Zhan L, Xu W, Hu Z, Fan J, Sun L, Wang X, Zhang Y, Shi X, Ding B, Yu J, Ma Y. Full-Color "Off-On" Thermochromic Fluorescent Fibers for Customizable Smart Wearable Displays in Personal Health Monitoring. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310762. [PMID: 38366074 DOI: 10.1002/smll.202310762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/23/2024] [Indexed: 02/18/2024]
Abstract
Responsive thermochromic fiber materials capable of miniaturization and integrating comfortably and compliantly onto the soft and dynamically deforming human body are promising materials for visualized personal health monitoring. However, their development is hindered by monotonous colors, low-contrast color changes, and poor reversibility. Herein, full-color "off-on" thermochromic fluorescent fibers are prepared based on self-crystallinity phase change and Förster resonance energy transfer for long-term and passive body-temperature monitoring, especially for various personalized customization purposes. The off-on switching luminescence characteristic is derived from the reversible conversion of the dispersion state and fluorescent emission by fluorophores and quencher molecules, which are embedded in the matrix of a phase-change material, during the crystallizing/melting processes. The achievement of full-color fluorescence is attributed to the large modulation range of fluorescence colors according to primary color additive theory. These thermochromic fluorescent fibers exhibit good mechanical properties, fluorescent emission contrast, and reversibility, showing their great potential in flexible smart display devices. Moreover, the response temperature of the thermochromic fibers is controllable by adjusting the phase-change material, enabling body-temperature-triggered luminescence; this property highlights their potential for human body-temperature monitoring and personalized customization. This work presents a new strategy for designing and exploring flexible sensors with higher comprehensive performances.
Collapse
Affiliation(s)
- Luyao Zhan
- Key Laboratory of Textiles Science and Technology of Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 200051, China
| | - Wanxuan Xu
- Key Laboratory of Textiles Science and Technology of Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Zixi Hu
- Key Laboratory of Textiles Science and Technology of Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 200051, China
| | - Jiayin Fan
- Key Laboratory of Textiles Science and Technology of Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 200051, China
| | - Luping Sun
- Key Laboratory of Textiles Science and Technology of Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 200051, China
| | - Xingchi Wang
- Key Laboratory of Textiles Science and Technology of Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 200051, China
| | - Yingying Zhang
- Key Laboratory of Textiles Science and Technology of Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Xiaodi Shi
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, China
| | - Bin Ding
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 200051, China
| | - Jianyong Yu
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 200051, China
| | - Ying Ma
- Key Laboratory of Textiles Science and Technology of Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 200051, China
| |
Collapse
|
4
|
Xu X, Yan B. Bionic Luminescent Skin as Ultrasensitive Temperature-Acoustic Sensor for Underwater Information Perception and Transmission. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309328. [PMID: 37870557 DOI: 10.1002/adma.202309328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/17/2023] [Indexed: 10/24/2023]
Abstract
Bioinspired artificial luminescent skin (L-skin) integrated with multiple sensing functions significantly promotes the development of smart devices. It is considerably challenging to realize underwater sensing technologies. Here, a sharkskin-inspired Eu@HOF-TJ-1@TA L-skin (1) is prepared for both temperature and sound sensing. 1 is an ultrathin and flexible temperature sensor, in 298.15-358.15 K, exhibiting ultrahigh maximum relative sensitivity (97.669% K-1 ) and low minimum uncertainty (0.000 952 K). The temperature response mechanism is analyzed deeply. As a waterproofing acoustic sensor, 1 can monitor sound in both air and water with the greatest sound response frequencies of 400 and 300 Hz in air and water, respectively. The maximum sensitivities of 1 in air and water are 6 593 765.2 and 1 346 124.5 cps Pa-1 , respectively. The response times of 1 in air and water are as fast as 20 and 10 ms. The sound response processes of 1 in air and water are simulated by finite element simulation. Moreover, by using sharkskin-inspired 1, the actual water temperature can be monitored, and a series of water sound information can be recognized by using an artificial neural network. This work proposes a sharkskin-inspired L-skin for temperature and acoustic sensing and promotes the development of underwater sensing technology with high performances.
Collapse
Affiliation(s)
- Xin Xu
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai, 200092, China
| | - Bing Yan
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai, 200092, China
| |
Collapse
|
5
|
Jin WJ, Xin Y, Guan JP, Cheng XW, Zhu MK, Wang D. Fabrication of multifunctional bio-macromolecule organic-inorganic hybrid system for protein silk: Photochromic, UV protection, fire-proof and super durability. Int J Biol Macromol 2023; 253:127296. [PMID: 37813211 DOI: 10.1016/j.ijbiomac.2023.127296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/23/2023] [Accepted: 10/05/2023] [Indexed: 10/11/2023]
Abstract
Nowadays, high value-added and multifunctional textiles have attracted widespread attention due to the changing demands of modern life. This study focused on the fabrication of silk with photochromism, flame retardancy, UV resistance and durability using riboflavin sodium phosphate (RSP) and various metal ions (Fe2+, Fe3+, Al3+, and Ti4+). Attractively, the photochromic performance was one of the most distinctive features of the modified silk, and the yellow silk fabric turned into fluorescent green under UV lamp. After a detailed comparison, it was determined that RSP/Fe3+ hybrid system was most effective in improving anti-UV performance of the silk with a high UPF of 25.8, achieving a "Good" level of UV protection. Specifically, it achieved a B1 fire protection with a low damaged-length of 9.4 cm and a high LOI of 28.3 %. Additionally, the modified silk showed the lowest smoke density, reducing by approximately 84.1 % versus that of pristine silk. Moreover, the modified silk was able to meet the B1 classification and the "Good" UV protection requirements even after 75 washing cycles, making it more durable than most functional textiles reported. The further analysis indicated that RSP and metal ions can synergistically enhance the condensed-phase action, thereby improving the fire resistance of silk.
Collapse
Affiliation(s)
- Wen-Jie Jin
- Key Laboratory of Flame Retardancy Finishing of Textile Materials (CNTAC), National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, 199 Renai Road, Suzhou 215123, China
| | - Yu Xin
- Key Laboratory of Flame Retardancy Finishing of Textile Materials (CNTAC), National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, 199 Renai Road, Suzhou 215123, China
| | - Jin-Ping Guan
- Key Laboratory of Flame Retardancy Finishing of Textile Materials (CNTAC), National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, 199 Renai Road, Suzhou 215123, China.
| | - Xian-Wei Cheng
- Key Laboratory of Flame Retardancy Finishing of Textile Materials (CNTAC), National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, 199 Renai Road, Suzhou 215123, China.
| | - Meng-Kai Zhu
- Central Research Institute, Zhejiang Hailide New material Co., Ltd., 18 Xinmi Road, Jiaxing 314400, China
| | - Dong Wang
- Central Research Institute, Zhejiang Hailide New material Co., Ltd., 18 Xinmi Road, Jiaxing 314400, China
| |
Collapse
|
6
|
Bai S, Zhang K, Zhang Q, Zhu Y, Wang W, Zhang J, Li X, Zhang X, Wang R. Intrinsic Flame Retardancy and Flexible Solid-Solid Phase Change Materials with Self-Healing and Recyclability. ACS APPLIED MATERIALS & INTERFACES 2023; 15:48613-48622. [PMID: 37791976 DOI: 10.1021/acsami.3c09722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Conventional polymeric phase change materials (PCMs) have been widely used due to their high heat storage density, small temperature variation, and nontoxicity. However, the high flammability and unrecyclable problems restrict their applications in energy storage devices (ESDs). Although it is facile to introduce a flame retardant into phase change materials to improve fire resistance, the physical blending will deteriorate the mechanical performance and thermal stability of PCMs. Herein, flame-retardant solid-solid PCMs (FRPCMs) with intrinsic flame retardancy, phase change property, self-healing, and recyclability were synthesized by simultaneously integrating tetrabromobisphenol A (TBBPA) and poly(ethylene glycol) (PEG) into polyurethane network skeletons. PEG ingredients acted as phase change materials, and TBBPA not only worked as an efficient flame retardant but also provided dynamic covalent bonds for thermally induced self-healing and recyclability. FRPCMs possess the highest latent heat of 124.7 J/g, high self-healing ability, and high thermal reliability and recyclability. Besides, with the introduction of TBBPA, the limiting oxygen index (LOI) value and char residue significantly increased, the heat release rate (HRR) and total heat release (THR) values decreased, and most of the FRPCMs reached UL94 V-2 rating as well. Hence, the synthesized FRPCMs could expand the application scope of PCMs for thermal energy storage.
Collapse
Affiliation(s)
- Shijie Bai
- Beijing Key Laboratory of Clothing Materials R&D and Assessment, Beijing Engineering Research Center of Textile Nanofiber, School of Materials Design & Engineering, Beijing Institute of Fashion Technology, Beijing 100029, P. R. China
| | - Kaixi Zhang
- Beijing Key Laboratory of Clothing Materials R&D and Assessment, Beijing Engineering Research Center of Textile Nanofiber, School of Materials Design & Engineering, Beijing Institute of Fashion Technology, Beijing 100029, P. R. China
| | - Qun Zhang
- Beijing Key Laboratory of Clothing Materials R&D and Assessment, Beijing Engineering Research Center of Textile Nanofiber, School of Materials Design & Engineering, Beijing Institute of Fashion Technology, Beijing 100029, P. R. China
| | - Yanlong Zhu
- Beijing Key Laboratory of Clothing Materials R&D and Assessment, Beijing Engineering Research Center of Textile Nanofiber, School of Materials Design & Engineering, Beijing Institute of Fashion Technology, Beijing 100029, P. R. China
| | - Wenqing Wang
- Beijing Key Laboratory of Clothing Materials R&D and Assessment, Beijing Engineering Research Center of Textile Nanofiber, School of Materials Design & Engineering, Beijing Institute of Fashion Technology, Beijing 100029, P. R. China
| | - Jing Zhang
- Beijing Key Laboratory of Clothing Materials R&D and Assessment, Beijing Engineering Research Center of Textile Nanofiber, School of Materials Design & Engineering, Beijing Institute of Fashion Technology, Beijing 100029, P. R. China
| | - Xin Li
- Beijing Key Laboratory of Clothing Materials R&D and Assessment, Beijing Engineering Research Center of Textile Nanofiber, School of Materials Design & Engineering, Beijing Institute of Fashion Technology, Beijing 100029, P. R. China
| | - Xiuqin Zhang
- Beijing Key Laboratory of Clothing Materials R&D and Assessment, Beijing Engineering Research Center of Textile Nanofiber, School of Materials Design & Engineering, Beijing Institute of Fashion Technology, Beijing 100029, P. R. China
| | - Rui Wang
- Beijing Key Laboratory of Clothing Materials R&D and Assessment, Beijing Engineering Research Center of Textile Nanofiber, School of Materials Design & Engineering, Beijing Institute of Fashion Technology, Beijing 100029, P. R. China
| |
Collapse
|
7
|
Nafady A, Alothman AA, Shaikh SF. Fabrication of photoluminescent electrically conductive and flame-retardant cellulose fabric incorporating polyaniline/strontium aluminate nanocomposite for a plethora of useful applications. Int J Biol Macromol 2023:125384. [PMID: 37330101 DOI: 10.1016/j.ijbiomac.2023.125384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/07/2023] [Accepted: 06/12/2023] [Indexed: 06/19/2023]
Abstract
The pad dry cure method was used to coat linen fibers with a smart nanocomposite that has photoluminescence, electrical conductivity, flame resistance, and hydrophobic properties. Environmentally benign silicone rubber (RTV) was utilized to encapsulate nanoparticles of rare-earth activated strontium aluminate nanoparticles (RESAN; 10-18 nm), polyaniline (PANi) and ammonium polyphosphate (APP) into linen surface. The flame resistance of the treated linen fabrics was evaluated for their self-extinguishing capabilities. The flame-retardant qualities of linen were retained for 24 washings. Additionally, the superhydrophobicity of the treated linen has marked improved upon increasing the concentration of RESAN. The colorless luminous film deposited onto linen surface was excited at 365 nm and emitted a wavelength of 518 nm. In accordance with the results of CIE (Commission internationale de l'éclairage) Lab and luminescence analysis, the photoluminescent linen gave rise to diverse colors, including off-white in daylight, green beneath UV radiation and greenish-yellow in a darkened room. The treated linen displayed sustained phosphorescence, as evidenced by decay time spectroscopy. The bending length and air permeability of linen were evaluated for their mechanical and comfort assessment. Finally, the coated linens exhibited remarkable antibacterial activity along with strong UV protection.
Collapse
Affiliation(s)
- Ayman Nafady
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Asma A Alothman
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Shoyebmohamad F Shaikh
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
8
|
Preparation of Thermosensitive Fluorescent Polyacrylamide Nanofiber Membrane and Visual Temperature Sensing. Polymers (Basel) 2022; 14:polym14194238. [PMID: 36236184 PMCID: PMC9571245 DOI: 10.3390/polym14194238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/02/2022] [Accepted: 10/06/2022] [Indexed: 11/05/2022] Open
Abstract
Fluorescent fibers are capable of discoloration behavior under special light sources, showing great potential for applications in biomedicine, environmental monitoring, heavy-metal-ion detaction, and anti-counterfeiting. In the current paper, temperature-sensitive fluorescent poly-acrylamide (PAM) nanofiber (AuNCs@PAM NF) membranes are prepared by mixing red fluorescent gold nanoclusters (AuNCs) synthesized in-house with PAM using the electrospinning technique. The AuNCs@PAM nanofibers obtained using this method present excellent morphology, and the AuNCs are uniformly dispersed in the fibers. The average diameter of the AuNCs@PAM NFs is 298 nm, and the diameter of AuNCs doped in the fibers is approximately 2.1 nm. Furthermore, the AuNCs@PAM NF films present excellent fluorescence and temperature-sensitive performance between 15 and 65 degrees. While under the 365 nm UV light source, the fiber film changes from white to red; this discoloration behavior weakens with the increase in temperature, and changes from deep to light red. Therefore, the approximate temperature can be identified using the color change, and a visual temperature-sensing effect can be achieved. The dual functions of temperature-sensitivity and fluorescent properties improve the scientificity and safety of nanofibers in the use of anti-counterfeiting technology.
Collapse
|
9
|
Zhu X, Hu N, Xu Z, Cai X, Müller‐Buschbaum P, Zhong Q. Easy care of silk fabrics realized by crosslinking thermo‐responsive copolymer film on its surface. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xiaoju Zhu
- Key Laboratory of Silk Culture Heritage and Products Design Digital Technology, Ministry of Culture and Tourism, School of Fashion Design and Engineering Zhejiang Sci‐Tech University Hangzhou China
| | - Neng Hu
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education Zhejiang Sci‐Tech University Hangzhou China
| | - Zheng Xu
- Department of Exhibition and Conservation National Silk Museum Hangzhou China
| | - Xin Cai
- Key Laboratory of Silk Culture Heritage and Products Design Digital Technology, Ministry of Culture and Tourism, School of Fashion Design and Engineering Zhejiang Sci‐Tech University Hangzhou China
| | - Peter Müller‐Buschbaum
- Physik‐Department, Lehrstuhl für Funktionelle Materialien Technische Universität München Garching Germany
- Heinz Maier‐Leibnitz Zentrum Technische Universität München Garching Germany
| | - Qi Zhong
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education Zhejiang Sci‐Tech University Hangzhou China
| |
Collapse
|
10
|
Froyen AA, Grossiord N, de Heer J, Meerman T, Yang L, Lub J, Schenning APHJ. Ink-Deposited Transparent Electrochromic Structural Colored Foils. ACS APPLIED MATERIALS & INTERFACES 2022; 14:39375-39383. [PMID: 35984641 PMCID: PMC9437895 DOI: 10.1021/acsami.2c11106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
Despite progress in the field of electrochromic devices, developing structural color-tunable photonic systems having both high transparency and flexibility remains challenging. Here, an ink-deposited transparent electrochromic structural colored foil displaying reflective colors, tuned by an integrated heater, is prepared in a single-substrate method. Efficient and homogeneous heating is induced by a gravure printed silver nanowire-based substrate, delivering an electrothermal response upon applying an electrical potential. On top of this flexible, transparent heater, a cholesteric liquid crystal ink is bar-coated and subsequently photopolymerized, yielding a structural colored film that exhibits temperature-responsive color changes. The transparent electrochromic foils appear colorless at room temperature but demonstrate structural color tuning with high optical quality when modifying the electrical potential. Both optical and electrothermal performances were preserved when deforming the foils. Applying the conductive and structural colored inks via the easy processable, continuous methods of gravure printing and bar-coating highlights the potential for scaling up to large-scale stimuli-responsive, transparent optical foils. These transparent structural colored foils can be potentially used for a wide range of photonic devices including smart windows, displays, and sensors and can be directly installed on top of curved, flexible surfaces.
Collapse
Affiliation(s)
- Arne A.
F. Froyen
- Stimuli-Responsive
Functional Materials and Devices, Department of Chemical Engineering
and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, Den Dolech 2, 5600 MB Eindhoven, The Netherlands
| | - Nadia Grossiord
- Stimuli-Responsive
Functional Materials and Devices, Department of Chemical Engineering
and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
- SABIC, Plasticslaan 1, 4612 PX, Bergen op Zoom, The
Netherlands
| | - Jos de Heer
- SABIC, Plasticslaan 1, 4612 PX, Bergen op Zoom, The
Netherlands
| | - Toob Meerman
- SABIC, Plasticslaan 1, 4612 PX, Bergen op Zoom, The
Netherlands
| | - Lanti Yang
- SABIC, Plasticslaan 1, 4612 PX, Bergen op Zoom, The
Netherlands
| | - Johan Lub
- Stimuli-Responsive
Functional Materials and Devices, Department of Chemical Engineering
and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Albert P. H. J. Schenning
- Stimuli-Responsive
Functional Materials and Devices, Department of Chemical Engineering
and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, Den Dolech 2, 5600 MB Eindhoven, The Netherlands
- SCNU-TUE
Joint Laboratory of Device Integrated Responsive Materials (DIRM),
South China Normal University, Guangzhou
Higher Education Mega Center, 510006 Guangzhou, China
| |
Collapse
|