1
|
Liu Y, Tan X, Liu Z, Zeng E, Mei J, Jiang Y, Li P, Sun W, Zhao W, Tian C, Dong Y, Xie Z, Wang CA. Heat-Localized and Salt-Resistant 3D Hierarchical Porous Ceramic Platform for Efficient Solar-Driven Interfacial Evaporation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400796. [PMID: 38607275 DOI: 10.1002/smll.202400796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/25/2024] [Indexed: 04/13/2024]
Abstract
Solar-driven interfacial evaporation (SDIE) is a highly promising approach to achieve sustainable desalination and tackle the global freshwater crisis. Despite advancements in this field, achieving balanced thermal localization and salt resistance remains a challenge. Herein, the study presents a 3D hierarchical porous ceramic platform for SDIE applications. The utilized alumina foam ceramics (AFCs) exhibit remarkable corrosion resistance and chemical stability, ensuring a prolonged operational lifespan in seawater or brines. The millimeter-scale air-filled pores in AFCs prevent thermal losses through conduction with bulk water, resulting in heat-localized interfaces. The hydrophilic nature of macroporous AFC skeletons facilitates rapid water replenishment on the evaporating surface for effective salt-resistant desalination. Benefiting from its self-radiation adsorption and side-assisted evaporation capabilities, the AFC-based evaporators exhibit high indoor evaporation rates of 2.99 and 3.54 kg m-2 h-1 under one-sided and three-sided illumination under 1.0 sun, respectively. The AFC-based evaporator maintains a high evaporation rate of ≈2.77 kg m-2 h-1 throughout the 21-day long-term test. Furthermore, it achieves a daily water productivity of ≈10.44 kg m-2 in outdoor operations. This work demonstrates the potential of 3D hierarchical porous ceramics in addressing the trade-off between heat localization and salt resistance, and contributes to the development of durable solar steam generators.
Collapse
Affiliation(s)
- Yumin Liu
- School of Materials Science and Engineering, National Engineering Research Center for Domestic & Building Ceramics, Jingdezhen Ceramic University, Jingdezhen, 333403, China
| | - Xinming Tan
- School of Materials Science and Engineering, National Engineering Research Center for Domestic & Building Ceramics, Jingdezhen Ceramic University, Jingdezhen, 333403, China
| | - Zhiwei Liu
- School of Materials Science and Engineering, National Engineering Research Center for Domestic & Building Ceramics, Jingdezhen Ceramic University, Jingdezhen, 333403, China
| | - Erqi Zeng
- School of Materials Science and Engineering, National Engineering Research Center for Domestic & Building Ceramics, Jingdezhen Ceramic University, Jingdezhen, 333403, China
| | - Jianxing Mei
- School of Materials Science and Engineering, National Engineering Research Center for Domestic & Building Ceramics, Jingdezhen Ceramic University, Jingdezhen, 333403, China
| | - Yun Jiang
- School of Materials Science and Engineering, National Engineering Research Center for Domestic & Building Ceramics, Jingdezhen Ceramic University, Jingdezhen, 333403, China
| | - Pengzhang Li
- School of Materials Science and Engineering, National Engineering Research Center for Domestic & Building Ceramics, Jingdezhen Ceramic University, Jingdezhen, 333403, China
| | - Weiwei Sun
- College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, 410073, China
| | - Wenyan Zhao
- School of Materials Science and Engineering, National Engineering Research Center for Domestic & Building Ceramics, Jingdezhen Ceramic University, Jingdezhen, 333403, China
| | - Chuanjin Tian
- School of Materials Science and Engineering, National Engineering Research Center for Domestic & Building Ceramics, Jingdezhen Ceramic University, Jingdezhen, 333403, China
| | - Yanhao Dong
- School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Zhipeng Xie
- School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Chang-An Wang
- School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
2
|
You L, Zheng Z, Xu W, Wang Y, Xiong W, Xiong C, Wang S. Self-healing and adhesive MXene-polypyrrole/silk fibroin/polyvinyl alcohol conductive hydrogels as wearable sensor. Int J Biol Macromol 2024; 263:130439. [PMID: 38423420 DOI: 10.1016/j.ijbiomac.2024.130439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/02/2024]
Abstract
Conductive hydrogels become increasing attractive for flexible electronic devices and biosensors. However, challenges still remain in fabrication of flexible hydrogels with high electrical conductivity, self-healing capability and adhesion property. Herein, a conductive hydrogel (PSDM) was prepared by solution-gel method using MXene and dopamine modified polypyrrole as conductive enhanced materials, polyvinyl alcohol and silk fibroin as gel networks, and borax as cross-linking agent. Notably, the PSDM hydrogels not only showed high permeability (13.82 mg∙cm-2∙h-1), excellent stretch ability (1235 %), high electrical conductivity (11.3 S/m) and long-term stability, but also exhibited high adhesion performance and self-healing properties. PSDM hydrogels displayed outstanding sensing performance and durability for monitoring human activities including writing, finger bending and wrist bending. The PSDM hydrogel was made into wearable flexible electrodes and realized accurate, sensitive and reliable detection of human electromyographic and electrocardiographic signals. The sensor was also applied in human-computer interaction by collecting electromyography signals of different gestures for machine learning and gesture recognition. According to 480 groups of data collected, the recognition accuracy of gestures by the electrodes was close to 100 %, indicating that the PSDM hydrogel electrodes possessed excellent sensing performance for high precision data acquisition and human-computer interaction interface.
Collapse
Affiliation(s)
- Lijun You
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China.
| | - Zhijuan Zheng
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Wenjing Xu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Yang Wang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Weijie Xiong
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Caihua Xiong
- School of Mechanical Science & Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shaoyun Wang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China.
| |
Collapse
|
3
|
Deng S, Meng W, Fan C, Zuo D, Han J, Li T, Li D, Jiang L. Enabling Further Organic Electrolyte Infiltration of Cellulose-Based Separators via Defect-Rich Polypyrrole Modification for High Sodium Ion Transport in Sodium Metal Batteries. ACS APPLIED MATERIALS & INTERFACES 2024; 16:4708-4718. [PMID: 38231566 DOI: 10.1021/acsami.3c16220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Sodium metal batteries (SMBs) have high-density and cost-effective characteristics as one of the energy storage systems, but uncontrollable dendrite growth and poor rate performance still hinder their practical applications. Herein, a nitrogen-rich modified cellulose separator with released abundant ion transport tunnels in organic electrolyte was synthesized by in situ polymerization of polypyrrole, which is based on the high permeability of cellulose in aqueous solution and the interfacial interaction between cellulose and polypyrrole. Meanwhile, the introduction of abundant structural defects such as branch chains, oxygen-containing functional groups, and imine-like structure to disrupt polypyrrole conjugation enables the utilization of conductive polymers in composite separator applications. With the electrolyte affinity surface on, the modified separator exhibits reinforced electrolyte uptake (254%) and extended electrolyte wettability, thereby leading to accelerated ionic conductivity (2.77 mS cm-1) and homogeneous sodium deposition by facilitating the establishment of additional pathways for ion transport. Benefiting from nitrogen-rich groups, the polypyrrole-modified separator demonstrates selective Na+ transport by the data of improved Na+ transference number (0.62). Owing to the above advantages, the battery assembled with the modified separators exhibits outstanding rate performance and prominent capacity retention two times that of the pristine cellulose separator at a high current density under the condition of fluorine-free electrolyte.
Collapse
Affiliation(s)
- Shengxiang Deng
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China
| | - Weijia Meng
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China
| | - Changchun Fan
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China
| | - Dapeng Zuo
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China
| | - Jun Han
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China
| | - Tongheng Li
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China
| | - Diansen Li
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lei Jiang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China
| |
Collapse
|
4
|
Wang M, Wei Y, Li R, Wang X, Wang C, Ren N, Ho SH. Sustainable Seawater Desalination and Energy Management: Mechanisms, Strategies, and the Way Forward. RESEARCH (WASHINGTON, D.C.) 2023; 6:0290. [PMID: 38125698 PMCID: PMC10732324 DOI: 10.34133/research.0290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 11/26/2023] [Indexed: 12/23/2023]
Abstract
Solar-driven desalination systems have been recognized as an effective technology to address the water crisis. Recently, evaporators prepared based on advanced manufacturing technologies have emerged as a promising tool in enhancing ocean energy utilization. In this review, we discussed the thermal conversion, energy flow, salt deposition mechanisms, and design strategies for solar-driven desalination systems, and explored how to improve the desalination performance and energy use efficiency of the systems through advanced manufacturing technologies. In future perspectives, we determined the feasibility of coupling solar-driven solar desalination systems with multi-stage energy utilization systems and emerging artificial intelligence technologies, for which conclusions are given and new directions for future desalination system development are envisioned. Finally, exciting opportunities and challenges in the face of basic research and practical implementation are discussed, providing promising solutions and blueprints for green and novel desalination technologies while achieving sustainable development.
Collapse
Affiliation(s)
- Meng Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment,
Harbin Institute of Technology, Harbin 150001, China
| | - Yen Wei
- Department of Chemistry,
Tsinghua University, Beijing 100084, China
| | - Ruoxin Li
- Department of Chemistry,
Tsinghua University, Beijing 100084, China
| | - Xin Wang
- Key Laboratory of Bio-based Material Science & Technology (Northeast Forestry University), Ministry of Education, Harbin 150040, China
| | - Chengyu Wang
- Key Laboratory of Bio-based Material Science & Technology (Northeast Forestry University), Ministry of Education, Harbin 150040, China
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment,
Harbin Institute of Technology, Harbin 150001, China
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, School of Environment,
Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
5
|
Jiang D, Dai Y, Jiang Y, Yu W, Ma D, Bai L, Huo P, Li Z, Liu Y. Polydopamine/Fe 3O 4 modified wood-based evaporator for efficient and continuous water purification. J Colloid Interface Sci 2023; 652:1271-1281. [PMID: 37659300 DOI: 10.1016/j.jcis.2023.08.168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/16/2023] [Accepted: 08/26/2023] [Indexed: 09/04/2023]
Abstract
Solar interfacial evaporation is a highly promising technology for seawater desalination and wastewater treatment, while the simple preparation processes and efficient production of clean water based on biomass interfacial evaporators still need further exploration and development. Here, we reported a wood-based evaporator (PFDW) loaded with Fe3O4 and polydopamine (PDA) after simple immersion treatment at room temperature for efficient and continuous water purification. The synergistic photothermal effect of PDA coating and Fe3O4 particles enables the evaporator to achieve high photothermal conversion efficiency in the longer wavelength range, while combined with the rapid water transport capacity endowed by the vertically aligned microporous structure of natural wood, it achieved an evaporation rate of 1.70 kg m-2h-1 and an energy efficiency of 98.0% under 1 kW m-2 irradiation. In addition, the prepared PFDW exhibited sustainable desalination stability and excellent removal efficiency for different water sources including organic dye wastewater, heavy metal effluent, oil-water emulsion and river water. This work provides a new avenue for efficient salt-tolerant portable evaporators.
Collapse
Affiliation(s)
- Dexing Jiang
- College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Bio-based Materials Science & Technology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Yaohui Dai
- College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Bio-based Materials Science & Technology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Yuwei Jiang
- College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, PR China
| | - Wenquan Yu
- College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, PR China
| | - Deyuan Ma
- College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, PR China
| | - Long Bai
- College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Bio-based Materials Science & Technology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Pengfei Huo
- College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Bio-based Materials Science & Technology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Zhiguo Li
- College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Bio-based Materials Science & Technology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China.
| | - Yang Liu
- College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Bio-based Materials Science & Technology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China.
| |
Collapse
|
6
|
Jiang J, Hong Z, Qiao Z, Zhu Q, Zhang H, Jiang Y, Yu K. Mass spectrometry insight into the electro-copolymerization mechanism of aniline with o-phenylenediamine. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2023.117248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
7
|
Lin CY, Michinobu T. Conjugated photothermal materials and structure design for solar steam generation. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2023; 14:454-466. [PMID: 37091288 PMCID: PMC10113523 DOI: 10.3762/bjnano.14.36] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 03/15/2023] [Indexed: 05/03/2023]
Abstract
With the development of solar steam generation (SSG) for clean water production, conjugated photothermal materials (PTMs) have attracted significant interest because of their advantages over metallic and inorganic PTMs in terms of high light absorption, designable molecular structures, flexible morphology, and solution processability. We review here the recent progress in solar steam generation devices based on conjugated organic materials. Conjugated organic materials are processed into fibers, membranes, and porous structures. Therefore, nanostructure design based on the concept of nanoarchitectonics is crucial to achieve high SSG efficiency. We discuss the considerations for designing SSG absorbers and describe commonly used conjugated organic materials and structural designs.
Collapse
Affiliation(s)
- Chia-Yang Lin
- Department of Materials Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Tsuyoshi Michinobu
- Department of Materials Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan
| |
Collapse
|
8
|
Ma X, Jia X, Yao G, Wen D. Double-Sided Suspending Evaporator with Top Water Supply for Concurrent Solar Evaporation and Salt Harvesting. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2022; 10:12843-12851. [PMID: 36189112 PMCID: PMC9516765 DOI: 10.1021/acssuschemeng.2c03948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/25/2022] [Indexed: 06/16/2023]
Abstract
Solar evaporation of seawater is promising to mitigate the fresh water scarcity problem in a green and sustainable way. However, salt accumulation on the photothermal material prevents the system continuous operation, and the water supply driven by capillary force severely limits the scale-up of the evaporators. Here, we demonstrate a double-sided suspending evaporator with top water supply and a surface water distributor for high-efficient concurrent solar evaporation and salt harvesting for large area applications. Both sides of the evaporator can evaporate water with automatic salt harvesting from the edge concurrently. Top water supply gets away from the limitation of capillary force for a larger area application and completely cuts off the heat leak to the bulk water below for higher efficiency. The energy conversion efficiency reaches 95.7% at 1.40 kg·m-2·h-1 with deionized water under 1 sun with a remarkable low surface average temperature (28.2 °C). Based on the simulation and experiment, a novel radial arterial water distribution system is developed to efficiently distribute water on a larger evaporation surface. The water distribution system alters the water transport path in the evaporation surface, leading to salt accumulation on the surface body, where salt is unable to be harvested by gravity automatically. This problem is further resolved by cutting out the salt accumulation area (16.4%) on the surface to create a floriform evaporator, which forcedly exposes the salt at the edge for harvesting. Up to70 h continuous solar evaporation from salt water at a rate of 1.04 kg·m-2·h-1 with concurrent salt collection on this floriform evaporator is achieved. This work resolves water supply and salt accumulation problems in scaling up the solar evaporators and advances the structural design of evaporators for high-efficient large area applications.
Collapse
Affiliation(s)
- Xiaolong Ma
- School
of Chemical and Process Engineering, University
of Leeds, Leeds LS2 9JT, U.K.
| | - Xiaodong Jia
- School
of Chemical and Process Engineering, University
of Leeds, Leeds LS2 9JT, U.K.
| | - Guice Yao
- School
of Aeronautical Science and Engineering, Beihang University, Beijing 100191, China
| | - Dongsheng Wen
- School
of Chemical and Process Engineering, University
of Leeds, Leeds LS2 9JT, U.K.
- School
of Aeronautical Science and Engineering, Beihang University, Beijing 100191, China
- Lehrstuhl
für Thermodynamik, Technical University
of Munich, Garching 85748, Germany
| |
Collapse
|
9
|
Pan Y, Li E, Wang Y, Liu C, Shen C, Liu X. Simple Design of a Porous Solar Evaporator for Salt-Free Desalination and Rapid Evaporation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:11818-11826. [PMID: 35925900 DOI: 10.1021/acs.est.2c03240] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Solar-driven interfacial evaporation is considered to be one of the promising and efficient ways of producing clean water in recent years. However, it remains a challenge to develop solar evaporation devices with high solar evaporation rates and salt-free blocking properties. Here, a porous solar evaporator with directed water transport and salt-free desalination through excellent photothermal conversion and purposefully guided migration of the salt solution was developed. The designed porous photothermal sponge with the synergistic effect of MXene and polypyrrole can achieve evaporation rates of 1.47 and 2.27 kg m-2 h-1, respectively, in the capillary model and siphon model water-transporting solar evaporation devices. More interestingly, the designed zigzag-shaped device with an evaporation rate of 2.45 kg m-2 h-1 was achieved. In addition, the evaporator can operate stably under 9 h in the siphon model solar evaporation device and achieves the effect of salt-free desalination. The above design provides a good strategy for solar-powered desalination applications.
Collapse
Affiliation(s)
- Yamin Pan
- College of Materials Science and Engineering, National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Advanced Material Processing & Mold (Ministry of Education), Zhengzhou University, Zhengzhou 450002, China
| | - En Li
- College of Materials Science and Engineering, National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Advanced Material Processing & Mold (Ministry of Education), Zhengzhou University, Zhengzhou 450002, China
| | - Yajie Wang
- College of Materials Science and Engineering, National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Advanced Material Processing & Mold (Ministry of Education), Zhengzhou University, Zhengzhou 450002, China
| | - Chuntai Liu
- College of Materials Science and Engineering, National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Advanced Material Processing & Mold (Ministry of Education), Zhengzhou University, Zhengzhou 450002, China
| | - Changyu Shen
- College of Materials Science and Engineering, National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Advanced Material Processing & Mold (Ministry of Education), Zhengzhou University, Zhengzhou 450002, China
| | - Xianhu Liu
- College of Materials Science and Engineering, National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Advanced Material Processing & Mold (Ministry of Education), Zhengzhou University, Zhengzhou 450002, China
| |
Collapse
|