1
|
Samueli R, Babbar S, Ben-Shahar Y, Samanta S, Bhattarai S, Harilal S, Feldheim G, Pikhay E, Shehter I, Elkayam A, Bashouti MY, Akabayov B, Ron I, Roizin Y, Shalev G. Real-time, specific, and label-free transistor-based sensing of organophosphates in liquid. ENVIRONMENTAL RESEARCH 2024; 263:120089. [PMID: 39369783 DOI: 10.1016/j.envres.2024.120089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/26/2024] [Accepted: 09/28/2024] [Indexed: 10/08/2024]
Abstract
Organophosphates (OP), commonly used in agriculture and as chemical warfare agents, pose significant environmental risks, necessitating real-time, low-cost OP detection methods. In particular, liquid-phase OP sensing with minimal sample volumes is crucial. While several methods allow rapid detection of low concentrations of OP vapors, they are effective only in the short term, while vapors are still being produced. Many OP compounds are semi-volatile, leading to the contamination of water, soil, and surfaces, posing a risk of secondary, long-term exposure. Detecting this contamination requires methods that can be directly applied to droplets of the affected medium. Currently, no method provides the desired combination of ultra-sensitivity, quantitative detection, rapid response, and low-cost for detecting OPs in liquid samples. This study aims to demonstrate quantitative, low-cost, real-time, specific, and label-free OP sensing in ultra-small samples using a transistor-based approach. The current work employs the 2-(4-Aminophenyl)-1,1,1,3,3,3-hexafluoro-2-propanol (aminophenyl-HFIP) functionalized meta-nano-channel field-effect chemical sensor (MNChem sensor) to monitor the organophosphate, diethyl cyanophosphonate (DCNP), in liquid samples. The silicon component of the MNChem is fabricated using a complementary metal-oxide semiconductor (CMOS) process, and the amine-based chemical functionalization of the sensing area is performed post-fabrication. The MNChem sensor provides electrostatic control over the source-drain current (IDS), allowing an optimized channel configuration that efficiently transduces localized OP recognition events into significant IDS variations. Sensing is performed using 0.5 μL buffer solution to simulate a miniature field-deployable sensor for on-site liquid analysis. We report the sensing of DCNP with a limit-of-detection of 100 fg/mL, a dynamic range of 9 orders of magnitude, and excellent linearity (≥0.97) and sensitivity. Control measurements confirm the specificity and reliability of the sensor's response, validating its applicability. This study introduces a novel method for OP detection in contaminated droplets using a low-cost disposable transistor technology.
Collapse
Affiliation(s)
- Rakefet Samueli
- School of Electrical and Computer Engineering, Ben-Gurion University of the Negev, 8410501, Beer-Sheva, Israel
| | - Shubham Babbar
- School of Electrical and Computer Engineering, Ben-Gurion University of the Negev, 8410501, Beer-Sheva, Israel
| | - Yuval Ben-Shahar
- Department of Physical Chemistry, Israel Institute for Biological Research, Ness Ziona POB, 74100 Israel
| | - Soumadri Samanta
- School of Electrical and Computer Engineering, Ben-Gurion University of the Negev, 8410501, Beer-Sheva, Israel
| | - Shankar Bhattarai
- Department of Chemistry and Data Science Research Center, Ben-Gurion University of the Negev, 8410501, Beer-Sheva, Israel
| | - Sherina Harilal
- Department of Solar Energy and Environmental Physics, Swiss Institute for Dryland Environmental and Energy Research, J. Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, 8499000, Israel
| | - Gil Feldheim
- Department of Physical Chemistry, Israel Institute for Biological Research, Ness Ziona POB, 74100 Israel
| | - Evgeny Pikhay
- Tower Semiconductor, PO Box 619, Migdal Haemek, Israel
| | - Inna Shehter
- Tower Semiconductor, PO Box 619, Migdal Haemek, Israel
| | - Ayala Elkayam
- Tower Semiconductor, PO Box 619, Migdal Haemek, Israel
| | - Muhammad Y Bashouti
- Department of Solar Energy and Environmental Physics, Swiss Institute for Dryland Environmental and Energy Research, J. Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, 8499000, Israel; The Ilse-Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, POB 653, Beer-Sheva, 8410501, Israel
| | - Barak Akabayov
- Department of Chemistry and Data Science Research Center, Ben-Gurion University of the Negev, 8410501, Beer-Sheva, Israel
| | - Izhar Ron
- School of Electrical and Computer Engineering, Ben-Gurion University of the Negev, 8410501, Beer-Sheva, Israel; Department of Physical Chemistry, Israel Institute for Biological Research, Ness Ziona POB, 74100 Israel
| | - Yakov Roizin
- Tower Semiconductor, PO Box 619, Migdal Haemek, Israel
| | - Gil Shalev
- School of Electrical and Computer Engineering, Ben-Gurion University of the Negev, 8410501, Beer-Sheva, Israel; The Ilse-Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, POB 653, Beer-Sheva, 8410501, Israel.
| |
Collapse
|
2
|
Tamayo A, Danowski W, Han B, Jeong Y, Samorì P. Light-Modulated Humidity Sensing in Spiropyran Functionalized MoS 2 Transistors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2404633. [PMID: 39263764 DOI: 10.1002/smll.202404633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/13/2024] [Indexed: 09/13/2024]
Abstract
The optically tuneable nature of hybrid organic/inorganic heterostructures tailored by interfacing photochromic molecules with 2D semiconductors (2DSs) can be exploited to endow multi-responsiveness to the exceptional physical properties of 2DSs. In this study, a spiropyran-molybdenum disulfide (MoS2) light-switchable bi-functional field-effect transistor is realized. The spiropyran-merocyanine reversible photo-isomerization has been employed to remotely control both the electron transport and wettability of the hybrid structure. This manipulation is instrumental for tuning the sensitivity in humidity sensing. The hybrid organic/inorganic heterostructure is subjected to humidity testing, demonstrating its ability to accurately monitor relative humidity (RH) across a range of 10%-75%. The electrical output shows good sensitivity of 1.0% · (%) RH-1. The light-controlled modulation of the sensitivity in chemical sensors can significantly improve their selectivity, versatility, and overall performance in chemical sensing.
Collapse
Affiliation(s)
- Adrián Tamayo
- Institut de Science et d'Ingénierie Supramoléculaires, Université de Strasbourg & CNRS, 8 Allée Gaspard Monge, Strasbourg, 67000, France
| | - Wojciech Danowski
- Institut de Science et d'Ingénierie Supramoléculaires, Université de Strasbourg & CNRS, 8 Allée Gaspard Monge, Strasbourg, 67000, France
- Faculty of Chemistry, University of Warsaw, Warsaw, 02-093, Poland
| | - Bin Han
- Institut de Science et d'Ingénierie Supramoléculaires, Université de Strasbourg & CNRS, 8 Allée Gaspard Monge, Strasbourg, 67000, France
| | - Yeonsu Jeong
- Institut de Science et d'Ingénierie Supramoléculaires, Université de Strasbourg & CNRS, 8 Allée Gaspard Monge, Strasbourg, 67000, France
| | - Paolo Samorì
- Institut de Science et d'Ingénierie Supramoléculaires, Université de Strasbourg & CNRS, 8 Allée Gaspard Monge, Strasbourg, 67000, France
| |
Collapse
|
3
|
Kanan S, Obeideen K, Moyet M, Abed H, Khan D, Shabnam A, El-Sayed Y, Arooj M, Mohamed AA. Recent Advances on Metal Oxide Based Sensors for Environmental Gas Pollutants Detection. Crit Rev Anal Chem 2024:1-34. [PMID: 38506453 DOI: 10.1080/10408347.2024.2325129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Optimizing materials and associated structures for detecting various environmental gas pollutant concentrations has been a major challenge in environmental sensing technology. Semiconducting metal oxides (SMOs) fabricated at the nanoscale are a class of sensor technology in which metallic species are functionalized with various dopants to modify their chemiresistivity and crystalline scaffolding properties. Studies focused on recent advances of gas sensors utilizing metal oxide nanostructures with a special emphasis on the structure-surface property relationships of some typical n-type and p-type SMOs for efficient gas detection are presented. Strategies to enhance the gas sensor performances are also discussed. These oxide material sensors have several advantages such as ease of handling, portability, and doped-based SMO sensing detection ability of environmental gas pollutants at low temperatures. SMO sensors have displayed excellent sensitivity, selectivity, and robustness. In addition, the hybrid SMO sensors showed exceptional selectivity to some CWAs when irradiated with visible light while also displaying high reversibility and humidity independence. Results showed that TiO2 surfaces can sense 50 ppm SO2 in the presence of UV light and under operating temperatures of 298-473 K. Hybrid SMO displayed excellent gas sensing response. For example, a CuO-ZnO nanoparticle network of a 4:1 vol.% CuO/ZnO ratio exhibited responses three times greater than pure CuO sensors and six times greater than pure ZnO sensors toward H2S. This review provides a critical discussion of modified gas pollutant sensing capabilities of metal oxide nanoparticles under ambient conditions, focusing on reported results during the past two decades on gas pollutants sensing.
Collapse
Affiliation(s)
- Sofian Kanan
- Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah, Sharjah, UAE
| | - Khaled Obeideen
- Sustainable Energy and Power Systems Research Center, RISE, University of Sharjah, Sharjah, UAE
| | - Matthew Moyet
- School of Biology and Ecology, University of Maine, Orono, Maine, USA
| | - Heba Abed
- Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah, Sharjah, UAE
| | - Danyah Khan
- Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah, Sharjah, UAE
| | - Aysha Shabnam
- Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah, Sharjah, UAE
| | | | - Mahreen Arooj
- Department of Chemistry, University of Sharjah, Sharjah, UAE
| | - Ahmed A Mohamed
- Department of Chemistry, University of Sharjah, Sharjah, UAE
| |
Collapse
|
4
|
Ganesh Moorthy S, Arvidson J, Meunier-Prest R, Wang H, Bouvet M. π-Extended Porphyrin-Phthalocyanine Heterojunction Devices Exhibiting High Ammonia Sensitivity with a Remarkable Light Effect. ACS Sens 2024; 9:883-894. [PMID: 38241640 DOI: 10.1021/acssensors.3c02247] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2024]
Abstract
π-Extended porphyrins represent an attractive class of organic compounds because of their unique photophysical, optoelectronic, and physicochemical properties. Herein, cross-conjugated (Ace-PQ-Ni) and linear-conjugated (AM6) porphyrins are used to build double-layer heterojunction devices by combining them with a lutetium bisphthalocyanine complex (LuPc2). The heterojunction effect at the porphyrin-phthalocyanine interface plays a key role in the charge transport properties. Both devices exhibit exceptionally high ammonia sensitivity at room temperature and under ambient relative humidity, with limit of detection values of 156 and 115 ppb for Ace-PQ-Ni/LuPc2 and AM6/LuPc2 sensors, respectively. Interestingly, the Ace-PQ-Ni/LuPc2 and AM6/LuPc2 sensors display opposite effects upon light illumination. While the former sensors show largely decreased ammonia sensitivity under light illumination, the current variation of the latter under ammonia is remarkably enhanced with a multiplication factor of 13 and a limit of detection (LOD) of 83 ppb. The striking difference in their sensing properties upon light illumination is attributed to their different π-conjugation pathways (cross-conjugation versus linear conjugation).
Collapse
Affiliation(s)
- Sujithkumar Ganesh Moorthy
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB), UMR CNRS 6302, Université de Bourgogne, 9 Avenue Alain Savary, 21078 Dijon Cedex, France
| | - Jacob Arvidson
- Department of Chemistry, University of North Texas, 1508 W. Mulberry Street, Denton, Texas 76203, United States
| | - Rita Meunier-Prest
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB), UMR CNRS 6302, Université de Bourgogne, 9 Avenue Alain Savary, 21078 Dijon Cedex, France
| | - Hong Wang
- Department of Chemistry, University of North Texas, 1508 W. Mulberry Street, Denton, Texas 76203, United States
| | - Marcel Bouvet
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB), UMR CNRS 6302, Université de Bourgogne, 9 Avenue Alain Savary, 21078 Dijon Cedex, France
| |
Collapse
|
5
|
Freddi S, Perilli D, Vaghi L, Monti M, Papagni A, Di Valentin C, Sangaletti L. Pushing Down the Limit of NH 3 Detection of Graphene-Based Chemiresistive Sensors through Functionalization by Thermally Activated Tetrazoles Dimerization. ACS NANO 2022; 16:10456-10469. [PMID: 35731131 DOI: 10.1021/acsnano.2c01095] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
An easy and cost-effective method is presented to functionalize graphene through thermally activated dimerization of 2,5-diaryltetrazoles. Consistently with the experimental spectroscopic results, theoretical calculations demonstrate that during the thermal treatment a dimerization process to tetrazine is energetically more favorable than covalent grafting. Since both the functionalization method by thermal activation and the use of tetrazoles have never been considered before to prepare graphene-based chemiresistors, this represents a promising approach to develop graphene-related sensing platforms. Five different 2,5-diaryltetrazoles have been tested here for the effective functionalization of low-defect graphene layers on silicon nitride. Based on these layers, an array of sensors has been prepared for testing upon ammonia exposure. The tests on the sensing performances clearly show sensitivity to ammonia, extending the current range of ammonia detection with a graphene-based chemiresistor down to the sub-ppm range, as results from a benchmarking with data available in the literature. Furthermore, all sensors perform better than bare graphene. Density functional theory (DFT) calculations, carried out on a model of the best performing layer of the array, provided the theoretical framework to rationalize the sensing mechanism and disclose a dual role played by the tetrazine molecules, (i) acting as ammonia concentrators and (ii) mediating the electron transfer between ammonia and graphene.
Collapse
Affiliation(s)
- Sonia Freddi
- Surface Science and Spectroscopy Lab @ I-Lamp, Department of Mathematics and Physics, Università Cattolica del Sacro Cuore, Via della Garzetta, 25123 Brescia, Italy
- Department of Chemistry, Division of Molecular Imaging and Photonics, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Daniele Perilli
- Department of Materials Science, University of Milano-Bicocca, via Cozzi 55, 20125 Milano, Italy
| | - Luca Vaghi
- Department of Materials Science, University of Milano-Bicocca, via Cozzi 55, 20125 Milano, Italy
| | - Mauro Monti
- Department of Materials Science, University of Milano-Bicocca, via Cozzi 55, 20125 Milano, Italy
| | - Antonio Papagni
- Department of Materials Science, University of Milano-Bicocca, via Cozzi 55, 20125 Milano, Italy
| | - Cristiana Di Valentin
- Department of Materials Science, University of Milano-Bicocca, via Cozzi 55, 20125 Milano, Italy
| | - Luigi Sangaletti
- Surface Science and Spectroscopy Lab @ I-Lamp, Department of Mathematics and Physics, Università Cattolica del Sacro Cuore, Via della Garzetta, 25123 Brescia, Italy
| |
Collapse
|
6
|
Park J, Jumu F, Power J, Richard M, Elsahli Y, Jarkas MA, Ruan A, Luican-Mayer A, Ménard JM. Drone-Mountable Gas Sensing Platform Using Graphene Chemiresistors for Remote In-Field Monitoring. SENSORS 2022; 22:s22062383. [PMID: 35336554 PMCID: PMC8954879 DOI: 10.3390/s22062383] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/11/2022] [Accepted: 03/17/2022] [Indexed: 02/01/2023]
Abstract
We present the design, fabrication, and testing of a drone-mountable gas sensing platform for environmental monitoring applications. An array of graphene-based field-effect transistors in combination with commercial humidity and temperature sensors are used to relay information by wireless communication about the presence of airborne chemicals. We show that the design, based on an ESP32 microcontroller combined with a 32-bit analog-to-digital converter, can be used to achieve an electronic response similar, within a factor of two, to state-of-the-art laboratory monitoring equipment. The sensing platform is then mounted on a drone to conduct field tests, on the ground and in flight. During these tests, we demonstrate a one order of magnitude reduction in environmental noise by reducing contributions from humidity and temperature fluctuations, which are monitored in real-time with a commercial sensor integrated to the sensing platform. The sensing device is controlled by a mobile application and uses LoRaWAN, a low-power, wide-area networking protocol, for real-time data transmission to the cloud, compatible with Internet of Things (IoT) applications.
Collapse
|