1
|
Tao W, Quan H, Tu Z, Zhang Z, Chen D. Crystalline-amorphous hybrid CoNi layered double hydroxides for high areal energy density supercapacitor. J Colloid Interface Sci 2025; 683:1-13. [PMID: 39671894 DOI: 10.1016/j.jcis.2024.12.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/28/2024] [Accepted: 12/08/2024] [Indexed: 12/15/2024]
Abstract
Crystalline-amorphous hybrid materials have garnered significant attention in the realm of energy storage, yet simultaneously regulating the morphological and electronic structure of crystalline-amorphous hybrid remains a challenge. Herein, crystalline-amorphous hybrid CoNi-layered double hydroxides (CA-CoNi-LDHs) were constructed by a facile chronoamperometry (i-t) electrochemical activation strategy, which allows for dual modulation of both structural transformations and electronic structure of CoNi-layered double hydroxides (CoNi-LDHs). Experimental results demonstrate that the construction of a crystalline-amorphous hybrid can effectively optimize both the morphological and electronic structure of CoNi-LDHs, expose abundant defects, and raise the concentration of active Ni2+ and Co3+ species, which are conducive to increasing the active sites for energy storage. The reduced adsorption energy for OH-, the increased electron density near the Fermi energy level, coupled with the narrowed bandgap energy of CA-CoNi-LDHs are favorable for accelerating electron transfer and enhancing reaction kinetic. Consequently, the CA-CoNi-LDHs@CC electrode with high mass loading (18.8 mg cm-2) delivers an impressive areal capacitance of 13,070 mF cm-2 at 5 mA cm-2, along with exceptional cycling stability. Moreover, the assembled asymmetric supercapacitor based on CA-CoNi-LDHs@CC possesses a high areal energy density of 0.71 mWh cm-2 at a power density of 3.95 mW cm-2. This work proves that construction of crystalline-amorphous hybrid materials is a viable strategy for achieving high energy density storage.
Collapse
Affiliation(s)
- Wenhao Tao
- School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063, China
| | - Hongying Quan
- School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063, China.
| | - Zhengkun Tu
- School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063, China
| | - Zhixia Zhang
- School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, China
| | - Dezhi Chen
- School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, China
| |
Collapse
|
2
|
Zhang T, Xu Z, Xu Z, Ma Y, Niu Z, Chen J, Zhang M, Shi F. Progress on layered double hydroxides as green materials in sustainable agricultural production. ENVIRONMENTAL RESEARCH 2025; 271:121031. [PMID: 39922260 DOI: 10.1016/j.envres.2025.121031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 01/28/2025] [Accepted: 02/02/2025] [Indexed: 02/10/2025]
Abstract
As the global population continues to grow, there is increasing demand for high-quality and high-yield food. However, traditional agrochemicals such as fertilizers and pesticides suffer from low utilization rates and can be hazardous to non-target organisms and the soil environment. Two-dimensional layered double hydroxides (LDHs) have attracted considerable attention in the agricultural sector owing to their excellent properties. To alleviate the general concern about the use of LDH materials in combination with agrochemicals, this paper presents a comprehensive overview of the structure, properties, preparation methods, and cytotoxicity of LDHs, with a focus on the advantages and disadvantages of different synthesis methods. In addition, the current research status of the application of LDHs as green materials in modern agricultural production is presented, and the applications of nano fertilizers for promoting crop growth, nano pesticides for efficient herbicide and insecticide, efficient adsorption of pollutants and soil heavy metal ions to maintain soil stability, and applications in genetic modification and enhancement of plant photosynthesis are discussed in detail. Finally, future research directions for LDH are envisioned. We hope that this study will promote the use of LDH materials in agricultural practices.
Collapse
Affiliation(s)
- Tongtong Zhang
- College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Zhenghong Xu
- College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Zhihua Xu
- College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Yu Ma
- College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Zhihan Niu
- College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Jiaqi Chen
- College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Min Zhang
- College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Feng Shi
- College of Life Sciences, Shihezi University, Shihezi, 832003, China.
| |
Collapse
|
3
|
Singh PP, Khatua BB. Succulent inspired grown g-C 3N 4@lithium sodium niobate for supercapacitors and piezo-tuned electrochemical potential controlled smart electromagnetic shielding management. MATERIALS HORIZONS 2024; 11:6525-6541. [PMID: 39431726 DOI: 10.1039/d4mh01127a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
A synchronous way of energy generation and storage in a single portable device is in high demand for the development of high-end electromagnetic interference (EMI) free modern electronics. Thus, this study highlights the devising of a piezoelectrically self-chargeable symmetric supercapacitor (PSCS) device using a polyvinyl alcohol (PVA)/succulent inspired grown g-C3N4@lithium sodium niobate (GNLNN)/potassium hydroxide (KOH) based piezo separator with GNLNN electrode. The GNLNN electrode exhibits a surface capacitive controlled specific capacitance of 503 F g-1. The PSCS device exhibits an energy density of 15.3 W h kg-1 and a power density of 4.2 kW kg-1 with an impressive capacitive retention capability of 93.2% after 6000 cycles of charging-discharging. The PSCS device can be charged up to 393 mV within 180 s under 14.2 N of cyclic pressing by human finger imparting. The fabricated PSCS device was also investigated for self-charging potential regulated smart EMI shielding applications. The smart PSCS device achieves an 88.3 dB increment from 40.9 dB of EMI shielding under charging from 0 mV to 300 mV. The increased charging potential of the PSCS device enhances the destructive interference and leads to boosted absorption and decreased reflection of incident EM radiation.
Collapse
Affiliation(s)
- Prem Pal Singh
- Materials Science Centre, Indian Institute of Technology Kharagpur, Kharagpur - 721302, India.
| | - Bhanu Bhusan Khatua
- Materials Science Centre, Indian Institute of Technology Kharagpur, Kharagpur - 721302, India.
| |
Collapse
|
4
|
Peng S, Pan Q, Qiao Y, Wang T, Htut NL, Chen B, Anderson MA, Wang Y, Qiu J. Importance of Morphology of Layered Double Hydroxide in Electrochemical Energy Storage and Catalysis. SMALL METHODS 2024; 8:e2400519. [PMID: 39108187 DOI: 10.1002/smtd.202400519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/29/2024] [Indexed: 12/28/2024]
Abstract
The development of nanomaterials for energy storage and conversion has always been important. Layered double hydroxide (LDH) is a promising material due to its high capacity, tunable composition and easy synthesis. In this work, the morphology of NiCo-LDH is tuned with surfactants including sodium dodecyl sulfate (SDS) and cetyltrimethylammonium bromide (CTAB), and investigated the correlation between morphology and electrochemical properties. NiCo-LDH-SDS with a layered structure exhibited a specific capacitance of 1004 C g-1 at 1 A g-1, which is higher than that of the needle-like NiCo-LDH-CTAB (678 C g-1) and the rod-like NiCo-LDH (279 C g-1). Meanwhile, NiCo-LDH-SDS and NiCo-LDH-CTAB showed a reduction of 36 and 19 mV, respectively, in their overpotentials at 10 mA cm-2 compared to NiCo-LDH. Contact angle and adhesive force measurements proved the influence of morphology on the interfacial properties that layered structure is favorable for the timely detachment of the bubbles. Therefore, rational morphology regulation of LDH can effectively alter the gas-liquid-solid interface and thereby accelerate the reaction kinetics. The connections between morphologies, bubbles releasing and electrochemical performance are well established in this work, which can be applied in the investigation of nanomaterials for energy-related activities, especially the ones concerning bubbles releasing processes.
Collapse
Affiliation(s)
- Song Peng
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Qianfeng Pan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Yixuan Qiao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Tiantian Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Nyan Lynn Htut
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Bo Chen
- Department of Mechanical Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Marc A Anderson
- Electrochemical Processes Unit, IMDEA Energy Institute, Ave. Ramón de la Sagra 3, Mostoles Technology Park, Mostoles, E28935, Spain
| | - Yang Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin, 300072, China
- National Industry-Education Integration Platform of Energy Storage, Tianjin University, Tianjin, 300350, China
| | - Jieshan Qiu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
5
|
Murugesan S, Shreteh K, Afik N, Alkrenawi I, Volokh M, Mokari T. Supercapattery-Diode: Using Layered Double Hydroxide Nanosheets for Unidirectional Energy Storage. ACS APPLIED MATERIALS & INTERFACES 2024; 16:49868-49879. [PMID: 39231011 DOI: 10.1021/acsami.4c07097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
The supercapacitor-diode (CAPode) is a device that integrates the functionality of an ionic diode with that of a conventional supercapacitor. The unique combination of energy storage and rectification properties in CAPodes is relevant for iontronics, alternate current rectifiers, logic operations, grid stabilization, and even biomedical applications. Here, we propose a novel aqueous-phase supercapattery-diode with excellent energy storage [total specific capacity (CT) = 162 C g-1, energy density = 34 W h kg-1 at 1.0 A g-1] as well as rectifying properties [rectification ratio I (RRI) of 23, and rectification ratio II (RRII) of 0.98]; the unidirectional energy storage is achieved by the utilization of an ion-selective redox reaction of battery-type layered double hydroxide (LDH) nanosheets serving as the electroactive material as well as asymmetric device configuration of supercapattery-diode in the KOH electrolyte. This work expands the types of CAPodes and importantly exemplifies the significance of integrating battery-type LDH and their redox chemistry, allowing a simultaneous increase in charge storage and rectification properties.
Collapse
Affiliation(s)
| | | | - Noa Afik
- Department of Chemistry, Beer-Sheva 8410501, Israel
| | | | | | - Taleb Mokari
- Department of Chemistry, Beer-Sheva 8410501, Israel
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| |
Collapse
|
6
|
Zhang X, Tong L, Shi X, Li Z, Xiao Z, Liu Y, Zhang T, Lin S. Tailoring atomically local electric field of NiFe layered double hydroxides with Ag dopants to boost oxygen evolution kinetics. J Colloid Interface Sci 2024; 668:502-511. [PMID: 38691960 DOI: 10.1016/j.jcis.2024.04.180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/03/2024]
Abstract
The demand for clean energy sources has driven focus towards advanced electrochemical systems. However, the sluggish kinetics of the oxygen evolution reaction (OER) constrain the energy conversion efficiency of relevant devices. Herein, a one-step method is reported to grow oxygen vacancies (Vo) rich NiFeAg layered double hydroxides nanoclusters on carbon cloth (Vo-NiFeAg-LDH/CC) for serving as the self-supporting electrode to catalyze OER. The OER performance of Vo-NiFeAg-LDH/CC has been remarkably enhanced through Ag and Vo co-modification compared with pristine NiFe-LDH, achieving a low Tafel slope of 49.7 mV dec-1 in 1 m KOH solution. Additionally, the current density of Vo-NiFeAg-LDH/CC is 3.23 times higher than that of the state-of-art IrO2 at 2 V under an alkaline flow electrolyzer setup. Theoretical calculations and experimental results collectively demonstrate that Ag dopant and Vo strengthen the O* adsorption with active sites, further promoting the deprotonation step from OH* to O* and accelerating the catalytic reaction. In a word, this work clarifies the structural correlation and synergistic mechanism of Ag dopant and Vo, providing valuable insights for the rational design of catalyst for renewable energy applications.
Collapse
Affiliation(s)
- Xu Zhang
- School of Materials Science and Engineering, Key Laboratory of Pico Electron Microscopy of Hainan Province, Hainan University, Haikou 570228, PR China
| | - Li Tong
- School of Materials Science and Engineering, Key Laboratory of Pico Electron Microscopy of Hainan Province, Hainan University, Haikou 570228, PR China
| | - Xiahui Shi
- School of Materials Science and Engineering, Key Laboratory of Pico Electron Microscopy of Hainan Province, Hainan University, Haikou 570228, PR China
| | - Zhaosheng Li
- College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, Jiangsu, PR China
| | - Zhaohui Xiao
- School of Materials Science and Engineering, Key Laboratory of Pico Electron Microscopy of Hainan Province, Hainan University, Haikou 570228, PR China
| | - Yipu Liu
- School of Materials Science and Engineering, Key Laboratory of Pico Electron Microscopy of Hainan Province, Hainan University, Haikou 570228, PR China.
| | - Tao Zhang
- School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore.
| | - Shiwei Lin
- School of Materials Science and Engineering, Key Laboratory of Pico Electron Microscopy of Hainan Province, Hainan University, Haikou 570228, PR China.
| |
Collapse
|
7
|
Awati A, Yang R, Shi T, Zhou S, Zhang X, Zeng H, Lv Y, Liang K, Xie L, Zhu D, Liu M, Kong B. Interfacial Super-Assembly of Vacancy Engineered Ultrathin-Nanosheets Toward Nanochannels for Smart Ion Transport and Salinity Gradient Power Conversion. Angew Chem Int Ed Engl 2024; 63:e202407491. [PMID: 38735853 DOI: 10.1002/anie.202407491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/07/2024] [Accepted: 05/07/2024] [Indexed: 05/14/2024]
Abstract
Ion-selective nanochannel membranes assembled from two-dimensional (2D) nanosheets hold immense promise for power conversion using salinity gradient. However, they face challenges stemming from insufficient surface charge density, which impairs both permselectivity and durability. Herein, we present a novel vacancy-engineered, oxygen-deficient NiCo layered double hydroxide (NiCoLDH)/cellulose nanofibers-wrapped carbon nanotubes (VOLDH/CNF-CNT) composite membrane. This membrane, featuring abundant angstrom-scale, cation-selective nanochannels, is designed and fabricated through a synergistic combination of vacancy engineering and interfacial super-assembly. The composite membrane shows interlayer free-spacing of ~3.62 Å, which validates the membrane size exclusion selectivity. This strategy, validated by DFT calculations and experimental data, improves hydrophilicity and surface charge density, leading to the strong interaction with K+ ions to benefit the low ion transport resistance and exceptional charge selectivity. When employed in an artificial river water|seawater salinity gradient power generator, it delivers a high-power density of 5.35 W/m2 with long-term durability (20,000s), which is almost 400 % higher than that of the pristine NiCoLDH membrane. Furthermore, it displays both pH- and temperature-sensitive ion transport behavior, offering additional opportunities for optimization. This work establishes a basis for high-performance salinity gradient power conversion and underscores the potential of vacancy engineering and super-assembly in customizing 2D nanomaterials for diverse advanced nanofluidic energy devices.
Collapse
Affiliation(s)
- Abuduheiremu Awati
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Ran Yang
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Ting Shi
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Shan Zhou
- College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Xin Zhang
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200438, P. R. China
| | - Hui Zeng
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200438, P. R. China
| | - Yaokang Lv
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Kang Liang
- School of Chemical Engineering, Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Lei Xie
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi An Shi, Xi'an, 710049, P. R. China
| | - Dazhang Zhu
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Mingxian Liu
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Biao Kong
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200438, P. R. China
- Yiwu Research Institute, Fudan University, Yiwu, Zhejiang, 322000, P. R. China
- Shandong Research Institute, Fudan University, Jinan, Shandong, 250103, P. R. China
| |
Collapse
|
8
|
Li Y, Wang S, Ouyang XF, Dang Z, Yin H. Acetate anions intercalated Fe/Mg-layered double hydroxides modified biochar for efficient adsorption of anionic and cationic heavy metal ions from polluted water. CHEMOSPHERE 2024; 362:142652. [PMID: 38936489 DOI: 10.1016/j.chemosphere.2024.142652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 06/07/2024] [Accepted: 06/17/2024] [Indexed: 06/29/2024]
Abstract
The simultaneous removal of anionic and cationic heavy metals presents a challenge for adsorbents. In this study, acetate (Ac-) was utilized as the intercalating anion for layered double hydroxide (LDH) to prepare a novel biochar composite adsorbent (Ac-LB) designed for the adsorption of Pb(II), Cu(II), and As(V). By utilizing Ac- as the intercalating anion, the interlayer space of the LDH was enlarged from 0.803 nm to 0.869 nm, exposing more adsorption sites for the LDH and enhancing the affinity for heavy metals. The results of the adsorption experiments showed that the adsorption effect of Ac-LB on heavy metals was significantly improved compared to the original FeMg-LDH modified biochar composites (LB), and the maximum adsorption capacity of Pb(II), Cu(II), and As(V) were 402.70, 68.50, and 21.68 mg/g, respectively. Wastewater simulation tests further confirmed the promising application of Ac-LB for heavy metal adsorption. The analysis of the adsorption mechanism revealed that surface complexation, electrostatic adsorption, and chemical deposition were the main mechanisms of action between heavy metals (Pb(II) and Cu(II)) and Ac-LB. Additionally, Cu(II) ions underwent a homogeneous substitution reaction with Ac-LB. The adsorption process of As(V) by Ac-LB mainly relied on complexation and ion-exchange reactions. Lastly, the modification of the LDH structure by Ac- as an intercalating anion, thereby increasing the affinity for heavy metals, was further illustrated using density-functional theory (DFT) calculations.
Collapse
Affiliation(s)
- Yingchao Li
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Shujia Wang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Xiao Fang Ouyang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou, 510006, China
| | - Hua Yin
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou, 510006, China.
| |
Collapse
|
9
|
Yang Q, Chung K, Liu X, Sun L, Han J, Yang Y, Chen T, Shi W, Xu B. Confined Space Dual-Type Quantum Dots for High-Rate Electrochemical Energy Storage. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401375. [PMID: 38747977 DOI: 10.1002/adma.202401375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/10/2024] [Indexed: 05/21/2024]
Abstract
Owing to the quantum size effect and high redox activity, quantum dots (QDs) play very essential roles toward electrochemical energy storage. However, it is very difficult to obtain different types and uniformly dispersed high-active QDs in a stable conductive microenvironment, because QDs prepared by traditional methods are mostly dissolved in solution or loaded on the surface of other semiconductors. Herein, dual-type semiconductor QDs (Co9S8 and CdS) are skillfully constructed within the interlayer of ultrathin-layered double hydroxides. In particular, the expandable interlayer provides a very suitable confined space for the growth and uniform dispersion of QDs, where Co9S8 originates from in situ transformation of cobalt atoms in laminate and CdS is generated from interlayer pre-embedding Cd2+. Meanwhile, XAFS and GGA+U calculations are employed to explore and prove the mechanism of QDs formation and energy storage characteristics as compared to surface loading QDs. Significantly, the hybrid supercapacitors achieve a high energy density of 329.2 µWh cm-2, capacitance retention of 99.1%, and coulomb efficiency of 96.9% after 22 000 cycles, which is superior to the reported QDs-based supercapacitors. These findings provide unique insights for designing and developing stable, ordered, and highly active QDs.
Collapse
Affiliation(s)
- Qingjun Yang
- Nanotechnology Center, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
| | - KingYan Chung
- Nanotechnology Center, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
| | - Xinlong Liu
- Nanotechnology Center, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
| | - Lin Sun
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Jing Han
- Nanotechnology Center, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
| | - Yujue Yang
- Nanotechnology Center, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
| | - Tiandi Chen
- Nanotechnology Center, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
| | - Weidong Shi
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Bingang Xu
- Nanotechnology Center, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
| |
Collapse
|
10
|
Luo F, San X, Wang Y, Meng D, Tao K. Layered double hydroxide-based electrode materials derived from metal-organic frameworks: synthesis and applications in supercapacitors. Dalton Trans 2024; 53:10403-10415. [PMID: 38779818 DOI: 10.1039/d4dt01344a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Metal-organic frameworks (MOFs) have emerged as promising electrode materials for supercapacitors (SCs) due to their highly porous structures, tunable chemical compositions, and diverse morphologies. However, their applications are hindered by low conductivity and poor cycling performance. A novel approach for resolving this issue involves the growth of layered double hydroxides (LDHs) using MOFs as efficient templates or precursors for electrode material preparation. This method effectively enhances the stability, electrical conductivity, and mass transport ability of MOFs. The MOF-derived LDH exhibits a well-defined porous micro-/nano-structure, facilitating the dispersion of active sites and preventing the aggregation of LDHs. Firstly, this paper introduces synthesis strategies for converting MOFs into LDHs. Subsequently, recent research progress in MOF-derived LDHs encompassing pristine LDH powders, LDH composites, and LDH-based arrays, along with their applications in SCs, is overviewed. Finally, the challenges associated with MOF-derived LDH electrode materials and potential solutions are discussed.
Collapse
Affiliation(s)
- Fujuan Luo
- School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Xiaoguang San
- College of Chemical Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China.
| | - Yisong Wang
- Taizhou Technician College, Taizhou 318000, China
| | - Dan Meng
- College of Chemical Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China.
| | - Kai Tao
- School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| |
Collapse
|
11
|
Zhang G, Yang H, Zhou H, Huang T, Yang Y, Zhu G, Zhang Y, Pang H. MXene-mediated Interfacial Growth of 2D-2D Heterostructured Nanomaterials as Cathodes for Zn-based Aqueous Batteries. Angew Chem Int Ed Engl 2024; 63:e202401903. [PMID: 38380841 DOI: 10.1002/anie.202401903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 02/20/2024] [Accepted: 02/20/2024] [Indexed: 02/22/2024]
Abstract
In this study, we introduce a novel approach for synthesizing two-dimensional (2D) MXene heterostructures featuring a sandwiched and cross-linked network structure. This method addresses the common issue of activity degradation in 2D nanomaterials caused by inevitable aggregation. By utilizing the distinct surface characteristics of MXene, we successfully induced the growth of various 2D nanomaterials on MXene substrates. This strategy effectively mitigates self-stacking defects and augments the exposure of surface areas. In particular, the obtained 2D-2D MXene@NiCo-layered double hydroxide (MH-NiCo) heterostructures exhibit enhanced structural stability, improved chemical reversibility, and heightened charge transfer efficiency, outperforming pure NiCo LDH. The aqueous MH-Ni4Co1//Zn@carbon cloth (MH-Ni4Co1//Zn@CC) battery demonstrates exceptional performance with a remarkable specific capacity of 0.61 mAh cm-2, maintaining 96.6 % capacitance after 2300 cycles. Additionally, it achieves an energy density of 1.047 mWh cm-2 and a power density of 32.899 mW cm-2. This research not only paves the way for new design paradigms in energy-related nanomaterials but also offers invaluable insights for the application and optimization of 2D-2D heterostructures in advanced electrochemical devices.
Collapse
Affiliation(s)
- Guangxun Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Hui Yang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Huijie Zhou
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Tianyu Huang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - YiFei Yang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Guoyin Zhu
- Institute of Advanced Materials and Flexible Electronics (IAMFE) School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing, Jiangsu, 210044, P. R. China
| | - Yizhou Zhang
- Institute of Advanced Materials and Flexible Electronics (IAMFE) School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing, Jiangsu, 210044, P. R. China
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| |
Collapse
|
12
|
Guan X, Fan X, Zhu E, Zhang J, Yang L, Yin P, Guan X, Wang G. Controlled establishment of advanced local high-entropy NiCoMnFe-based layered double hydroxide for zinc batteries and low-temperature supercapacitors. J Colloid Interface Sci 2024; 658:952-965. [PMID: 38157619 DOI: 10.1016/j.jcis.2023.12.111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/14/2023] [Accepted: 12/17/2023] [Indexed: 01/03/2024]
Abstract
The development of high-performance electrodes is essential for improving the charge storage performance of rechargeable devices. In this study, local high-entropy C, N co-doped NiCoMnFe-based layered double hydroxide (C/N-NiCoMnFe-LDH, C/N-NCMF) were designed using a novel method. Multi-component synergistic effects can dramatically modulate the surface electron density, crystalline structure, and band-gap of the electrode. Thus, the electrical conductivity, electron transfer, and affinity for the electrolyte can be optimized. Additionally, the C/N-NCMF yielded a high specific capacitance (1454F·g-1) at 1 A·g-1. The electrode also exhibited excellent cycling stability, with 62 % capacitance retention after 5000 cycles. Moreover, the assembled Zn||C/N-NCMF battery and the C/N-NCMF//AC hybrid supercapacitor yielded excellent energy densities of 63.1 and 35.4 Wh·kg-1 at power densities of 1000 and 825 W·kg-1, and superior cycling performance with 69 % and 88.7 % capacitance retention after 1000 and 30,000 cycles, respectively. Furthermore, the electrode maintained high electrochemical activity and stability and ensured high energy density, power density, and cycling stability of the rechargeable devices even at a low temperature (-20 °C). This study paves a new pathway for regulating the electrochemical performance of LDH-based electrodes.
Collapse
Affiliation(s)
- Xiaohui Guan
- School of Chemical Engineering, Northeast Electric Power University, Jilin 132012, PR China
| | - Xinyu Fan
- School of Chemical Engineering, Northeast Electric Power University, Jilin 132012, PR China
| | - Enze Zhu
- School of Chemical Engineering, Northeast Electric Power University, Jilin 132012, PR China
| | - Jiqing Zhang
- School of Chemical Engineering, Northeast Electric Power University, Jilin 132012, PR China
| | - Liu Yang
- School of Chemical Engineering, Northeast Electric Power University, Jilin 132012, PR China.
| | - Penggang Yin
- School of Chemistry, Beihang University, Beijing 100191, PR China
| | - Xin Guan
- Department of Applied Physics, Eindhoven University of Technology, 5600 MB Eindhoven, the Netherlands.
| | - Guangsheng Wang
- School of Chemistry, Beihang University, Beijing 100191, PR China.
| |
Collapse
|
13
|
Shi H, Qin J, Lv Q, Zhang L, Li Q, Ou B, Chen X. A karst-inspired hierarchical Mg/Al layered double hydroxide with a high entropy-driven process for interception and storage. Dalton Trans 2024; 53:4412-4425. [PMID: 38312075 DOI: 10.1039/d3dt03615d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
Karstification plays a crucial role in forming magnificent scenery, and storing oil, natural gas, mineral resources, and water. Through the inspiration of karstification, a hierarchical layered double hydroxide (LDH) with funnel-like and cave-like structures (called Karst-LDH) is formed by the dissolution of acrylic acid/water solution. Meanwhile, the results of transmission electron microscopy (TEM) and scanning electron microscopy (SEM) show that Karst-LDH has complicated and interconnected internal pipe networks. The actual maximum phosphate adsorption capacity of Karst-LDH reaches 126.38 mg g-1 due to the unique structures, protonation, ligand exchange, ion exchange, and hydrogen bonding, which is over ten times that of general LDH with a regular hexagonal structure. The results of isotherms and thermodynamics also indicate that Karst-LDH conforms to more heterogeneous and multilayer adsorption with a higher entropy-driven process. Karst-LDH exhibits good selectivity for chloride and nitrate ions. The change in the frontier orbital interaction between phosphate and different LDHs is a significant reason for quick macropore transmission, mesopore interception, and finally, phosphate storage in Karst-LDH. This work provides an efficient way for the design and fabrication of high adsorption performance materials with unique karst-type structures, which can be used for multiple fields potentially.
Collapse
Affiliation(s)
- Hongyu Shi
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, College of Resources and Environment Engineering, Guizhou University, 550025 Guiyang, China.
| | - Jun Qin
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, College of Resources and Environment Engineering, Guizhou University, 550025 Guiyang, China.
| | - Qing Lv
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, College of Resources and Environment Engineering, Guizhou University, 550025 Guiyang, China.
| | - Lijin Zhang
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, College of Resources and Environment Engineering, Guizhou University, 550025 Guiyang, China.
| | - Qingxin Li
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, College of Resources and Environment Engineering, Guizhou University, 550025 Guiyang, China.
| | - Bin Ou
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, College of Resources and Environment Engineering, Guizhou University, 550025 Guiyang, China.
- Fuzhou Hongtai Investment Co., Ltd, 350001 Fuzhou, China
| | - Xiaolang Chen
- Key Laboratory of Advanced Materials Technology Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, 610031 Chengdu, China.
| |
Collapse
|
14
|
Ma J, Xing S, Wang Y, Yang J, Yu F. Kinetic-Thermodynamic Promotion Engineering toward High-Density Hierarchical and Zn-Doping Activity-Enhancing ZnNiO@CF for High-Capacity Desalination. NANO-MICRO LETTERS 2024; 16:143. [PMID: 38436834 PMCID: PMC11329485 DOI: 10.1007/s40820-024-01371-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/23/2024] [Indexed: 03/05/2024]
Abstract
Despite the promising potential of transition metal oxides (TMOs) as capacitive deionization (CDI) electrodes, the actual capacity of TMOs electrodes for sodium storage is significantly lower than the theoretical capacity, posing a major obstacle. Herein, we prepared the kinetically favorable ZnxNi1 - xO electrode in situ growth on carbon felt (ZnxNi1 - xO@CF) through constraining the rate of OH- generation in the hydrothermal method. ZnxNi1 - xO@CF exhibited a high-density hierarchical nanosheet structure with three-dimensional open pores, benefitting the ion transport/electron transfer. And tuning the moderate amount of redox-inert Zn-doping can enhance surface electroactive sites, actual activity of redox-active Ni species, and lower adsorption energy, promoting the adsorption kinetic and thermodynamic of the Zn0.2Ni0.8O@CF. Benefitting from the kinetic-thermodynamic facilitation mechanism, Zn0.2Ni0.8O@CF achieved ultrahigh desalination capacity (128.9 mgNaCl g-1), ultra-low energy consumption (0.164 kW h kgNaCl-1), high salt removal rate (1.21 mgNaCl g-1 min-1), and good cyclability. The thermodynamic facilitation and Na+ intercalation mechanism of Zn0.2Ni0.8O@CF are identified by the density functional theory calculations and electrochemical quartz crystal microbalance with dissipation monitoring, respectively. This research provides new insights into controlling electrochemically favorable morphology and demonstrates that Zn-doping, which is redox-inert, is essential for enhancing the electrochemical performance of CDI electrodes.
Collapse
Affiliation(s)
- Jie Ma
- College of Marine Ecology and Environment, Shanghai Ocean University, 201306, Shanghai, People's Republic of China
- School of Civil Engineering, Kashi University, 844000, Kashi, People's Republic of China
- Research Center for Environmental Functional Materials, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, 200092, Shanghai, People's Republic of China
| | - Siyang Xing
- School of Civil Engineering, Kashi University, 844000, Kashi, People's Republic of China
- Research Center for Environmental Functional Materials, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, 200092, Shanghai, People's Republic of China
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Yabo Wang
- School of Civil Engineering, Kashi University, 844000, Kashi, People's Republic of China
| | - Jinhu Yang
- School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, 200092, Shanghai, People's Republic of China
| | - Fei Yu
- College of Marine Ecology and Environment, Shanghai Ocean University, 201306, Shanghai, People's Republic of China.
| |
Collapse
|
15
|
Wu L, Chen L, Chen H, Li G, Zhao W, Han L. Design and fabrication of MoO 42--intercalated LDH nanosheets coated on Co 9S 8 nanotubes with enhanced cycling stability for high-performance supercapacitors. Dalton Trans 2024; 53:4067-4079. [PMID: 38312038 DOI: 10.1039/d3dt04215d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
Transition metal sulfides are promising electrode materials for supercapacitors due to their excellent electrochemical performance and high conductivity. Unfortunately, the low rate performance and poor cycling stability limited their progress towards commercial applications. Herein, the core-shell structure of MoO42--intercalated LDHs coated on Co9S8 nanotubes was rationally designed and prepared to improve their electrochemical performance and cycling stability by adjusting the composition of LDHs. Compared to NiMo-LDH@Co9S8 and CoMo-LDH@Co9S8, the optimized NiCoMo-LDH@Co9S8 electrode exhibits excellent areal specific capacitance (11 F cm-2 at 3 mA cm-2) and excellent cycling stability (94.4% after 5000 cycles). In addition, asymmetric supercapacitor devices were assembled with NiCoMo-LDH@Co9S8 and activated carbon (AC), which delivered a high energy density of 0.94 mWh cm-2, at a power density of 1.70 mW cm-2, and good cycling stability (89.4% after 5000 cycles). These results indicate that the introduction of MoO42- can enhance the synergistic effect of multiple metals and the synthesized NiCoMo-LDH@Co9S8 core-shell composite has great potential in the development of high-performance electrode materials for supercapacitors.
Collapse
Affiliation(s)
- Lei Wu
- State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Linli Chen
- State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Hao Chen
- State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Guochang Li
- State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Wenna Zhao
- School of Biological and Chemical Engineering, Ningbotech University, Ningbo, Zhejiang 315100, China.
| | - Lei Han
- State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| |
Collapse
|
16
|
Li J, Li S, Huang Y, Liu Z, Chen C, Ding Q, Xie H, Xu Y, Sun S, Li H. Constructing Hierarchical CoGa 2O 4-S@NiCo-LDH Core-Shell Heterostructures with Crystalline/Amorphous/Crystalline Heterointerfaces for Flexible Asymmetric Supercapacitors. ACS APPLIED MATERIALS & INTERFACES 2024; 16:6998-7013. [PMID: 38294419 DOI: 10.1021/acsami.3c14932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
The rational design and construction of composite electrodes are crucial for overcoming the issues of poor working stability and slow ionic electron mobility of a single component. Nevertheless, it is a big challenge to construct core-shell heterostructures with crystalline/amorphous/crystalline heterointerfaces in straightforward and efficient methods. Here, we have successfully converted a portion of crystalline CoGa2O4 into the amorphous phase by employing a facile sulfidation process (denoted as CoGa2O4-S), followed by anchoring crystalline NiCo-layered double hydroxide (denoted as NiCo-LDH) nanoarrays onto hexagonal plates and nucleation points of CoGa2O4-S, synthesizing dual-type hexagonal and flower-like 3D CoGa2O4-S@NiCo-LDH core-shell heterostructures with crystalline/amorphous/crystalline heterointerfaces on carbon cloth. Furthermore, we further adjust the Ni/Co ratio in LDH, achieving precise and controllable core-shell heterostructures. Benefiting from the abundant crystalline/amorphous/crystalline heterointerfaces and synergistic effect among various components, the CoGa2O4-S@Ni2Co1-LDH electrode exhibits a specific capacity of 247.8 mAh·g-1 at 1 A·g-1 and good rate performance. A CoGa2O4-S@Ni2Co1-LDH//AC flexible asymmetric supercapacitor provides an energy density of 58.2 Wh·kg-1 at a power density of 850 W·kg-1 and exhibits an impressive capacitance retention of 105.7% after 10,000 cycles at 10 A·g-1. Our research provides profound insights into the design of other similar core-shell heterostructures.
Collapse
Affiliation(s)
- Jiangpeng Li
- College of Chemistry & Pharmacy, Northwest A&F University, Xinong Road 22, Yangling, Shaanxi 712100, China
| | - Sha Li
- College of Chemistry & Pharmacy, Northwest A&F University, Xinong Road 22, Yangling, Shaanxi 712100, China
| | - Yueyue Huang
- College of Chemistry & Pharmacy, Northwest A&F University, Xinong Road 22, Yangling, Shaanxi 712100, China
| | - Zhuo Liu
- College of Chemistry & Pharmacy, Northwest A&F University, Xinong Road 22, Yangling, Shaanxi 712100, China
| | - Cheng Chen
- College of Chemistry & Pharmacy, Northwest A&F University, Xinong Road 22, Yangling, Shaanxi 712100, China
| | - Qian Ding
- College of Chemistry & Pharmacy, Northwest A&F University, Xinong Road 22, Yangling, Shaanxi 712100, China
| | - Haijiao Xie
- Hangzhou Yanqu Information Technology Co., Ltd., Hangzhou 310003, China
| | - Yongqian Xu
- College of Chemistry & Pharmacy, Northwest A&F University, Xinong Road 22, Yangling, Shaanxi 712100, China
| | - Shiguo Sun
- College of Chemistry & Pharmacy, Northwest A&F University, Xinong Road 22, Yangling, Shaanxi 712100, China
| | - Hongjuan Li
- College of Chemistry & Pharmacy, Northwest A&F University, Xinong Road 22, Yangling, Shaanxi 712100, China
| |
Collapse
|
17
|
Sk S, Jamma A, Gavali DS, Bhasin V, Ghosh R, Sudarshan K, Thapa R, Pal U. Modulated Ultrathin NiCo-LDH Nanosheet-Decorated Zr 3+-Rich Defective NH 2-UiO-66 Nanostructure for Efficient Photocatalytic Hydrogen Evolution. ACS APPLIED MATERIALS & INTERFACES 2023; 15:55822-55836. [PMID: 37994833 DOI: 10.1021/acsami.3c13009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Defect engineering through modification of their surface linkage is found to be an effective pathway to escalate the solar energy conversion efficiency of metal-organic frameworks (MOFs). Herein, defect engineering using controlled decarboxylation on the NH2-UiO-66 surface and integration of ultrathin NiCo-LDH nanosheets synergizes the hydrogen evolution reaction (HER) under a broad visible light regime. Diversified analytical methods including positron annihilation lifetime spectroscopy were employed to investigate the role of Zr3+-rich defects by analyzing the annihilation characteristics of positrons in NH2-UiO-66, which provides a deep insight into the effects of structural defects on the electronic properties. The progressively tuned photophysical properties of the NiCo-LDH@NH2-UiO-66-D-heterostructured nanocatalyst led to an impressive rate of HER (∼2458 μmol h-1 g-1), with an apparent quantum yield of ∼6.02%. The ultrathin NiCo-LDH nanosheet structure was found to be highly favored toward electrostatic self-assembly in the heterostructure for efficient charge separation. Coordination of Zr3+ on the surface of the NiCo-LDH nanosheet support through NH2-UiO-66 was confirmed by X-ray absorption spectroscopy and electron paramagnetic resonance spectroscopy techniques. Femtosecond transient absorption spectroscopy studies unveiled a photoexcited charge migration process from MOF to NiCo-LDH which favorably occurred on a picosecond time scale to boost the catalytic activity of the composite system. Furthermore, the experimental finding and HER activity are validated by density functional theory studies and evaluation of the free energy pathway which reveals the strong hydrogen binding over the surface and infers the anchoring effect of the ultrathin layered double hydroxide (LDH) in the vicinity of the Zr cluster with a strong host-guest interaction. This work provided a novel insight into efficient photocatalysis via defect engineering at the linker modulation in MOFs.
Collapse
Affiliation(s)
- Saddam Sk
- Department of Energy & Environmental Engineering, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Aparna Jamma
- Department of Energy & Environmental Engineering, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Deepak S Gavali
- Department of Physics, SRM University AP, Amaravati 522240, Andhra Pradesh, India
| | - Vidha Bhasin
- Atomic and Molecular Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Rajib Ghosh
- Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Kathi Sudarshan
- Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Ranjit Thapa
- Department of Physics, SRM University AP, Amaravati 522240, Andhra Pradesh, India
| | - Ujjwal Pal
- Department of Energy & Environmental Engineering, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
18
|
He Y, Sun C, Alharbi NS, Yang S, Chen C. High buffering capacity cobalt-doped nickel hydroxide electrode as redox mediator for flexible hydrogen evolution by two-step water electrolysis. J Colloid Interface Sci 2023; 650:151-160. [PMID: 37399751 DOI: 10.1016/j.jcis.2023.06.102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 06/11/2023] [Accepted: 06/15/2023] [Indexed: 07/05/2023]
Abstract
Two-step water electrolysis has been proposed to tackle the ticklish H2/O2 mixture problems in conventional alkaline water electrolysis recently. However, low buffering capacity of pure nickel hydroxide electrode as redox mediator limited practical application of two-step water electrolysis system. A high-capacity redox mediator (RM) is urgently needed to permit consecutive operation of two-step cycles and high-efficiency hydrogen evolution. Consequently, a high mass-loading cobalt-doped nickel hydroxide/active carbon cloth (NiCo-LDH/ACC) RM is synthesized via a facile electrochemical method. The proper Co doping can apparently enhance the conductivity and simultaneously remain the high-capacity of the electrode. Density functional theory results further confirms more negative values in redox potential of NiCo-LDH/ACC than Ni(OH)2/ACC on account of the charge redistribution induced by Co doping, which can prevent the parasitic O2 evolution on RM electrode during decoupled H2 evolution step. As a result, the NiCo-LDH/ACC combined the superiorities of high-capacity Ni(OH)2/ACC and high-conductivity Co(OH)2/ACC, and the NiCo-LDH/ACC with 4:1 ratio of Ni to Co presented a large specific capacitance of 33.52F/cm2 for reversible charge-discharge and high buffering capacity with two-step H2/O2 evolution duration of 1740 s at 10 mA/cm2. The necessary input voltage (2.00 V) of the whole water electrolysis was broken into two smaller ones, 1.41 and 0.38 V, for H2 and O2 production, respectively. NiCo-LDH/ACC provided a favorable electrode material for the practical application of two-step water electrolysis system.
Collapse
Affiliation(s)
- Yuan He
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei 230031, PR China; University of Science and Technology of China, Hefei 230026, PR China
| | - Chengwei Sun
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei 230031, PR China; University of Science and Technology of China, Hefei 230026, PR China
| | - Njud S Alharbi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Shubin Yang
- College of Chemistry & Chemical Engineering, Yantai University, Yantai 264005, PR China
| | - Changlun Chen
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei 230031, PR China; Institute of Energy, Hefei Comprehensive National Science Center(Anhui Energy Laboratory, Hefei 230000, PR China.
| |
Collapse
|
19
|
Lin Y, Zhang Y, Bao J, Qiu J, Guo D, Zhang S, Yuan M, Sun G, Nan C. Terephthalic Acid Intercalated CoNi-LDH Materials for Improved Li-O 2 Battery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302979. [PMID: 37528713 DOI: 10.1002/smll.202302979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/03/2023] [Indexed: 08/03/2023]
Abstract
CoNi-LDH (layered CoNi double hydroxides) hollow nanocages with specific morphology are obtained by Ni ion etching of ZIF-67 (Zeolitic imidazolate framework-67). The structure of the layered materials is further modified by molecular intercalation. The original interlayer anions are replaced by the ion exchange effect of terephthalic acid, which helps to increase the interlayer distance of the material. The intercalated cage-like structures not only benefit for the storage of oxygen, and the discharge product reaction, but also have more support between the material layers. The experimental results show that the excessive use of intercalation agent will affect structural stability of the intercalated CoNi-LDH. By adjusting the amount of terephthalic acid, the intercalated CoNi-LDH-2 (with 0.02 mmol terephthalic acid intercalated) is not easy to collapse after 209 cycles and shows the best electrochemical performance in Li-O2 battery.
Collapse
Affiliation(s)
- Yuran Lin
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Yu Zhang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Jindi Bao
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Jiachen Qiu
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Donghua Guo
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Shuting Zhang
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Mengwei Yuan
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Genban Sun
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Caiyun Nan
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
20
|
Wang Y, Pan Q, Qiao Y, Wang X, Deng D, Zheng F, Chen B, Qiu J. Layered Metal Oxide Nanosheets with Enhanced Interlayer Space for Electrochemical Deionization. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210871. [PMID: 36645218 DOI: 10.1002/adma.202210871] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/05/2023] [Indexed: 06/17/2023]
Abstract
Electrochemical deionization is regarded as one of the promising water treatment technologies. Here, CoAl-layered metal oxide nanosheets intercalated by sodium dodecyl sulfate (SDS) with an enhanced interlayer spacing from 0.76 to 1.33 nm are synthesized and used as an anode. The enlarged interlayer spacing provides an enhanced ion-diffusion channel and improves the utilization of the interlayer electroactive sites, while heat treatment, transferring layered double hydroxides to layered metal oxides (LMOs), offers additional active oxidation reaction sites to facilitate the electro-sorption rate, contributing to the high salt adsorption capacity (31.78 mg g-1 ) and average salt adsorption rate (3.75 mg g-1 min-1 ) at 1.2 V in 500 mg L-1 NaCl solution. In addition, the excellent long-term cycling stability (92.9%) after 40 cycles proves the strong electronic interaction between SDS and the host layer, which is validated by density functional theory calculations later on. Moreover, the electro-sorption mechanism of LMOs that originated from the reconstruction of the layered structure based on the "memory effect" is revealed according to the X-ray photoelectron spectroscopy peak shifts of Co element. This strategy of expanding the interlayer spacing combined with heat treatment makes LMOs a competitive candidate for electrochemical water deionization.
Collapse
Affiliation(s)
- Yang Wang
- School of Chemical Engineering and Technology, National Industry-Education Integration Platform of Energy Storage, Tianjin University, Tianjin, 300350, China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin, 300072, China
| | - Qianfeng Pan
- School of Chemical Engineering and Technology, National Industry-Education Integration Platform of Energy Storage, Tianjin University, Tianjin, 300350, China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin, 300072, China
| | - Yixuan Qiao
- School of Chemical Engineering and Technology, National Industry-Education Integration Platform of Energy Storage, Tianjin University, Tianjin, 300350, China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin, 300072, China
| | - Xiaoyu Wang
- School of Chemical Engineering and Technology, National Industry-Education Integration Platform of Energy Storage, Tianjin University, Tianjin, 300350, China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin, 300072, China
| | - Dingfei Deng
- School of Chemical Engineering and Technology, National Industry-Education Integration Platform of Energy Storage, Tianjin University, Tianjin, 300350, China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin, 300072, China
| | - Fenghua Zheng
- School of Chemical Engineering and Technology, National Industry-Education Integration Platform of Energy Storage, Tianjin University, Tianjin, 300350, China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin, 300072, China
| | - Bo Chen
- Department of Mechanical Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Jieshan Qiu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
21
|
Babu SK, Gunasekaran B. Ultrathin α-Ni(OH)2 nanosheets coated on MOF-derived Fe2O3 nanorods as a potential electrode for solid-state hybrid supercapattery device. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.142146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
|
22
|
Xie X, Song J, Fan H, Bai L, Liu S, Wang Y, Zheng W, Liu W. Flexible aqueous supercapacitors with excellent cycling performance and high-energy density based on mesocrystalline NiCo-LDHs. Phys Chem Chem Phys 2023; 25:9104-9114. [PMID: 36928112 DOI: 10.1039/d3cp00450c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Flexible aqueous supercapacitors are promising candidates as safe power sources for wearable electronic devices (WEDs). However, the absence of advanced electrode materials with high structural stability has become the most critical factor hindering the development, which is closely related to the poor interface combination between the active substances and flexible collectors. Herein, a unique rigid layered double hydroxide (LDH) nanorod array with the mesocrystalline feature is created using the NiO-Ni layer as the inducer by the electrodeposition strategy. Differing from the traditional NiCo-LDH nanosheets directly grown on a carbon cloth, an elaborately designed NiO-Ni buffer can simultaneously and effectively improve the bidirectional combination with active substances and collectors, also the mesocrystalline LDH showed enhanced intrinsic stability through the reinforcing effect of grain boundaries. Benefiting from these, the assembled supercapacitor exhibited pre-eminent cycle stability (increased from 64% of the initial capacity after 10 000 cycles to no significant attenuation after 50 000 cycles) and ultrahigh energy density. When it was used as a flexible device, a remarkable energy density of 70.4 W h kg-1 could be harvested and processed with high flexibility in the bending state and good temperature adaptability. This study provides an excellent design strategy for the development of next-generation flexible supercapacitors with the goal of better comprehensive performances.
Collapse
Affiliation(s)
- Xiaohui Xie
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China.
| | - Jinyue Song
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China.
| | - Hongguang Fan
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China.
| | - Lichong Bai
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China.
| | - Shuang Liu
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China.
| | - Yanpeng Wang
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China.
| | - Wansu Zheng
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China.
| | - Wei Liu
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|
23
|
Yu T, Li S, Zhang L, Li F, Wang J, Pan H, Zhang D. In situ growth of ZIF-67-derived nickel-cobalt-manganese hydroxides on 2D V 2CT x MXene for dual-functional orientation as high-performance asymmetric supercapacitor and electrochemical hydroquinone sensor. J Colloid Interface Sci 2023; 629:546-558. [PMID: 36179575 DOI: 10.1016/j.jcis.2022.09.107] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 09/13/2022] [Accepted: 09/20/2022] [Indexed: 11/30/2022]
Abstract
Designing dual-functional electrode materials for supercapacitors and pollutant sensors has attracted great interest from researchers for urgent demand in green energy and the environment. In this work, a novel electrode material V2CTx@NiCoMn-OH was successfully constructed for dual-functional orientation via a two-step synthesis strategy, in which the NiCoMn-OH with a three-dimensional (3D) hollow structure was fabricated by employing ZIF-67 as a template and simple anion exchange and composited with the two-dimensional (2D) layered V2CTx MXene. The intercalation of NiCoMn-OH can effectively limit the self-accumulation of V2CTx MXene nanosheets and build a 3D cross-linked hollow structure, thereby broadening the ion transport channel, exposing more active sites of V2CTx@NiCoMn-OH, and simultaneously improving the conductivity of NiCoMn-OH. Benefiting from the unique 3D cross-linked hollow structure, the optimized V2CTx@NiCoMn-OH-20 electrode material exhibits an excellent specific capacitance of 827.45 C g-1 at 1 A g-1. Furthermore, the electrode material has excellent capacitance retention of 88.44% after 10,000 cycles. Moreover, the V2CTx@NiCoMn-OH-20//AC ASC device displays a high energy density of 88.35 Wh kg-1 as well as high power density of 7500 W kg-1 during operation. Additionally, the V2CTx@NiCoMn-OH-20 exhibited excellent electrocatalytic performance in the detection of hydroquinone, including the low detection limit of 0.559 μM (S/N = 3) and the wide linear range of 2-1050 μM. Therefore, the prepared V2CTx@NiCoMn-OH-20 has great potential applications in the fields of supercapacitors and hydroquinone sensors.
Collapse
Affiliation(s)
- Tingting Yu
- Key Laboratory of Polymeric Composite Materials of Heilongjiang Province, College of Materials Science and Engineering, Qiqihar University, Qiqihar 161006, China
| | - Shaobin Li
- Key Laboratory of Polymeric Composite Materials of Heilongjiang Province, College of Materials Science and Engineering, Qiqihar University, Qiqihar 161006, China; College of Materials Science and Engineering, Advanced Inorganic Function Composites Research Laboratory, Qiqihar University, Qiqihar 161006, China.
| | - Li Zhang
- Key Laboratory of Polymeric Composite Materials of Heilongjiang Province, College of Materials Science and Engineering, Qiqihar University, Qiqihar 161006, China; College of Materials Science and Engineering, Advanced Inorganic Function Composites Research Laboratory, Qiqihar University, Qiqihar 161006, China
| | - Fengbo Li
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China.
| | - Jianxin Wang
- Key Laboratory of Polymeric Composite Materials of Heilongjiang Province, College of Materials Science and Engineering, Qiqihar University, Qiqihar 161006, China
| | - Hong Pan
- Key Laboratory of Polymeric Composite Materials of Heilongjiang Province, College of Materials Science and Engineering, Qiqihar University, Qiqihar 161006, China
| | - Deqing Zhang
- Key Laboratory of Polymeric Composite Materials of Heilongjiang Province, College of Materials Science and Engineering, Qiqihar University, Qiqihar 161006, China
| |
Collapse
|
24
|
Synthesis of multi-dimensional nanostructured Co(OH)F/CoS2 grown on carbon fiber cloth for hybrid-supercapacitors with outstanding cyclic stability. J Colloid Interface Sci 2022; 631:143-154. [DOI: 10.1016/j.jcis.2022.10.167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/30/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
|
25
|
Mao L, Zhao X, Li Y, Chen L. New nickel-rich ternary carbonate hydroxide two-dimensional porous sheets for high-performance aqueous asymmetric supercapattery. J Colloid Interface Sci 2022; 624:482-493. [PMID: 35667210 DOI: 10.1016/j.jcis.2022.05.148] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 12/18/2022]
Abstract
Transition metal carbonate hydroxides (M-CHs) are promising candidates for electrode materials in supercapattery, due to their low-cost preparation and high-energy features. However, they also suffer from ionic kinetics bottlenecks without efficient morphological design. Tailoring the chemical compositions and nanostructures of electrode materials to realize high performance is significant for meeting the current demand for electrical energy storage devices. Therefore, we present a simple hydrothermal method for constructing better electrochemically active M-CHs with ternary metal components and hierarchical nanostructures that are assembled by interwoven nanosheets. Benefiting from higher contents of Ni species and superior two-dimensional/three-dimensional (2D/3D) pore structures, the fabricated cobalt-nickel-zinc carbonate hydroxides with Co/Ni/Zn molar ratios of 2:3:1 (CoNiZn-231) delivered the best specific capacity of 1130.8 C g-1 at 1 A g-1, decent rate performance (67.2% in 1-10 A g-1), and excellent cycling performance (92.6% over 10,000 cycles) in comparison with the majority of mono/bimetallic materials. Then, an alkaline hybrid (CoNiZn-231//activated carbon (AC)) device is developed, which shows a high energy density of 31.62 Wh kg-1 at a power density of 646 W kg-1 and an excellent capacity retention of 99.27% after 10,000 cycles. Herein, the rational design of trimetallic compositions and hierarchical structures of carbonate hydroxides is described, which provides good choices for the synthesis of high-performance electrode materials in electrochemical energy storage applications.
Collapse
Affiliation(s)
- Lei Mao
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Xun Zhao
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Yang Li
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Lingyun Chen
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China.
| |
Collapse
|
26
|
Zhao X, Li H, Zhang M, Pan W, Luo Z, Sun X. Hierarchical Nanocages Assembled by NiCo-Layered Double Hydroxide Nanosheets for a High-Performance Hybrid Supercapacitor. ACS APPLIED MATERIALS & INTERFACES 2022; 14:34781-34792. [PMID: 35867900 DOI: 10.1021/acsami.2c08903] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Layered double hydroxides (LDHs) have attracted broad attention as cathode materials for hybrid supercapacitors (HSCs) because of their ultrahigh theoretical specific capacitance, high compositional flexibility, and adjustable interlayer spacing. However, as reported, specific capacitance of LDHs is still far below the theoretical value, inspiring countless efforts to these ongoing challenges. Herein, a hierarchical nanocage structure assembled by NiCo-LDH nanosheet arrays was rationally designed and fabricated via a facile solvothermal method assisted by the ZIF-67 template. The transformation from the ZIF-67 template to this hollow structure is achieved by a synergistic effect involving the Kirkendall effect and the Ostwald ripening process. The enlarged specific surface area co-occurred with broadened interlayer spacing of LDH nanosheets by finely increasing the Ni concentration, leading to synchronous improvement of electron/ion transfer kinetics. The optimized NiCo-LDH-210 electrode displays a maximum specific capacitance of 2203.6 F g-1 at 2 A g-1, excellent rate capability, and satisfactory cycling stability because of the highly exposed active sites and shortened ion transport paths provided by vertically aligned LDH nanosheets together with the cavity. Furthermore, the assembled HSC device achieves a superior energy density of 57.3 Wh kg-1 with prominent cycling stability. Impressively, the design concept of complex construction derived from metal-organic frameworks (MOF) derivatives shows tremendous potential for use in energy storage systems.
Collapse
Affiliation(s)
- Xiang Zhao
- Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Materials Science and Engineering, Northeastern University, Shenyang 110819, PR China
| | - Hui Li
- Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Materials Science and Engineering, Northeastern University, Shenyang 110819, PR China
| | - Mu Zhang
- Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Materials Science and Engineering, Northeastern University, Shenyang 110819, PR China
- Foshan Graduate School of Northeastern University, Foshan 528311, PR China
| | - Wei Pan
- Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Materials Science and Engineering, Northeastern University, Shenyang 110819, PR China
| | - Zhengtang Luo
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, P.R. China
| | - Xudong Sun
- Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Materials Science and Engineering, Northeastern University, Shenyang 110819, PR China
- Foshan Graduate School of Northeastern University, Foshan 528311, PR China
| |
Collapse
|
27
|
Tang H, Ge J, Li L, Zhu X, Wu S, Wang F, Pang Y, Shen Z, Guan C, Chen H. Ultrasound-induced elevation of interlayer spacing and conductivity of CoNi hydroxides for high-performance Ni–Zn batteries. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
28
|
Sohrabi H, Arbabzadeh O, Falaki M, Majidi MR, Han N, Yoon Y, Khataee A. Electrochemical layered double hydroxide (LDH)-based biosensors for pesticides detection in food and environment samples: A review of status and prospects. Food Chem Toxicol 2022; 164:113010. [DOI: 10.1016/j.fct.2022.113010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 03/29/2022] [Accepted: 04/09/2022] [Indexed: 12/27/2022]
|