1
|
Yin S, Li Z. A handheld fluorescent platform integrated with a Sm(III)-CdTe quantum dot-based ratiometric nanoprobe for point-of-use determination of phosphate. NANOSCALE 2024. [PMID: 39469792 DOI: 10.1039/d4nr03497j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Phosphate (Pi) is crucial for various physiological processes and aquatic environments, which emphasizes the need for a simple, on-site sensor to promptly detect Pi for human health and environmental conservation. In this study, we propose a dual-emission ratiometric fluorescence sensor for highly sensitive and visual Pi detection. The sensor employs samarium ions (Sm3+) as a core component, with cadmium telluride quantum dots (CdTe QDs) and ofloxacin (OFL) serving as signal carriers. The CdTe-Sm(III)-OFL nanoprobe emits a purple fluorescence resulting from the red fluorescence of CdTe QDs and the blue-green fluorescence of OFL. The fluorescence of OFL is quenched by Sm3+ through fluorescence resonance energy transfer (FRET). Upon Pi interaction, the FRET process is disrupted due to the competitive Pi-Sm3+ binding, which leads to the fluorescence recovery of OFL while the red fluorescence of CdTe remains steady. This enables the construction of a ratiometric fluorescent sensor for Pi detection, manifesting as a color change from purple to blue. The sensor demonstrated a linear response for Pi detection within the range of 0.1-75 μM, with a low detection limit of 17.0 nM. By utilizing the distinct fluorescence responses of various physiological phosphates and employing chemometrics, this innovative dual-emission sensor accurately distinguishes among different physiological phosphates. Furthermore, a portable lab-on-paper device based on CdTe-Sm(III)-OFL, coupled with a smartphone-integrated mini-device, is developed for swift Pi detection using an ordinary smartphone. Analytical performance validated on environmental and biological samples demonstrates the sensor's excellent robustness and adaptability. This study introduces a pioneering approach to fabricate ratiometric fluorescence sensors and customize portable, cost-effective mini-devices for precise target detection, thus opening avenues for advanced sensing strategies in various applications.
Collapse
Affiliation(s)
- Shengnan Yin
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, Guangdong 518060, P.R. China
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong 518060, P.R. China.
| | - Zheng Li
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, Guangdong 518060, P.R. China
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong 518060, P.R. China.
| |
Collapse
|
2
|
Sasaki Y, Ohshiro K, Lyu X, Kawashima T, Kamiko M, Tanaka H, Yamagami A, Ueno Y, Minami T. An extended-gate-type organic transistor for monitoring the Menschutkin reaction of tetrazole at a solid-liquid interface. Chem Commun (Camb) 2024; 60:9930-9933. [PMID: 39171508 DOI: 10.1039/d4cc03266g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
We herein propose an approach to visualize the Menschutkin reaction at an interface between a self-assembled monolayer with nucleophilic properties and water containing alkyl halides. An organic field-effect transistor functionalized with a nucleophilic monolayer has detected in situ alkylation depending on differences in the leaving group ability and the bulkiness of electrophilic alkyls.
Collapse
Affiliation(s)
- Yui Sasaki
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1, Komaba, Meguro-ku, Tokyo, 153-8904, Japan
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan.
- JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Kohei Ohshiro
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan.
| | - Xiaojun Lyu
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan.
| | - Takayuki Kawashima
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan.
| | - Masao Kamiko
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan.
| | - Hikaru Tanaka
- Corporate Research Center, Toyobo Co., Ltd., 2-1-1 Katata, Otsu, Shiga, Japan
| | - Akari Yamagami
- Corporate Research Center, Toyobo Co., Ltd., 2-1-1 Katata, Otsu, Shiga, Japan
| | - Yoshinori Ueno
- Corporate Research Center, Toyobo Co., Ltd., 2-1-1 Katata, Otsu, Shiga, Japan
| | - Tsuyoshi Minami
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan.
| |
Collapse
|
3
|
Li M, Liu M, Qi F, Lin FR, Jen AKY. Self-Assembled Monolayers for Interfacial Engineering in Solution-Processed Thin-Film Electronic Devices: Design, Fabrication, and Applications. Chem Rev 2024; 124:2138-2204. [PMID: 38421811 DOI: 10.1021/acs.chemrev.3c00396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Interfacial engineering has long been a vital means of improving thin-film device performance, especially for organic electronics, perovskites, and hybrid devices. It greatly facilitates the fabrication and performance of solution-processed thin-film devices, including organic field effect transistors (OFETs), organic solar cells (OSCs), perovskite solar cells (PVSCs), and organic light-emitting diodes (OLEDs). However, due to the limitation of traditional interfacial materials, further progress of these thin-film devices is hampered particularly in terms of stability, flexibility, and sensitivity. The deadlock has gradually been broken through the development of self-assembled monolayers (SAMs), which possess distinct benefits in transparency, diversity, stability, sensitivity, selectivity, and surface passivation ability. In this review, we first showed the evolution of SAMs, elucidating their working mechanisms and structure-property relationships by assessing a wide range of SAM materials reported to date. A comprehensive comparison of various SAM growth, fabrication, and characterization methods was presented to help readers interested in applying SAM to their works. Moreover, the recent progress of the SAM design and applications in mainstream thin-film electronic devices, including OFETs, OSCs, PVSCs and OLEDs, was summarized. Finally, an outlook and prospects section summarizes the major challenges for the further development of SAMs used in thin-film devices.
Collapse
Affiliation(s)
- Mingliang Li
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Ming Liu
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Feng Qi
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Francis R Lin
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Alex K-Y Jen
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, United States
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| |
Collapse
|
4
|
Sasaki Y, Zhang Y, Ohshiro K, Tsuchiya K, Lyu X, Kamiko M, Ueno Y, Tanaka H, Minami T. An organic transistor for detecting the oxidation of an organic sulfur compound at a solid-liquid interface and its chemical sensing applications. Faraday Discuss 2024; 250:60-73. [PMID: 37975288 DOI: 10.1039/d3fd00149k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
The development of chemical sensors has advanced due to an increase in demand; however, the potential of chemical sensors as devices to monitor organic reactions has not been revealed yet. Thus, we aim to propose a chemical sensor platform for facile monitoring of chemical reactions, especially at a solid-liquid interface. In this study, an extended-gate-type organic field-effect transistor (OFET) has been employed as a platform to detect chemical reactions at an interface between the extended-gate electrode and an aqueous solution. The OFET device functionalized with 4,4'-thiobisbenzenthiol has shown time- and concentration-dependent shifts in transistor characteristics upon adding H2O2. In a selectivity test using seven oxidant agents, the transistor responses depended on the oxidation of the organic sulfur compound (i.e., 4,4'-thiobisbenzenthiol) stemming from the ability of the oxidant agents. Therefore, the observed changes in the transistor characteristics have suggested the generation of sulfur-oxidized products at the interface. In this regard, the observed responses were caused by disulfide formation accompanied by changes in the charges under neutral pH conditions. Meanwhile, weak transistor responses derived from the generation of oxygen adducts have also been observed, which were caused by changes in the dipole moments. Indeed, the yields of the oxygen adducts have been revealed by X-ray photoelectron spectroscopy. The monitoring of gradual changes originating from the decrease in the disulfide formation and the increase in the oxygen adducts implied a novel aspect of the OFET device as a platform to simultaneously detect reversible and irreversible reactions at interfaces without using large-sized analytical instruments. Sulfur oxidation by H2O2 on the OFET device has been further applied to the indirect monitoring of an enzymatic reaction in solution. The OFET-based chemical sensor has shown continuous changes with an increase in a substance (i.e., lactate) in the presence of an enzyme (i.e., lactate oxidase), which indicates that the OFET response depends on the H2O2 generated through the enzymatic reaction in the solution. In this study, we have clarified the versatility of organic devices as platforms to monitor different chemical reactions using a single detection method.
Collapse
Affiliation(s)
- Yui Sasaki
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan.
- JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Yijing Zhang
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan.
| | - Kohei Ohshiro
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan.
| | - Kazuhiko Tsuchiya
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan.
| | - Xiaojun Lyu
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan.
| | - Masao Kamiko
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan.
| | - Yoshinori Ueno
- Corporate Research Center, Toyobo Co., Ltd, 2-1-1 Katata, Otsu, Shiga, 520-0292, Japan
| | - Hikaru Tanaka
- Corporate Research Center, Toyobo Co., Ltd, 2-1-1 Katata, Otsu, Shiga, 520-0292, Japan
| | - Tsuyoshi Minami
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan.
| |
Collapse
|
5
|
Jiang X, Shi C, Wang Z, Huang L, Chi L. Healthcare Monitoring Sensors Based on Organic Transistors: Surface/Interface Strategy and Performance. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308952. [PMID: 37951211 DOI: 10.1002/adma.202308952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/16/2023] [Indexed: 11/13/2023]
Abstract
Organic transistors possess inherent advantages such as flexibility, biocompatibility, customizable chemical structures, solution-processability, and amplifying capabilities, making them highly promising for portable healthcare sensor applications. Through convenient and diverse modifications at the material and device surfaces or interfaces, organic transistors allow for a wide range of sensor applications spanning from chemical and biological to physical sensing. In this comprehensive review, the surface and interface engineering aspect associated with four types of typical healthcare sensors is focused. The device operation principles and sensing mechanisms are systematically analyzed and highlighted, and particularly surface/interface functionalization strategies that contribute to the enhancement of sensing performance are focused. An outlook and perspective on the critical issues and challenges in the field of healthcare sensing using organic transistors are provided as well.
Collapse
Affiliation(s)
- Xingyu Jiang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
| | - Cheng Shi
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
| | - Zi Wang
- Suzhou Laboratory, 388 Ruoshui Road, Suzhou, 215123, P. R. China
| | - Lizhen Huang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
| | - Lifeng Chi
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
| |
Collapse
|
6
|
Montero-Jimenez M, Lugli-Arroyo J, Fenoy GE, Piccinini E, Knoll W, Marmisollé WA, Azzaroni O. Transduction of Amine-Phosphate Supramolecular Interactions and Biosensing of Acetylcholine through PEDOT-Polyamine Organic Electrochemical Transistors. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37851945 DOI: 10.1021/acsami.3c09286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Organic electrochemical transistors (OECTs) are important devices for the development of flexible and wearable sensors due to their flexibility, low power consumption, sensitivity, selectivity, ease of fabrication, and compatibility with other flexible materials. These features enable the creation of comfortable, versatile, and efficient portable devices that can monitor and detect a wide range of parameters for various applications. Herein, we present OECTs based on PEDOT-polyamine thin films for the selective monitoring of phosphate-containing compounds. Our findings reveal that supramolecular single phosphate-amino interaction induces higher changes in the OECT response compared to ATP-amino interactions, even at submillimolar concentrations. The steric character of binding anions plays a crucial role in OECT sensing, resulting in a smaller shift in maximum transconductance voltage and threshold voltage for bulkier binding species. The OECT response reflects not only the polymer/solution interface but also events within the conducting polymer film, where ion transport and concentration are affected by the ion size. Additionally, the investigation of enzyme immobilization reveals the influence of phosphate species on the assembly behavior of acetylcholinesterase (AchE) on PEDOT-PAH OECTs, with increasing phosphate concentrations leading to reduced enzyme anchoring. These findings contribute to the understanding of the mechanisms of OECT sensing and highlight the importance of careful design and optimization of the biosensor interface construction for diverse sensing applications.
Collapse
Affiliation(s)
- Marjorie Montero-Jimenez
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata B1904DPI, Argentina
| | - Juan Lugli-Arroyo
- Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata B1904DPI, Argentina
| | - Gonzalo E Fenoy
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata B1904DPI, Argentina
| | - Esteban Piccinini
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata B1904DPI, Argentina
| | - Wolfgang Knoll
- Laboratory for Life Sciences and Technology (LiST), Faculty of Medicine and Dentistry, Danube Private University, 3500 Krems, Austria
| | - Waldemar A Marmisollé
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata B1904DPI, Argentina
| | - Omar Azzaroni
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata B1904DPI, Argentina
| |
Collapse
|
7
|
Shen Z, Huang W, Li L, Li H, Huang J, Cheng J, Fu Y. Research Progress of Organic Field-Effect Transistor Based Chemical Sensors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302406. [PMID: 37271887 DOI: 10.1002/smll.202302406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/11/2023] [Indexed: 06/06/2023]
Abstract
Due to their high sensitivity and selectivity, chemical sensors have gained significant attention in various fields, including drug security, environmental testing, food safety, and biological medicine. Among them, organic field-effect transistor (OFET) based chemical sensors have emerged as a promising alternative to traditional sensors, exhibiting several advantages such as multi-parameter detection, room temperature operation, miniaturization, flexibility, and portability. This review paper presents recent research progress on OFET-based chemical sensors, highlighting the enhancement of sensor performance, including sensitivity, selectivity, stability, etc. The main improvement programs are improving the internal and external structures of the device, as well as the organic semiconductor layer and dielectric structure. Finally, an outlook on the prospects and challenges of OFET-based chemical sensors is presented.
Collapse
Affiliation(s)
- Zhengqi Shen
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Wei Huang
- School of Automation Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, Sichuan, 611731, China
| | - Li Li
- Interdisciplinary Materials Research Center School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
| | - Huizi Li
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jia Huang
- Interdisciplinary Materials Research Center School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
| | - Jiangong Cheng
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanyan Fu
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
8
|
Song Y, Tang W, Han L, Liu Y, Shen C, Yin X, Ouyang B, Su Y, Guo X. Integration of nanomaterial sensing layers on printable organic field effect transistors for highly sensitive and stable biochemical signal conversion. NANOSCALE 2023; 15:5537-5559. [PMID: 36880412 DOI: 10.1039/d2nr05863d] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Organic field effect transistor (OFET) devices are one of the most popular candidates for the development of biochemical sensors due to their merits of being flexible and highly customizable for low-cost large-area manufacturing. This review describes the key points in constructing an extended-gate type OFET (EGOFET) biochemical sensor with high sensitivity and stability. The structure and working mechanism of OFET biochemical sensors are described firstly, emphasizing the importance of critical material and device engineering to higher biochemical sensing capabilities. Next, printable materials used to construct sensing electrodes (SEs) with high sensitivity and stability are presented with a focus on novel nanomaterials. Then, methods of obtaining printable OFET devices with steep subthreshold swing (SS) for high transconductance efficiency are introduced. Finally, approaches for the integration of OFETs and SEs to form portable biochemical sensor chips are introduced, followed by several demonstrations of sensory systems. This review will provide guidelines for optimizing the design and manufacturing of OFET biochemical sensors and accelerating the movement of OFET biochemical sensors from the laboratory to the marketplace.
Collapse
Affiliation(s)
- Yawen Song
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Wei Tang
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Lei Han
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Yan Liu
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Chaochao Shen
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Xiaokuan Yin
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Bang Ouyang
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Yuezeng Su
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Xiaojun Guo
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
9
|
Ohshiro K, Sasaki Y, Minami T. An extended-gate-type organic transistor-based enzymatic sensor for dopamine detection in human urine. TALANTA OPEN 2023. [DOI: 10.1016/j.talo.2023.100190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
10
|
Liu Y, Liu Z, Tian Y. Real-Time Tracking of Electrical Signals and an Accurate Quantification of Chemical Signals with Long-Term Stability in the Live Brain. Acc Chem Res 2022; 55:2821-2832. [PMID: 36074539 DOI: 10.1021/acs.accounts.2c00333] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The development of in vivo analytical tools and methods for recording electrical signals and accurately quantifying chemical signals is a key issue for a comprehensive understanding of brain events. The electrophysiological microelectrode was invented to monitor electrical signals in free-moving brains. On the other hand, electrochemical assays with excellent spatiotemporal resolution provide an effect way to monitor chemical signals in vivo. Unfortunately, the in vivo electrochemical biosensors still have three limitations. First, many biological species such as reactive oxygen species (ROS) and neurotransmitters demonstrate large overpotentials at conventional electrodes. Thus, it is hard to convert the chemical/electrochemical signals of these molecules into electric signals. Second, the interfacial properties of the recognition molecules assembled onto the electrode surfaces have a great influence on the transmission of electric charge through the interface and the stability of the modified recognition molecules. Meanwhile, the surface of biosensors implanted in the brain is easily absorbed by many proteins present in the brain, resulting in the loss of signals. Finally, activities in the brain including neuron discharges and electrophysiological signals may be affected by electrochemical measurements due to the application of extra potentials and/or currents.This Account presents a deep view of the fundamental design principles and solutions in response to the above challenges for developing in vivo biosensors with high performance while meeting the growing requirements, including high selectivity, long-time stability, and simultaneously monitoring electrical and chemical signals. We aim to highlight the basic criteria based on a double-recognition strategy for the selective biosensing of ROS, H2S, and HnS through the rational design of specific recognition molecules followed by electrochemical oxidation or reduction. Recent developments in designing functionalized surfaces through a systematic investigation of self-assembly with Au-S bonds, Au-Se bonds, and Au≡C bonds for facilitating electrochemical properties as well as improving the stability are summarized. More importantly, this Account highlights the novel methodologies for simultaneously monitoring electrical and chemical signals ascribed to the dynamic changes in K+, Na+, and Ca2+ and pH values in vivo. Additionally, SERS-based photophysiological microarray probes have been developed for quantitatively tracking chemical changes in the live brain together with recording electrophysiological signals.The design principles and novel strategies presented in this Account can be extended to the real-time tracking of electrical signals and the accurate quantification of more chemical signals such as amino acids, neurotransmitters, and proteins to understand the brain events. The final part also outlines potential future directions in constructing high-density microarrays, eventually enabling the large-scale dynamic recording of the chemical expression of multineuronal signals across the whole brain. There is still room to develop a multifiber microarray which can be coupled with photometric methods to record chemical signals both inside and outside neurons in the live brains of freely moving animals to understand physiological processes and screen drugs.
Collapse
Affiliation(s)
- Yuandong Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Zhichao Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Yang Tian
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| |
Collapse
|
11
|
Balcı Leinen M, Lindenthal S, Heimfarth D, Zaumseil J. Networks of as-dispersed, polymer-wrapped (6,5) single-walled carbon nanotubes for selective Cu 2+ and glyphosate sensing. NANOSCALE 2022; 14:13542-13550. [PMID: 36097951 DOI: 10.1039/d2nr02517e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Networks of semiconducting single-walled carbon nanotubes (SWNTs) can be used as the transducing layer for sensors based on water-gated transistors. To add specific sensing capabilities, SWNTs are often functionalized with additional moieties or selective membranes are applied, thus increasing the complexity of the fabrication process. Here we demonstrate that drop-cast networks of monochiral (6,5) SWNTs, which are commonly dispersed in organic solvents with the polyfluorene-bipyridine copolymer PFO-BPy, can be employed directly and without additional functionalization or ion-selective membranes to detect Cu2+ ions over a wide range of concentrations in aqueous solutions. The observed voltage shifts of water-gated transistors with these (6,5) SWNT networks directly correlate with the cupric ion concentration. They result from induced n-doping due to the complexation of positive copper ions to the bipyridine units of the wrapping polymer. Furthermore, the competitive binding of Cu2+ to the herbicide glyphosate as well as to biologically relevant pyrophosphates can be used for the direct detection and quantification of these molecules at nano- to micromolar concentrations.
Collapse
Affiliation(s)
- Merve Balcı Leinen
- Institute for Physical Chemistry, Universität Heidelberg, D-69120 Heidelberg, Germany.
| | - Sebastian Lindenthal
- Institute for Physical Chemistry, Universität Heidelberg, D-69120 Heidelberg, Germany.
| | - Daniel Heimfarth
- Institute for Physical Chemistry, Universität Heidelberg, D-69120 Heidelberg, Germany.
| | - Jana Zaumseil
- Institute for Physical Chemistry, Universität Heidelberg, D-69120 Heidelberg, Germany.
| |
Collapse
|