1
|
Ge Y, Tan J, Xu G, Feng X, Li E, Wang Y, Lu C, Xu X. Ultrafast Charge Transfer-Induced Unusual Nonlinear Optical Response in ReSe 2/ReS 2 Heterostructure. ACS NANO 2024. [PMID: 39437429 DOI: 10.1021/acsnano.4c11372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Ultrafast charge transfer in van der Waals heterostructures can effectively engineer the optical and electrical properties of two-dimensional semiconductors for designing photonic and optoelectronic devices. However, the nonlinear absorption conversion dynamics with the pump intensity and the underlying physical mechanisms in a type-II heterostructure remain largely unexplored, yet hold considerable potential for all-optical logic gates. Herein, two-dimensional ReSe2/ReS2 heterostructure is designed to realize an unusual transition from reverse saturable absorption to saturable absorption (SA) with a conversion pump intensity threshold of approximately 170 GW/cm2. Such an intriguing phenomenon is attributed to the decrease of two-photon absorption (TPA) of ReS2 and the increase of SA of ReSe2 with the pump intensity. Based on the characterization results of X-ray photoelectron spectroscopy, ultraviolet photoelectron spectroscopy, femtosecond transient absorption spectrum, Kelvin probe force microscopy, and density functional theory calculation, a type-II charge-transfer-energy level model is proposed combined with the TPA of ReS2 and SA of ReSe2 processes. The results reveal the critical role of ultrafast interfacial charge transfer in tuning the unusual nonlinear absorption and improving the SA of ReSe2/ReS2 under different excitation wavelengths. Our finding deepens the understanding of nonlinear absorption physical mechanisms in two-dimensional heterostructure materials, which may further diversify the nonlinear optical materials and photonic devices.
Collapse
Affiliation(s)
- Yanqing Ge
- Shaanxi Joint Laboratory of Graphene, State Key Laboratory of Photon-Technology in Western China Energy, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon-Technology, School of Physics, Northwest University, Xi'an 710069, China
| | - Jiayu Tan
- Shaanxi Joint Laboratory of Graphene, State Key Laboratory of Photon-Technology in Western China Energy, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon-Technology, School of Physics, Northwest University, Xi'an 710069, China
| | - Guorong Xu
- Shaanxi Joint Laboratory of Graphene, State Key Laboratory of Photon-Technology in Western China Energy, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon-Technology, School of Physics, Northwest University, Xi'an 710069, China
| | - Xukun Feng
- Shaanxi Joint Laboratory of Graphene, State Key Laboratory of Photon-Technology in Western China Energy, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon-Technology, School of Physics, Northwest University, Xi'an 710069, China
| | - Erkang Li
- Shaanxi Joint Laboratory of Graphene, State Key Laboratory of Photon-Technology in Western China Energy, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon-Technology, School of Physics, Northwest University, Xi'an 710069, China
| | - Yijie Wang
- Shaanxi Joint Laboratory of Graphene, State Key Laboratory of Photon-Technology in Western China Energy, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon-Technology, School of Physics, Northwest University, Xi'an 710069, China
| | - Chunhui Lu
- Shaanxi Joint Laboratory of Graphene, State Key Laboratory of Photon-Technology in Western China Energy, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon-Technology, School of Physics, Northwest University, Xi'an 710069, China
| | - Xinlong Xu
- Shaanxi Joint Laboratory of Graphene, State Key Laboratory of Photon-Technology in Western China Energy, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon-Technology, School of Physics, Northwest University, Xi'an 710069, China
| |
Collapse
|
2
|
Yu X, Xu C, Sun J, Xu H, Huang H, Gan Z, George A, Ouyang S, Liu F. Recent developments in two-dimensional molybdenum disulfide-based multimodal cancer theranostics. J Nanobiotechnology 2024; 22:515. [PMID: 39198894 PMCID: PMC11351052 DOI: 10.1186/s12951-024-02785-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/18/2024] [Indexed: 09/01/2024] Open
Abstract
Recent advancements in cancer research have led to the generation of innovative nanomaterials for improved diagnostic and therapeutic strategies. Despite the proven potential of two-dimensional (2D) molybdenum disulfide (MoS2) as a versatile platform in biomedical applications, few review articles have focused on MoS2-based platforms for cancer theranostics. This review aims to fill this gap by providing a comprehensive overview of the latest developments in 2D MoS2 cancer theranostics and emerging strategies in this field. This review highlights the potential applications of 2D MoS2 in single-model imaging and therapy, including fluorescence imaging, photoacoustic imaging, photothermal therapy, and catalytic therapy. This review further classifies the potential of 2D MoS2 in multimodal imaging for diagnostic and synergistic theranostic platforms. In particular, this review underscores the progress of 2D MoS2 as an integrated drug delivery system, covering a broad spectrum of therapeutic strategies from chemotherapy and gene therapy to immunotherapy and photodynamic therapy. Finally, this review discusses the current challenges and future perspectives in meeting the diverse demands of advanced cancer diagnostic and theranostic applications.
Collapse
Affiliation(s)
- Xinbo Yu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Shenyang, 110001, China
- Phase I Clinical Trials Center, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Chen Xu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Shenyang, 110001, China
- Phase I Clinical Trials Center, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Jingxu Sun
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Shenyang, 110001, China
| | - Hainan Xu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Hanwei Huang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Shenyang, 110001, China
- Phase I Clinical Trials Center, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Ziyang Gan
- Institute of Physical Chemistry, Abbe Center of Photonics, Friedrich Schiller University Jena, Jena, Germany
| | - Antony George
- Institute of Physical Chemistry, Abbe Center of Photonics, Friedrich Schiller University Jena, Jena, Germany
| | - Sihui Ouyang
- College of Materials Science and Engineering, Chongqing University, National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing, 400044, China.
| | - Funan Liu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Shenyang, 110001, China.
- Phase I Clinical Trials Center, The First Hospital of China Medical University, Shenyang, 110001, China.
| |
Collapse
|
3
|
Zhu H, Chen Z, Dai R, Yang B, Zhong M, Xiao S, He J. Broad -band nonlinear optical response in Bi 2Te 0.6S 2.4 alloys based on alloy engineering. NANOSCALE 2024; 16:11716-11723. [PMID: 38864172 DOI: 10.1039/d4nr01518e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Alloy engineering plays an important role in regulating the optoelectronic properties of materials. This work demonstrates that Bi2Te0.6S2.4 alloys can extend nonlinear optical response to the near-infrared range. Te alloying at S sites can narrow the band gap, as proved by density functional theory (DFT) calculations, leading to a broadband saturable absorption response ranging from ultraviolet (350 nm) to near-infrared (1100 nm) wavelength with negative nonlinear optical absorption coefficient ranging from -0.12 cm GW-1 to -1.28 cm GW-1. Moreover, the broadband carrier dynamic of Bi2Te0.6S2.4 alloys was investigated via femtosecond transient absorption (TA) at an excitation of 325 nm. A faster carrier dynamic at near-infrared wavelength was observed because of an increase in electron density at the conduction band minimum due to the additional Bi-Te interaction, which was corroborated by DFT calculations. These results suggest that alloy engineering provides an effective way for the development of broadband nonlinear optical devices.
Collapse
Affiliation(s)
- Haixia Zhu
- Hunan Key Laboratory of Nanophotonics and Devices, School of Physics, Central South University, Changsha 410083, China.
| | - Zhaozhe Chen
- Hunan Key Laboratory of Nanophotonics and Devices, School of Physics, Central South University, Changsha 410083, China.
| | - Rui Dai
- Hunan Key Laboratory of Nanophotonics and Devices, School of Physics, Central South University, Changsha 410083, China.
| | - Bojun Yang
- Hunan Key Laboratory of Nanophotonics and Devices, School of Physics, Central South University, Changsha 410083, China.
| | - Mianzeng Zhong
- Hunan Key Laboratory of Nanophotonics and Devices, School of Physics, Central South University, Changsha 410083, China.
| | - Si Xiao
- Hunan Key Laboratory of Nanophotonics and Devices, School of Physics, Central South University, Changsha 410083, China.
| | - Jun He
- Hunan Key Laboratory of Nanophotonics and Devices, School of Physics, Central South University, Changsha 410083, China.
| |
Collapse
|
4
|
Qi M, Tong T, Fan X, Li X, Wang S, Zhang G, Chen R, Hu J, Yang Z, Zeng G, Qin C, Xiao L, Jia S. Anomalous layer-dependent photoluminescence spectra of supertwisted spiral WS 2. OPTICS EXPRESS 2024; 32:10419-10428. [PMID: 38571254 DOI: 10.1364/oe.516177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/21/2024] [Indexed: 04/05/2024]
Abstract
Twisted stacking of two-dimensional materials with broken inversion symmetry, such as spiral MoTe2 nanopyramids and supertwisted spiral WS2, emerge extremely strong second- and third-harmonic generation. Unlike well-studied nonlinear optical effects in these newly synthesized layered materials, photoluminescence (PL) spectra and exciton information involving their optoelectronic applications remain unknown. Here, we report layer- and power-dependent PL spectra of the supertwisted spiral WS2. The anomalous layer-dependent PL evolutions that PL intensity almost linearly increases with the rise of layer thickness have been determined. Furthermore, from the power-dependent spectra, we find the power exponents of the supertwisted spiral WS2 are smaller than 1, while those of the conventional multilayer WS2 are bigger than 1. These two abnormal phenomena indicate the enlarged interlayer spacing and the decoupling interlayer interaction in the supertwisted spiral WS2. These observations provide insight into PL features in the supertwisted spiral materials and may pave the way for further optoelectronic devices based on the twisted stacking materials.
Collapse
|
5
|
Liu Y, Li HY, Cao HX, Zheng XY, Yin Shi B, Yin HT. Defect and interface/surface engineering synergistically modulated electron transfer and nonlinear absorption properties in MoX 2 (X = Se, S, Te)@ZnO heterojunction. NANOSCALE 2024; 16:1865-1879. [PMID: 38168696 DOI: 10.1039/d3nr05766f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Systematic interface and defect engineering strategies have been demonstrated to be an effective way to modulate the electron transfer and nonlinear absorption properties in semiconductor heterojunctions. However, the role played by defects and interfacial strain in electron transfer at the interface of the MoX2 (X = Se, S, Te)@ZnO heterojunction remains poorly understood. Herein, using the MoX2@ZnO heterojunction, we reveal that vacancies play a critical role in the interfacial electron transfer of heterojunctions. Specifically, we present the defect and interface engineering of the MoX2@ZnO heterojunction for controlled charge transfer and electron excitation-relaxation. The experimental characterization combined with first-principles calculations showed that the presence of defects promoted the transport of photogenerated carriers at the heterojunction interface, thereby inhibiting their rapid recombination. The DFT calculation confirmed that the electron band structure, density of states and charge density distribution in the system changed after the formation of Mo-O bonds. On the basis of defects and interfacial stress and the effective charge transfer, the MoX2@ZnO heterojunction exhibited excellent excitation and emission behaviors. The nonlinear optical regulation behavior of TMDs is expected to be realized with the help of the defects and interface/surface synergistically modulated effect of ZnO nanoparticles. The local strain generation on the MoX2@ZnO heterojunction boundary provides a new method for the design of new heterogeneous materials and will be of great significance to investigate the contact physical behavior and application of metals and two-dimensional (2D) semiconductors. This work provides some inspiration for the construction of heterojunctions with rich defects and surface/interface charge transfer channels to promote tunable electron transfer dynamics, thereby achieving a good nonlinear optical conversion efficiency and efficient charge separation in optoelectronic functional materials.
Collapse
Affiliation(s)
- Yu Liu
- Key Laboratory of Photonic and electric Bandgap materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin, 150025, Heilongjiang Province, China.
| | - Hong-Yu Li
- Key Laboratory of Photonic and electric Bandgap materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin, 150025, Heilongjiang Province, China.
| | - Hong-Xu Cao
- Key Laboratory of Photonic and electric Bandgap materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin, 150025, Heilongjiang Province, China.
| | - Xin-Yu Zheng
- Key Laboratory of Photonic and electric Bandgap materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin, 150025, Heilongjiang Province, China.
| | - Bing- Yin Shi
- Key Laboratory of Photonic and electric Bandgap materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin, 150025, Heilongjiang Province, China.
| | - Hai-Tao Yin
- Key Laboratory of Photonic and electric Bandgap materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin, 150025, Heilongjiang Province, China.
| |
Collapse
|
6
|
Stavrou M, Mühlbach AM, Arapakis V, Groß E, Kratky T, Günther S, Rieger B, Couris S. Exceptional ultrafast nonlinear optical response of functionalized silicon nanosheets. NANOSCALE 2023; 15:16636-16649. [PMID: 37823282 DOI: 10.1039/d3nr03497f] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
The present work reports on the ultrafast saturable absorption (SA), optical limiting (OL), and the nonlinear refractive response of hydride-terminated silicon nanosheets (SiNS-H) differently functionalized with styrene and tert-butyl methacrylate (tBuMA), namely, SiNS-styrene and SiNS-tBuMA, using 50 fs, 400 nm and 70 fs, 800 nm laser pulses. SiNS-styrene and SiNS-tBuMA exhibit dramatically enhanced nonlinear optical (NLO) responses compared to SiNS-H, with their absorptive nonlinearity strongly dependent on the laser excitation wavelength. More specifically, the studied functionalized SiNSs reveal strong SA behavior under 400 nm laser excitation, with NLO absorption coefficients, saturable intensities, and modulation depths comparable to various two-dimensional (2D) materials, known to exhibit strong SA, such as graphene, black phosphorous (BP), some transition metal dichalcogenides (TMDs), and some MXenes. On the other hand, under 800 nm laser excitation, SiNS-styrene and SiNS-tBuMA show highly efficient OL performance with OL onset values of about 0.0045 and 0.0065 J cm-2, respectively, which are significantly lower than those of other 2D nanostructures. In addition, it is shown that both SiNS samples have great potential in already existing Si-based optoelectronic devices for optical-switching applications since they exhibit very strong NLO refraction comparable to that of bulk Si. The results of the present work demonstrate that the chemical functionalization of SiNSs provides a highly efficient strategy for the preparation of 2D Si-based nanostructures with enhanced NLO response in view of several optoelectronic and photonic applications, such as OL, SA, and all-optical switching.
Collapse
Affiliation(s)
- Michalis Stavrou
- Department of Physics, University of Patras, 265 04 Patras, Greece.
- Foundation for Research and Technology Hellas-Institute of Chemical Engineering Sciences (FORTH/ICE-HT), 26504 Rio-Patras, Greece.
| | - Amelie M Mühlbach
- Wacker-Chair of Macromolecular Chemistry, Department of Chemistry, TUM School of Natural Sciences, Technical University of Munich, Lichtenbergstraße 4, 85748 Garching, Germany.
| | - Vasilios Arapakis
- Department of Physics, University of Patras, 265 04 Patras, Greece.
- Foundation for Research and Technology Hellas-Institute of Chemical Engineering Sciences (FORTH/ICE-HT), 26504 Rio-Patras, Greece.
| | - Elisabeth Groß
- Wacker-Chair of Macromolecular Chemistry, Department of Chemistry, TUM School of Natural Sciences, Technical University of Munich, Lichtenbergstraße 4, 85748 Garching, Germany.
| | - Tim Kratky
- Physical Chemistry with Focus on Catalysis, Department of Chemistry, TUM School of Natural Sciences, Technical University of Munich, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Sebastian Günther
- Physical Chemistry with Focus on Catalysis, Department of Chemistry, TUM School of Natural Sciences, Technical University of Munich, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Bernhard Rieger
- Wacker-Chair of Macromolecular Chemistry, Department of Chemistry, TUM School of Natural Sciences, Technical University of Munich, Lichtenbergstraße 4, 85748 Garching, Germany.
| | - Stelios Couris
- Department of Physics, University of Patras, 265 04 Patras, Greece.
- Foundation for Research and Technology Hellas-Institute of Chemical Engineering Sciences (FORTH/ICE-HT), 26504 Rio-Patras, Greece.
| |
Collapse
|
7
|
Venkatesh M, Kim VV, Boltaev GS, Konda SR, Svedlindh P, Li W, Ganeev RA. High-Order Harmonics Generation in MoS2 Transition Metal Dichalcogenides: Effect of Nickel and Carbon Nanotube Dopants. Int J Mol Sci 2023; 24:ijms24076540. [PMID: 37047513 PMCID: PMC10094757 DOI: 10.3390/ijms24076540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/21/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
The transition metal dichalcogenides have instigated a lot of interest as harmonic generators due to their exceptional nonlinear optical properties. Here, the molybdenum disulfide (MoS2) molecular structures with dopants being in a plasma state are used to demonstrate the generation of intense high-order harmonics. The MoS2 nanoflakes and nickel-doped MoS2 nanoflakes produced stronger harmonics with higher cut-offs compared with Mo bulk and MoS2 bulk. Conversely, the MoS2 with nickel nanoparticles and carbon nanotubes (MoS2-NiCNT) produced weaker coherent XUV emissions than other materials, which is attributed to the influence of phase mismatch. The influence of heating and driving pulse intensities on the harmonic yield and cut-off energies are investigated in MoS2 molecular structures. The enhanced coherent extreme ultraviolet emission at ~32 nm (38 eV) due to the 4p-4d resonant transitions is obtained from all aforementioned molecular structures, except for MoS2-NiCNT.
Collapse
Affiliation(s)
- Mottamchetty Venkatesh
- GPL Photonics Laboratory, State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
- Department of Materials Science and Engineering, Uppsala University, P.O. Box 35, SE-75103 Uppsala, Sweden
- Correspondence: (M.V.); (R.A.G.)
| | - Vyacheslav V. Kim
- GPL Photonics Laboratory, State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
- Laboratory of Nonlinear Optics, University of Latvia, Jelgavas 3, LV-1004 Riga, Latvia
- Institute of Fundamental and Applied Research, TIIAME National Research University, Kori Niyoziy 39, Tashkent 100000, Uzbekistan
| | - Ganjaboy S. Boltaev
- GPL Photonics Laboratory, State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
- Institute of Fundamental and Applied Research, TIIAME National Research University, Kori Niyoziy 39, Tashkent 100000, Uzbekistan
- Faculty of Physics and Matematics, Chirchik State Pedagogical University, 104 Amir Temur, Chirchik 111700, Uzbekistan
| | - Srinivasa Rao Konda
- GPL Photonics Laboratory, State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
| | - Peter Svedlindh
- Department of Materials Science and Engineering, Uppsala University, P.O. Box 35, SE-75103 Uppsala, Sweden
| | - Wei Li
- GPL Photonics Laboratory, State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
| | - Rashid A. Ganeev
- GPL Photonics Laboratory, State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
- Laboratory of Nonlinear Optics, University of Latvia, Jelgavas 3, LV-1004 Riga, Latvia
- Institute of Fundamental and Applied Research, TIIAME National Research University, Kori Niyoziy 39, Tashkent 100000, Uzbekistan
- Faculty of Physics and Matematics, Chirchik State Pedagogical University, 104 Amir Temur, Chirchik 111700, Uzbekistan
- Department of Physics, Voronezh State University, 394006 Voronezh, Russia
- Correspondence: (M.V.); (R.A.G.)
| |
Collapse
|
8
|
Lu C, Luo M, Dong W, Ge Y, Han T, Liu Y, Xue X, Ma N, Huang Y, Zhou Y, Xu X. Bi 2 Te 3 /Bi 2 Se 3 /Bi 2 S 3 Cascade Heterostructure for Fast-Response and High-Photoresponsivity Photodetector and High-Efficiency Water Splitting with a Small Bias Voltage. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205460. [PMID: 36574467 PMCID: PMC9951346 DOI: 10.1002/advs.202205460] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/08/2022] [Indexed: 05/14/2023]
Abstract
Large-scale multi-heterostructure and optimal band alignment are significantly challenging but vital for photoelectrochemical (PEC)-type photodetector and water splitting. Herein, the centimeter-scale bismuth chalcogenides-based cascade heterostructure is successfully synthesized by a sequential vapor phase deposition method. The multi-staggered band alignment of Bi2 Te3 /Bi2 Se3 /Bi2 S3 is optimized and verified by X-ray photoelectron spectroscopy. The PEC photodetectors based on these cascade heterostructures demonstrate the highest photoresponsivity (103 mA W-1 at -0.1 V and 3.5 mAW-1 at 0 V under 475 nm light excitation) among the previous reports based on two-dimensional materials and related heterostructures. Furthermore, the photodetectors display a fast response (≈8 ms), a high detectivity (8.96 × 109 Jones), a high external quantum efficiency (26.17%), and a high incident photon-to-current efficiency (27.04%) at 475 nm. Due to the rapid charge transport and efficient light absorption, the Bi2 Te3 /Bi2 Se3 /Bi2 S3 cascade heterostructure demonstrates a highly efficient hydrogen production rate (≈0.416 mmol cm-2 h-1 and ≈14.320 µmol cm-2 h-1 with or without sacrificial agent, respectively), which is far superior to those of pure bismuth chalcogenides and its type-II heterostructures. The large-scale cascade heterostructure offers an innovative method to improve the performance of optoelectronic devices in the future.
Collapse
Affiliation(s)
- Chunhui Lu
- Shaanxi Joint Lab of GrapheneState Key Laboratory of Photon‐Technology in Western China EnergyInternational Collaborative Center on Photoelectric Technology and Nano Functional MaterialsInstitute of Photonics & Photon‐TechnologySchool of PhysicsNorthwest UniversityXi'an710069China
| | - Mingwei Luo
- Shaanxi Joint Lab of GrapheneState Key Laboratory of Photon‐Technology in Western China EnergyInternational Collaborative Center on Photoelectric Technology and Nano Functional MaterialsInstitute of Photonics & Photon‐TechnologySchool of PhysicsNorthwest UniversityXi'an710069China
| | - Wen Dong
- Shaanxi Joint Lab of GrapheneState Key Laboratory of Photon‐Technology in Western China EnergyInternational Collaborative Center on Photoelectric Technology and Nano Functional MaterialsInstitute of Photonics & Photon‐TechnologySchool of PhysicsNorthwest UniversityXi'an710069China
| | - Yanqing Ge
- Shaanxi Joint Lab of GrapheneState Key Laboratory of Photon‐Technology in Western China EnergyInternational Collaborative Center on Photoelectric Technology and Nano Functional MaterialsInstitute of Photonics & Photon‐TechnologySchool of PhysicsNorthwest UniversityXi'an710069China
| | - Taotao Han
- Shaanxi Joint Lab of GrapheneState Key Laboratory of Photon‐Technology in Western China EnergyInternational Collaborative Center on Photoelectric Technology and Nano Functional MaterialsInstitute of Photonics & Photon‐TechnologySchool of PhysicsNorthwest UniversityXi'an710069China
| | - Yuqi Liu
- Shaanxi Joint Lab of GrapheneState Key Laboratory of Photon‐Technology in Western China EnergyInternational Collaborative Center on Photoelectric Technology and Nano Functional MaterialsInstitute of Photonics & Photon‐TechnologySchool of PhysicsNorthwest UniversityXi'an710069China
| | - Xinyi Xue
- Shaanxi Joint Lab of GrapheneState Key Laboratory of Photon‐Technology in Western China EnergyInternational Collaborative Center on Photoelectric Technology and Nano Functional MaterialsInstitute of Photonics & Photon‐TechnologySchool of PhysicsNorthwest UniversityXi'an710069China
| | - Nan Ma
- Shaanxi Joint Lab of GrapheneState Key Laboratory of Photon‐Technology in Western China EnergyInternational Collaborative Center on Photoelectric Technology and Nano Functional MaterialsInstitute of Photonics & Photon‐TechnologySchool of PhysicsNorthwest UniversityXi'an710069China
| | - Yuanyuan Huang
- Shaanxi Joint Lab of GrapheneState Key Laboratory of Photon‐Technology in Western China EnergyInternational Collaborative Center on Photoelectric Technology and Nano Functional MaterialsInstitute of Photonics & Photon‐TechnologySchool of PhysicsNorthwest UniversityXi'an710069China
| | - Yixuan Zhou
- Shaanxi Joint Lab of GrapheneState Key Laboratory of Photon‐Technology in Western China EnergyInternational Collaborative Center on Photoelectric Technology and Nano Functional MaterialsInstitute of Photonics & Photon‐TechnologySchool of PhysicsNorthwest UniversityXi'an710069China
| | - Xinlong Xu
- Shaanxi Joint Lab of GrapheneState Key Laboratory of Photon‐Technology in Western China EnergyInternational Collaborative Center on Photoelectric Technology and Nano Functional MaterialsInstitute of Photonics & Photon‐TechnologySchool of PhysicsNorthwest UniversityXi'an710069China
| |
Collapse
|