1
|
Wei Y, Liu H, Wang K. Magnetic anisotropy and phononic properties of two-dimensional ferromagnetic Fe 3GeS 2 monolayer. iScience 2024; 27:110781. [PMID: 39280621 PMCID: PMC11401159 DOI: 10.1016/j.isci.2024.110781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/14/2024] [Accepted: 08/16/2024] [Indexed: 09/18/2024] Open
Abstract
In 2023, Fe3GeS2 monolayer with Curie temperature of 630 K is predicted, which is promising to be used in next-generation spintronic devices. However, its magnetic anisotropy and phononic properties are still unclear. In this paper, we implemented the first-principles calculations on Fe3GeS2 monolayer, and found its ferromagnetic ground state with robustness to the -1.5%-1.3% biaxial strain. Meanwhile, the out-of-plane magnetic anisotropy dominated by dipolar interaction is found in Fe3GeS2 monolayer. Finally, we studied the phononic properties to identify the dynamical stability of Fe3GeS2 monolayer and highlight the contribution from the anharmonic interaction of optical phonons to the thermal expansion coefficient. We also find two single-phonon modes can be used to design quantum mechanical resonators with a wide cool-temperature range. These results can provide a comprehensive understanding of the magnetism and phonon properties of two-dimensional (2D) Fe3GeS2, beneficial for the application of 2D Fe3GeS2 in spintronics.
Collapse
Affiliation(s)
- Yu Wei
- Xi'an University of Posts & Telecommunications, Shaanxi 710121, China
| | - Hui Liu
- Xi'an University of Posts & Telecommunications, Shaanxi 710121, China
| | - Ke Wang
- Xi'an University of Posts & Telecommunications, Shaanxi 710121, China
| |
Collapse
|
2
|
Yuan Y, Patel RK, Banik S, Reta TB, Bisht RS, Fong DD, Sankaranarayanan SKRS, Ramanathan S. Proton Conducting Neuromorphic Materials and Devices. Chem Rev 2024; 124:9733-9784. [PMID: 39038231 DOI: 10.1021/acs.chemrev.4c00071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Neuromorphic computing and artificial intelligence hardware generally aims to emulate features found in biological neural circuit components and to enable the development of energy-efficient machines. In the biological brain, ionic currents and temporal concentration gradients control information flow and storage. It is therefore of interest to examine materials and devices for neuromorphic computing wherein ionic and electronic currents can propagate. Protons being mobile under an external electric field offers a compelling avenue for facilitating biological functionalities in artificial synapses and neurons. In this review, we first highlight the interesting biological analog of protons as neurotransmitters in various animals. We then discuss the experimental approaches and mechanisms of proton doping in various classes of inorganic and organic proton-conducting materials for the advancement of neuromorphic architectures. Since hydrogen is among the lightest of elements, characterization in a solid matrix requires advanced techniques. We review powerful synchrotron-based spectroscopic techniques for characterizing hydrogen doping in various materials as well as complementary scattering techniques to detect hydrogen. First-principles calculations are then discussed as they help provide an understanding of proton migration and electronic structure modification. Outstanding scientific challenges to further our understanding of proton doping and its use in emerging neuromorphic electronics are pointed out.
Collapse
Affiliation(s)
- Yifan Yuan
- Department of Electrical & Computer Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Ranjan Kumar Patel
- Department of Electrical & Computer Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Suvo Banik
- Department of Mechanical and Industrial Engineering, University of Illinois, Chicago, Illinois 60607, United States
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Tadesse Billo Reta
- Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Ravindra Singh Bisht
- Department of Electrical & Computer Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Dillon D Fong
- Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Subramanian K R S Sankaranarayanan
- Department of Mechanical and Industrial Engineering, University of Illinois, Chicago, Illinois 60607, United States
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Shriram Ramanathan
- Department of Electrical & Computer Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| |
Collapse
|
3
|
Mohanta M, Jena P. Magnetism of Otherwise Nonmagnetic Elements: From Clusters to Monolayers. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2024; 128:12286-12295. [PMID: 39081559 PMCID: PMC11284855 DOI: 10.1021/acs.jpcc.4c03592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 08/02/2024]
Abstract
Atomic clusters are known to exhibit properties different from their bulk phase. However, when assembled or supported on substrates, clusters often lose their uniqueness. For example, uranium and coinage metals (Cu, Ag, Au) are nonmagnetic in their bulk. Herein, we show that UX6 (X= Cu, Ag, Au) clusters, unlike their nonmagnetic bulk, are not only magnetic but also retain their magnetic character and structure when assembled into a two-dimensional (2D) material. The magnetic moment remains localized at the U site and is found to be 3μB in clusters and about 2μB in the 2D structure. In 2D UX4 (X = Cu, Ag, Au) monolayers, U atoms are found to be coupled antiferromagnetically through an indirect exchange coupling mediated by the coinage metal atoms. Furthermore, hydrogenation of these monolayers can induce a transition from the antiferromagnetic to the ferromagnetic phase. These results, based on density functional theory, have predictive capability and can motivate experiments.
Collapse
Affiliation(s)
- Manish
Kumar Mohanta
- Department of Physics, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Puru Jena
- Department of Physics, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| |
Collapse
|
4
|
Qian Z, Wang Y, Lu J, Wang Z, Rui X, Zhu T, Hua B, Gu G, Peng Q, Guo N. Coexistence of Ferromagnetism and Ferroelectricity in Cu-Intercalated Bilayer CrI 3. ACS OMEGA 2024; 9:11478-11483. [PMID: 38496958 PMCID: PMC10938309 DOI: 10.1021/acsomega.3c08360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/30/2024] [Accepted: 02/21/2024] [Indexed: 03/19/2024]
Abstract
Design of two-dimensional (2D) multiferroic materials with two or more ferroic orders in one structure is highly desired in view of the development of next-generation electronic devices. Unfortunately, experimental or theoretical discovery of 2D intrinsic multiferroic materials is rare. Using first-principles calculation methods, we report the realization of multiferroics that couple ferromagnetism and ferroelectricity by intercalating Cu atoms in bilayer CrI3, Cux@bi-CrI3 (x = 0.03, 0.06, and 0.25). Our results show that the intercalation of Cu atoms leads to the inversion symmetry breaking of bilayer CrI3 and produces intercalation density-dependent out-of-plane electric polarization, around 18.84-90.31 pC·cm-2. Moreover, the switch barriers of Cux@bi-CrI3 in both polarization states are small, ranging from 0.31 to 0.69 eV. Furthermore, the magnetoelectric coupling properties of Cux@bi-CrI3 can be modulated via varying the metal ion intercalation density, and half-metal to semiconductor transition can be occurred by decreasing the intercalation density of metal ions. Our work paves a practical path for 2D magnetoelectron coupling devices.
Collapse
Affiliation(s)
- Zhonghua Qian
- College
of Physics Science and Technology, Yangzhou
University, Yangzhou 225002, China
| | - Yanbiao Wang
- Department
of Fundamental Courses, Wuxi Institute of
Technology, Wuxi 214121, China
| | - Jinlian Lu
- Department
of Physics, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, China
| | - Ziyu Wang
- College
of Physics Science and Technology, Yangzhou
University, Yangzhou 225002, China
| | - Xue Rui
- College
of Physics Science and Technology, Yangzhou
University, Yangzhou 225002, China
| | - Tianying Zhu
- College
of Physics Science and Technology, Yangzhou
University, Yangzhou 225002, China
| | - Baopei Hua
- College
of Physics Science and Technology, Yangzhou
University, Yangzhou 225002, China
| | - Guanjie Gu
- College
of Physics Science and Technology, Yangzhou
University, Yangzhou 225002, China
| | - Qiyuan Peng
- College
of Physics Science and Technology, Yangzhou
University, Yangzhou 225002, China
| | - Nini Guo
- College
of Physics and Hebei Advanced Thin Films Laboratory, Hebei Normal University, Shijiazhuang 050024, China
| |
Collapse
|
5
|
Liu P, Zhang Y, Li K, Li Y, Pu Y. Recent advances in 2D van der Waals magnets: Detection, modulation, and applications. iScience 2023; 26:107584. [PMID: 37664598 PMCID: PMC10470320 DOI: 10.1016/j.isci.2023.107584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023] Open
Abstract
The emergence of two-dimensional (2D) van der Waals magnets provides an exciting platform for exploring magnetism in the monolayer limit. Exotic quantum phenomena and significant potential for spintronic applications are demonstrated in 2D magnetic crystals and heterostructures, which offer unprecedented possibilities in advanced formation technology with low power and high efficiency. In this review, we summarize recent advances in 2D van der Waals magnetic crystals. We focus mainly on van der Waals materials of truly 2D nature with intrinsic magnetism. The detection methods of 2D magnetic materials are first introduced in detail. Subsequently, the effective strategies to modulate the magnetic behavior of 2D magnets (e.g., Curie temperature, magnetic anisotropy, magnetic exchange interaction) are presented. Then, we list the applications of 2D magnets in the spintronic devices. We also highlight current challenges and broad space for the development of 2D magnets in further studies.
Collapse
Affiliation(s)
- Ping Liu
- School of Science & New Energy Technology Engineering Laboratory of Jiangsu Province, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Ying Zhang
- Department of Materials Science & Engineering, CAS Key Lab of Materials for Energy Conversion, University of Science and Technology of China, Hefei 230026, China
| | - Kehan Li
- School of Science & New Energy Technology Engineering Laboratory of Jiangsu Province, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Yongde Li
- School of Science & New Energy Technology Engineering Laboratory of Jiangsu Province, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Yong Pu
- School of Science & New Energy Technology Engineering Laboratory of Jiangsu Province, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| |
Collapse
|
6
|
Hou Y, Wei Y, Yang D, Wang K, Ren K, Zhang G. Enhancing the Curie Temperature in Cr 2Ge 2Te 6 via Charge Doping: A First-Principles Study. Molecules 2023; 28:molecules28093893. [PMID: 37175302 PMCID: PMC10180144 DOI: 10.3390/molecules28093893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/28/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
In this work, we explore the impacts of charge doping on the magnetism of a Cr2Ge2Te6 monolayer using first-principles calculations. Our results reveal that doping with 0.3 electrons per unit cell can enhance the ferromagnetic exchange constant in a Cr2Ge2Te6 monolayer from 6.874 meV to 10.202 meV, which is accompanied by an increase in the Curie temperature from ~85 K to ~123 K. The enhanced ratio of the Curie temperature is up to 44.96%, even higher than that caused by surface functionalization on monolayer Cr2Ge2Te6, manifesting the effectiveness of charge doping by improving the magnetic stability of 2D magnets. This remarkable enhancement in the ferromagnetic exchange constant and Curie temperature can be attributed to the increase in the magnetic moment on the Te atom, enlarged Cr-Te-Cr bond angle, reduced Cr-Te distance, and the significant increase in super-exchange coupling between Cr and Te atoms. These results demonstrate that charge doping is a promising route to improve the magnetic stability of 2D magnets, which is beneficial to overcome the obstacles in the application of 2D magnets in spintronics.
Collapse
Affiliation(s)
- Yinlong Hou
- School of Automation, Xi'an University of Posts & Telecommunications, Xi'an 710121, China
| | - Yu Wei
- School of Automation, Xi'an University of Posts & Telecommunications, Xi'an 710121, China
| | - Dan Yang
- School of Automation, Xi'an University of Posts & Telecommunications, Xi'an 710121, China
| | - Ke Wang
- School of Automation, Xi'an University of Posts & Telecommunications, Xi'an 710121, China
| | - Kai Ren
- School of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing 210042, China
| | - Gang Zhang
- Institute of High Performance Computing, A*STAR, Singapore 138632, Singapore
| |
Collapse
|
7
|
Zhang L, Tang C, Sanvito S, Du A. Highly degenerate 2D ferroelectricity in pore decorated covalent/metal organic frameworks. MATERIALS HORIZONS 2023. [PMID: 37093015 DOI: 10.1039/d3mh00256j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Two-dimensional (2D) ferroelectricity, a fundamental concept in low-dimensional physics, serves as the basis of non-volatile information storage and various electronic devices. Conventional 2D ferroelectric (FE) materials are usually two-fold degenerate, meaning that they can only store two logical states. In order to break such limitation, a new concept of highly degenerate ferroelectricity with multiple FE states (more than 2) coexisting in a single 2D material is proposed. This is obtained through the asymmetrical decoration of porous covalent/metal organic frameworks (COFs/MOFs). Using first-principles calculations and Monte Carlo (MC) simulations, Li-decorated 2D Cr(pyz)2 is systematically explored as a prototype of highly degenerate 2D FE materials. We show that 2D FE Li0.5Cr(pyz)2 and LiCr(pyz)2 are four-fold and eight-fold degenerate, respectively, with sizable spontaneous electric polarization that can be switched across low transition barriers. In particular, the coupling between neighbouring electric dipoles in LiCr(pyz)2 induces novel ferroelectricity-controlled ferroelastic transition and direction-controllable hole transport channels. Moreover, three-fold and six-fold degenerate ferroelectricity is also demonstrated in P-decorated g-C3N4 and Ru-decorated C2N, respectively. Our work presents a general route to obtain highly degenerate 2D ferroelectricity, which goes beyond the two-state paradigm of traditional 2D FE materials and substantially broadens the applications of 2D FE compounds.
Collapse
Affiliation(s)
- Lei Zhang
- School of Chemistry and Physics, Queensland University of Technology, Gardens Point Campus, Brisbane, QLD 4000, Australia.
- Centre for Materials Science, Queensland University of Technology, Gardens Point Campus, Brisbane, QLD 4000, Australia
| | - Cheng Tang
- School of Chemistry and Physics, Queensland University of Technology, Gardens Point Campus, Brisbane, QLD 4000, Australia.
- Centre for Materials Science, Queensland University of Technology, Gardens Point Campus, Brisbane, QLD 4000, Australia
| | - Stefano Sanvito
- School of Physics and CRANN Institute, Trinity College, Dublin 2, Ireland
| | - Aijun Du
- School of Chemistry and Physics, Queensland University of Technology, Gardens Point Campus, Brisbane, QLD 4000, Australia.
- Centre for Materials Science, Queensland University of Technology, Gardens Point Campus, Brisbane, QLD 4000, Australia
| |
Collapse
|
8
|
Lyu HY, Zhang Z, You JY, Yan QB, Su G. Two-Dimensional Intercalating Multiferroics with Strong Magnetoelectric Coupling. J Phys Chem Lett 2022; 13:11405-11412. [PMID: 36459057 DOI: 10.1021/acs.jpclett.2c03169] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Intrinsic two-dimensional (2D) multiferroics that couple ferromagnetism and ferroelectricity are rare. Here, we present an approach to achieve 2D multiferroics using powerful intercalation technology. In this approach, metal atoms such as Cu or Ag atoms are intercalated in bilayer CrI3 to form Cu(CrI3)4 or Ag(CrI3)4. The intercalant leads to the inversion symmetry breaking and produces a large out-of-plane electric polarization with a low transition barrier and a small reversal electric field, exhibiting excellent 2D ferroelectric properties. In addition, due to charge transfer between the intercalated atoms and bilayer CrI3, the interlayer coupling transits from antiferromagnetic to ferromagnetic, and the intralayer ferromagnetic coupling is also enhanced. Furthermore, the built-in electric polarization causes a distinct surface magnetization difference, generating a strong magnetoelectric coupling with a coefficient larger than that of Fe, Co, and Ni thin films. Our work paves a practical path for 2D multiferroics, which may have crucial applications in spintronics.
Collapse
Affiliation(s)
- Hou-Yi Lyu
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing100049, China
| | - Zhen Zhang
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Division of Advanced Materials, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing100049, China
| | - Jing-Yang You
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore117551
| | - Qing-Bo Yan
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing100049, China
| | - Gang Su
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing100049, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing100049, China
- Kavli Institute for Theoretical Sciences, and CAS Center of Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing100190, China
| |
Collapse
|
9
|
Dong X, Chen T, Liu G, Xie L, Zhou G, Long M. Multifunctional 2D g-C 4N 3/MoS 2 vdW Heterostructure-Based Nanodevices: Spin Filtering and Gas Sensing Properties. ACS Sens 2022; 7:3450-3460. [DOI: 10.1021/acssensors.2c01785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xiansheng Dong
- School of Energy and Mechanical Engineering, Energy Materials Computing Center, Jiangxi University of Science and Technology, Nanchang330013, China
| | - Tong Chen
- School of Energy and Mechanical Engineering, Energy Materials Computing Center, Jiangxi University of Science and Technology, Nanchang330013, China
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai200433, P. R. China
| | - Guogang Liu
- School of Energy and Mechanical Engineering, Energy Materials Computing Center, Jiangxi University of Science and Technology, Nanchang330013, China
| | - Luzhen Xie
- School of Energy and Mechanical Engineering, Energy Materials Computing Center, Jiangxi University of Science and Technology, Nanchang330013, China
| | - Guanghui Zhou
- School of Sciences, Shaoyang University, Shaoyang422001, China
- Department of Physics and Key Laboratory for Low-Dimensional Structures and Quantum Manipulation (Ministry of Education), Hunan Normal University, Changsha410081, China
| | - Mengqiu Long
- Hunan Key Laboratory of Super Micro-structure and Ultrafast Process, Central South University, Changsha410083, China
| |
Collapse
|
10
|
Wang K, Ren K, Cheng Y, Chen S, Zhang G. The impacts of molecular adsorption on antiferromagnetic MnPS 3 monolayers: enhanced magnetic anisotropy and intralayer Dzyaloshinskii-Moriya interaction. MATERIALS HORIZONS 2022; 9:2384-2392. [PMID: 35781317 DOI: 10.1039/d2mh00462c] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In two-dimensional (2D) magnetic systems, significant magnetic anisotropy is required to protect magnetic ordering against thermal fluctuation. In this paper, we explored the effect of molecular adsorption on the magnetic anisotropy and intralayer Dzyaloshinskii-Moriya interaction (DMI) of monolayer MnPS3, combining the first-principles calculation and theoretical analysis. We find that molecular adsorption can break the spatial inversion symmetry in a 2D magnet, and results in a significant DMI, which is rare in pristine 2D magnets. For example, in an MPS-NO system, the magnitude of the asymmetric DMI vector increases 9 times, and the magnetocrystalline anisotropy increases 600 times compared with the pristine MPS monolayer. It is found the DMI mainly comes from the structural deformation after adsorption, whereas the increase of magnetocrystalline anisotropy mainly originates from a new 'bridge' super-exchange interaction between Mn ions and NO gas molecules. The calculated Mn-NO-Mn 'bridge' super-exchange coupling strength is much higher than the Mn-S-Mn coupling strength. Our findings offer a new strategy to increase the magnetic anisotropy and induce chiral magnetic structures in 2D magnets.
Collapse
Affiliation(s)
- Ke Wang
- School of Automation, Xi'an University of Posts & Telecommunications, Shaanxi, 710121, China
- Monash Suzhou Research Institute, Monash University, Suzhou Industrial Park, Suzhou 215000, P. R. China
| | - Kai Ren
- School of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210042, China
| | - Yuan Cheng
- Monash Suzhou Research Institute, Monash University, Suzhou Industrial Park, Suzhou 215000, P. R. China
- Department of Materials Science and Engineering, Monash University, VIC 3800, Australia
| | - Shuai Chen
- Institute of High Performance Computing, A*STAR, 138632, Singapore.
| | - Gang Zhang
- Institute of High Performance Computing, A*STAR, 138632, Singapore.
| |
Collapse
|