1
|
Kichatov B, Korshunov A, Sudakov V. Chemical magnetism - surface force to move motors. Phys Chem Chem Phys 2024; 26:24542-24552. [PMID: 39268693 DOI: 10.1039/d4cp02537g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
Abstract
If redox reactions occur on the surface of a motor and a current loop arises, then in a non-uniform magnetic field, in addition to the usual magnetic force, such a motor will also be affected by a chemical magnetic force. The chemical magnetic force belongs to the class of surface forces. Here we analyze for the first time the properties of chemical magnets, which consist of three dissimilar metals, as well as the magnetic field generated by a chemical magnet using paramagnetic nanoparticles. The results of the study show that the chemical magnetic force depends on the concentration and type of electrolyte, the pH of the solution, the temperature, and the structure of the chemical magnet. The results obtained can contribute to the creation of devices where chemical energy is directly converted into kinetic energy of motion.
Collapse
Affiliation(s)
- Boris Kichatov
- Semenov Federal Research Central for Chemical Physics, Moscow, Russia.
| | - Alexey Korshunov
- Semenov Federal Research Central for Chemical Physics, Moscow, Russia.
| | - Vladimir Sudakov
- Semenov Federal Research Central for Chemical Physics, Moscow, Russia.
| |
Collapse
|
2
|
Lozon C, Cornet A, Reculusa S, Garrigue P, Kuhn A, Salinas G. Chemically-Driven Autonomous Janus Electromagnets as Magnetotactic Swimmers. Angew Chem Int Ed Engl 2024; 63:e202408198. [PMID: 38924323 DOI: 10.1002/anie.202408198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/11/2024] [Accepted: 06/26/2024] [Indexed: 06/28/2024]
Abstract
An electromagnet is a particular device that takes advantage of electrical currents to produce concentrated magnetic fields. The most well-known example is a conventional solenoid, having the form of an elongated coil and creating a strong magnetic field through its center when it is connected to a current source. Spontaneous redox reactions located at opposite ends of an anisotropic Janus swimmer can effectively mimic a standard power source, due to their ability to wirelessly generate a local electric current. Herein, we propose the coupling of thermodynamically spontaneous redox reactions occurring at the extremities of a hybrid Mg/Pt Janus swimmer with a solenoidal geometry to generate significant magnetic fields. These chemically driven electromagnets spontaneously transform the redox-induced electric current into a magnetic field with a strength in the range of μT upon contact with an acidic medium. Such on-board magnetization allows them to perform compass-like rotational motion and magnetotactic displacement in the presence of external magnetic field gradients, without the need of using ferromagnetic materials for the swimmer design. The torque force experienced by the swimmer is proportional to the internal redox current, and by varying the composition of the solution, it is possible to fine-tune its angular velocity.
Collapse
Affiliation(s)
- Cara Lozon
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM UMR 5255, 33607, Pessac, France
| | - Antoine Cornet
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM UMR 5255, 33607, Pessac, France
| | - Stephane Reculusa
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM UMR 5255, 33607, Pessac, France
| | - Patrick Garrigue
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM UMR 5255, 33607, Pessac, France
| | - Alexander Kuhn
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM UMR 5255, 33607, Pessac, France
| | - Gerardo Salinas
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM UMR 5255, 33607, Pessac, France
| |
Collapse
|
3
|
Hu J, Chi M, He R, Fan J, Gao H, Xie W, Dai K, Sun S, Hu S. Multi-responsive Pickering emulsifiers: a comprehensive study on the emulsification-demulsification behavior of modified chitosan-coated Fe 3O 4 nanocomposites. Phys Chem Chem Phys 2024; 26:20009-20021. [PMID: 39005229 DOI: 10.1039/d4cp01018c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
The surface characteristics of stimuli-responsive Pickering emulsifiers can be modified by external environmental triggers, making them highly versatile in various applications. In this study, we report three novel organic-inorganic composite structure emulsifiers. These emulsifiers were designed with a core of magnetic Fe3O4 particles, surrounded by a protective silica layer, and coated on the exterior with three distinct types of modified chitosan (CS). Experimental results demonstrate that these emulsifiers can stabilize emulsion systems consisting of liquid paraffin and deionized water at a concentration of 0.5 wt%. The unique properties of the modified CS coatings allowed for the controlled demulsification of two types of emulsions by adjusting the proton concentration. Additionally, these emulsifiers exhibited magnetic-responsive demulsification under the control of an external magnetic field. The findings of this study provide valuable insights into the design and construction of multi-responsive chitosan-based magnetic Pickering emulsifiers with controllable properties.
Collapse
Affiliation(s)
- Jianwen Hu
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, P. R. China.
- Institute of Advanced Materials, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| | - Mingshuo Chi
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, P. R. China.
- Institute of Advanced Materials, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| | - Runna He
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, P. R. China.
- Institute of Advanced Materials, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| | - Junjie Fan
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, P. R. China.
- Institute of Advanced Materials, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| | - Haotian Gao
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, P. R. China.
- Institute of Advanced Materials, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| | - Wenqing Xie
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, P. R. China.
- Institute of Advanced Materials, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| | - Kunxiu Dai
- School of Petroleum Engineering, Southwest Petroleum University, Chengdu, 610500, P. R. China
| | - Shuangqing Sun
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, P. R. China.
- Institute of Advanced Materials, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| | - Songqing Hu
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, P. R. China.
- Institute of Advanced Materials, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| |
Collapse
|
4
|
Zhao Z, Chen J, Zhan G, Gu S, Cong J, Liu M, Liu Y. Controlling the Collective Behaviors of Ultrasound-Driven Nanomotors via Frequency Regulation. MICROMACHINES 2024; 15:262. [PMID: 38398990 PMCID: PMC10892131 DOI: 10.3390/mi15020262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/03/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024]
Abstract
Controlling the collective behavior of micro/nanomotors with ultrasound may enable new functionality in robotics, medicine, and other engineering disciplines. Currently, various collective behaviors of nanomotors, such as assembly, reconfiguration, and disassembly, have been explored by using acoustic fields with a fixed frequency, while regulating their collective behaviors by varying the ultrasound frequency still remains challenging. In this work, we designed an ultrasound manipulation methodology that allows nanomotors to exhibit different collective behaviors by regulating the applied ultrasound frequency. The experimental results and FEM simulations demonstrate that the secondary ultrasonic waves produced from the edge of the sample cell lead to the formation of complex acoustic pressure fields and microfluidic patterns, which causes these collective behaviors. This work has important implications for the design of artificial actuated nanomotors and optimize their performances.
Collapse
Affiliation(s)
- Zhihong Zhao
- Hubei Engineering Research Center of Weak Magnetic-Field Detection, College of Science, China Three Gorges University, Yichang 443002, China; (Z.Z.)
| | - Jie Chen
- Hubei Engineering Research Center of Weak Magnetic-Field Detection, College of Science, China Three Gorges University, Yichang 443002, China; (Z.Z.)
| | - Gaocheng Zhan
- Hubei Engineering Research Center of Weak Magnetic-Field Detection, College of Science, China Three Gorges University, Yichang 443002, China; (Z.Z.)
| | - Shuhao Gu
- Hubei Engineering Research Center of Weak Magnetic-Field Detection, College of Science, China Three Gorges University, Yichang 443002, China; (Z.Z.)
| | - Jiawei Cong
- School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China;
| | - Min Liu
- Hubei Engineering Research Center of Weak Magnetic-Field Detection, College of Science, China Three Gorges University, Yichang 443002, China; (Z.Z.)
| | - Yiman Liu
- Hubei Engineering Research Center of Weak Magnetic-Field Detection, College of Science, China Three Gorges University, Yichang 443002, China; (Z.Z.)
| |
Collapse
|
5
|
Ryapolov P, Vasilyeva A, Kalyuzhnaya D, Churaev A, Sokolov E, Shel’deshova E. Magnetic Fluids: The Interaction between the Microstructure, Macroscopic Properties, and Dynamics under Different Combinations of External Influences. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:222. [PMID: 38276740 PMCID: PMC10819141 DOI: 10.3390/nano14020222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/27/2024]
Abstract
Magnetic fluids were historically the first active nano-dispersion material. Despite over half a century of research, interest in these nano-objects continues to grow every year. This is due to the impressive development of nanotechnology, the synthesis of nanoscale structures, and surface-active systems. The unique combination of fluidity and magnetic response allows magnetic fluids to be used in engineering devices and biomedical applications. In this review, experimental results and fundamental theoretical approaches are systematized to predict the micro- and macroscopic behavior of magnetic fluid systems under different external influences. The article serves as working material for both experienced scientists in the field of magnetic fluids and novice specialists who are just beginning to investigate this topic.
Collapse
Affiliation(s)
- Petr Ryapolov
- Department of Nanotechnology, Microelectronics, General and Applied Physics, Faculty of Natural Sciences, Southwest State University, 50 Let Oktyabrya Street, 94, 305040 Kursk, Russia; (A.V.); (D.K.); (A.C.); (E.S.); (E.S.)
| | | | | | | | | | | |
Collapse
|
6
|
Kichatov B, Korshunov A, Sudakov V, Golubkov A, Smovzh D, Sakhapov S, Skirda M. The role of self-diffusiophoresis and reactive force during the propulsion of manganese-based catalytic micromotors. Phys Chem Chem Phys 2024; 26:1612-1615. [PMID: 38165667 DOI: 10.1039/d3cp04689c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
The movement of catalytic micromotors is often accompanied by gas generation. Currently, the prevailing view is that bubbles play a significant role in their movement. Analyzing the movements of catalytic manganese-based micromotors in a solution of hydrogen peroxide, we found that the reactive force cannot play a significant role in their movement, and the main mechanism occurs due to self-diffusiophoresis.
Collapse
Affiliation(s)
- Boris Kichatov
- Lebedev Physical Institute, Russian Academy of Sciences, Moscow 119991, Russia.
| | - Alexey Korshunov
- Lebedev Physical Institute, Russian Academy of Sciences, Moscow 119991, Russia.
| | - Vladimir Sudakov
- Lebedev Physical Institute, Russian Academy of Sciences, Moscow 119991, Russia.
| | - Alexandr Golubkov
- Lebedev Physical Institute, Russian Academy of Sciences, Moscow 119991, Russia.
| | - Dmitriy Smovzh
- Kutateladze Institute of Thermophysics, Russian Academy of Sciences, Novosibirsk 630090, Russia.
- Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Salavat Sakhapov
- Kutateladze Institute of Thermophysics, Russian Academy of Sciences, Novosibirsk 630090, Russia.
| | - Mikhail Skirda
- Kutateladze Institute of Thermophysics, Russian Academy of Sciences, Novosibirsk 630090, Russia.
| |
Collapse
|
7
|
Kichatov B, Korshunov A, Sudakov V, Gubernov V, Golubkov A, Kolobov A, Kiverin A, Chikishev L. Motion of magnetic motors across liquid-liquid interface. J Colloid Interface Sci 2023; 652:1456-1466. [PMID: 37659314 DOI: 10.1016/j.jcis.2023.08.138] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/01/2023] [Accepted: 08/21/2023] [Indexed: 09/04/2023]
Abstract
HYPOTHESIS In a number of applications related to chemical engineering and drug delivery, magnetic nanoparticles should move through a liquid-liquid interface in the presence of surfactant molecules. However, due to the action of capillary forces, this is not always possible. The mechanism of particle motion through the interface essentially depends on the intensity of the Marangoni flow, which is induced on the interface during its deformation. EXPERIMENTS In this paper we study the motion of nanoparticles Fe3O4 through the water-tridecane interface under the action of a nonuniform magnetic field when using different surfactants. FINDINGS If the linear size of the magnetic motor turns out to be less than a certain critical value, then it is not able to move between phases due to the action of capillary forces on the interface. Depending on the type and concentration of the surfactant used, various mechanisms for the motor motion through the liquid-liquid interface can be carried out. In one of them, a liquid phase is transferred through the interface along with a movable motor, while in the other, it is not.
Collapse
Affiliation(s)
- Boris Kichatov
- Lebedev Physical Institute, Russian Academy of Sciences, 119991 Moscow, Russia.
| | - Alexey Korshunov
- Lebedev Physical Institute, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Vladimir Sudakov
- Lebedev Physical Institute, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Vladimir Gubernov
- Lebedev Physical Institute, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alexandr Golubkov
- Lebedev Physical Institute, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Andrey Kolobov
- Lebedev Physical Institute, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alexey Kiverin
- Joint Institute for High Temperatures, Russian Academy of Sciences, 125412 Moscow, Russia
| | - Leonid Chikishev
- Kutateladze Institute of Thermophysics, Russian Academy of Sciences, 630090 Novosibirsk, Russia
| |
Collapse
|
8
|
Song YR, Song ZW, Wu JK, Li ZY, Gu XF, Wang C, Wang L, Liang JG. Focus on the performance enhancement of micro/nanomotor-based biosensors. Biosens Bioelectron 2023; 241:115686. [PMID: 37729810 DOI: 10.1016/j.bios.2023.115686] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 08/27/2023] [Accepted: 09/07/2023] [Indexed: 09/22/2023]
Abstract
Micro/nanomotors (MNMs) emerge as a vital candidate for biosensing due to its nano-size structure, high surface-to-area ratio, directional mobility, biocompatibility, and ease of functionalization, therefore being able to detect objects with high efficiency, precision, and selectivity. The driving mode, nanostructure, materials property, preparation technique, and biosensing applications have been thoroughly discussed in publications. To promote the MNMs-based biosensors from in vitro to in vivo, it is necessary to give a comprehensive discussion from the perspective of sensing performances enhancement. However, until now, there is few reviews dedicated to the systematic discussion on the multiple performance enhancement schemes and the current challenges of MNMs-based biosensors. Bearing it in mind and based on our research experience in this field, we summarized the enhancement methods for biosensing properties such as sensitivity, selectivity, detection time, biocompatibility, simplify system operation, and environmental availability. We hope that this review provides the readers with fundamental understanding on performance enhancement schemes for MNMs-based biosensors.
Collapse
Affiliation(s)
- Yi-Ran Song
- Engineering Research Center of IoT Technology Applications (Ministry of Education), Department of Electronic Engineering, Jiangnan University, Wuxi, 214122, China
| | - Zi-Wei Song
- Department of Microwave Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Jia-Kang Wu
- Engineering Research Center of IoT Technology Applications (Ministry of Education), Department of Electronic Engineering, Jiangnan University, Wuxi, 214122, China
| | - Zhe-Yi Li
- Department of Microwave Engineering, Harbin Institute of Technology, Harbin, 150001, China; State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute (LSMRI), Qingdao, 266237, China
| | - Xiao-Feng Gu
- Engineering Research Center of IoT Technology Applications (Ministry of Education), Department of Electronic Engineering, Jiangnan University, Wuxi, 214122, China
| | - Cong Wang
- Department of Microwave Engineering, Harbin Institute of Technology, Harbin, 150001, China.
| | - Lei Wang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China; State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute (LSMRI), Qingdao, 266237, China.
| | - Jun-Ge Liang
- Engineering Research Center of IoT Technology Applications (Ministry of Education), Department of Electronic Engineering, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
9
|
He R, Sun S, Cui J, Chi M, Wang Z, Hu S. pH/magnetic dual responsive Pickering emulsion stabilized by Fe 3O 4@SiO 2@chitosan nanoparticles. Phys Chem Chem Phys 2023; 25:25780-25788. [PMID: 37724345 DOI: 10.1039/d3cp03400c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
In recent years, Pickering emulsifiers have been widely used in various production fields due to their excellent structural stability, biocompatibility and environmental friendliness. For some applications, it is required that the emulsifier can quickly respond to environmental stimuli and control the transition between stable and unstable emulsions. In this paper, we report a novel composite Pickering emulsifier with Fe3O4 as the core and magnetic response recognition body, silica as the intermediate protective layer, and chitosan (CS) of different molecular weights to endow solid particles with surface activity and pH-responsive properties. This emulsifier can stabilize the emulsion in the emulsion system with deionized water as the aqueous phase and liquid paraffin as the oil phase and can control the demulsification of the formed emulsion under the dual pH/magnetic stimulation. The experimental results show that Fe3O4@SiO2@CS has good paramagnetism and pH responsiveness. The particle size of the composite emulsifier nanoparticles is between 90 nm and 120 nm, and the best stabilizing effect of the emulsion is achieved when the dosage is 0.5 wt%. In the pH range of 3-11, the emulsifier can rapidly demulsify a stable paraffin oil-water emulsion system under the action of a magnetic field of strength 0.4 T. The pH response of the emulsifier is as follows: when pH ≤ 2, the system can form a stable emulsion, which is composed of fully protonated chitosan as a free chain segment and Fe3O4@SiO2. Emulsion stabilization was achieved with monolithic Fe3O4@SiO2@CS as an emulsifier at pH > 2, and demulsification was achieved at pH ≈ pKb (CS) at 298 K. The research in this paper can provide a feasible idea and synthesis method for the preparation of organic-inorganic composite structure emulsifier.
Collapse
Affiliation(s)
- Runna He
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China.
| | - Shuangqing Sun
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China.
- Institute of Advanced Materials, China University of Petroleum (East China), Qingdao 266580, China
| | - Jianpeng Cui
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China.
| | - Mingshuo Chi
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China.
| | - Zhikun Wang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China.
- Institute of Advanced Materials, China University of Petroleum (East China), Qingdao 266580, China
| | - Songqing Hu
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China.
- Institute of Advanced Materials, China University of Petroleum (East China), Qingdao 266580, China
| |
Collapse
|
10
|
Svetlov AS, Vasiliev MM, Kononov EA, Petrov OF, Trukhachev FM. 3D Active Brownian Motion of Single Dust Particles Induced by a Laser in a DC Glow Discharge. Molecules 2023; 28:molecules28041790. [PMID: 36838777 PMCID: PMC9965684 DOI: 10.3390/molecules28041790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
The active Brownian motion of single dust particles of various types in the 3D electrostatic DC discharge trap under the action of laser radiation is studied experimentally. Spherical dust particles with a homogeneous surface, as well as Janus particles, are used in the experiment. The properties of the active Brownian motion of all types of dust particles are studied. In particular, the 3D analysis of trajectories of microparticles is carried out, well as an analysis of their root mean square displacement. The mean kinetic energy of motion of the dust particle of various types in a 3D trap is determined for different laser powers. Differences in the character of active Brownian motion in electrostatic traps with different spatial dimensions are found.
Collapse
Affiliation(s)
- Anton S. Svetlov
- Joint Institute for High Temperatures, Russian Academy of Sciences, 125412 Moscow, Russia
- Active Media and Systems Physics Laboratory, Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | - Mikhail M. Vasiliev
- Joint Institute for High Temperatures, Russian Academy of Sciences, 125412 Moscow, Russia
- Active Media and Systems Physics Laboratory, Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
- Correspondence:
| | - Evgeniy A. Kononov
- Joint Institute for High Temperatures, Russian Academy of Sciences, 125412 Moscow, Russia
- Active Media and Systems Physics Laboratory, Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | - Oleg F. Petrov
- Joint Institute for High Temperatures, Russian Academy of Sciences, 125412 Moscow, Russia
- Active Media and Systems Physics Laboratory, Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | - Fedor M. Trukhachev
- Joint Institute for High Temperatures, Russian Academy of Sciences, 125412 Moscow, Russia
- Active Media and Systems Physics Laboratory, Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| |
Collapse
|
11
|
Ramos Docampo MA. On Nanomachines and Their Future Perspectives in Biomedicine. Adv Biol (Weinh) 2023; 7:e2200308. [PMID: 36690500 DOI: 10.1002/adbi.202200308] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/06/2022] [Indexed: 01/25/2023]
Abstract
Nano/micromotors are a class of active matter that can self-propel converting different types of input energy into kinetic energy. The huge efforts that are made in this field over the last years result in remarkable advances. Specifically, a high number of publications have dealt with biomedical applications that these motors may offer. From the first attempts in 2D cell cultures, the research has evolved to tissue and in vivo experimentation, where motors show promising results. In this Perspective, an overview over the evolution of motors with focus on bio-relevant environments is provided. Then, a discussion on the advances and challenges is presented, and eventually some remarks and perspectives of the field are outlined.
Collapse
Affiliation(s)
- Miguel A Ramos Docampo
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus, 8000, Denmark
| |
Collapse
|
12
|
Gas generation due to photocatalysis as a method to reduce the resistance force in the process of motors motion at the air-liquid interface. J Colloid Interface Sci 2022; 627:774-782. [PMID: 35901558 DOI: 10.1016/j.jcis.2022.07.073] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/07/2022] [Accepted: 07/12/2022] [Indexed: 11/20/2022]
Abstract
HYPOTHESIS The problem of the development of miniature motors able to move on the air-liquid interface at low Reynolds numbers is a crucial challenge due to dominating role of viscous force. To solve this problem the chemical generation of gas can be used. Generated gas pushes liquid out from the surfer surface, so the resistance force is reduced. EXPERIMENTS Surfer composed of TiO2 nanoparticles and ferromagnetic cobalt microparticles moves at the interface of an aqueous solution of hydrogen peroxide under the action of magnetic force. After irradiation with UV or visible light, the gas cavern is formed at the surfer surface due to photo-catalytic decomposition of hydrogen peroxide. As a result, the area of surfer contact with liquid is reduced. FINDINGS The resistance force acting on the surfer is reduced due to the liquid pushing out from the surfer surface. This effect is strengthened with the increase in the intensity of gas generation. The resistance force is increased when increasing the liquid viscosity or using a surfactant. The proposed method allows control of the velocity of the motors in a rather wide range by changing the gradient of the magnetic field and parameters of light.
Collapse
|