1
|
Chen L, Yi J, Ma R, Ding L, Dela Peña TA, Liu H, Chen J, Zhang C, Zhao C, Lu W, Wei Q, Zhao B, Hu H, Wu J, Ma Z, Lu X, Li M, Zhang G, Li G, Yan H. An Isomeric Solid Additive Enables High-Efficiency Polymer Solar Cells Developed Using a Benzo-Difuran-Based Donor Polymer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2301231. [PMID: 37044383 DOI: 10.1002/adma.202301231] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/25/2023] [Indexed: 05/23/2023]
Abstract
Currently, nearly all high-efficiency organic photovoltaic devices use donor polymers based on the benzo-dithiophene (BDT) unit. To diversify the choices of building blocks for high-performance donor polymers, the use of benzo-difuran (BDF) units is explored, which can achieve reduced steric hindrance, stronger molecular packing, and tunable energy levels. In previous research, the performance of BDF-based devices lagged behind those of BDT-based devices. In this study, a high efficiency (18.4%) is achieved using a BDF-based polymer donor, which is the highest efficiency reported for BDF donor materials to date. The high efficiency is enabled by a donor polymer (D18-Fu) and the aid of a solid additive (2-chloronaphthalene), which is the isomer of the commonly used additive 1-chloronaphthalene. These results revealed the significant effect of 2-chloronaphthalene in optimizing the morphology and enhancing the device parameters. This work not only provides a new building block that can achieve an efficiency comparable to dominant BDT units but also proposes a new solid additive that can replace the widely used 1-chloronaphthalene additive.
Collapse
Affiliation(s)
- Lu Chen
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, 518118, P. R. China
- Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, 999077, P. R. China
| | - Jicheng Yi
- Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, 999077, P. R. China
| | - Ruijie Ma
- Department of Electronic and Information Engineering, Research Institute for Smart Energy (RISE), Guangdong-Hong Kong-Macao (GHM) Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
| | - Lu Ding
- Hong Kong University of Science and Technology Fok Ying Tung Research Institute, S&T Building, Nansha IT Park, Guangzhou City, 511458, P. R. China
| | - Top Archie Dela Peña
- Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, 999077, P. R. China
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, 999077, P. R. China
- The Hong Kong University of Science and Technology, Function Hub, Advanced Materials Thrust, Nansha, Guangzhou, 511400, P. R. China
| | - Heng Liu
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong, 999077, P. R. China
| | - Jian Chen
- Hong Kong University of Science and Technology Fok Ying Tung Research Institute, S&T Building, Nansha IT Park, Guangzhou City, 511458, P. R. China
| | - Cuifen Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Chaoyue Zhao
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, 518118, P. R. China
| | - Wen Lu
- Key Laboratory of Polymeric Materials & Application Technology of Hunan Province, College of Chemistry, Xiangtan University, Xiangtan, 411105, P. R. China
| | - Qi Wei
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, 999077, P. R. China
| | - Bin Zhao
- Key Laboratory of Polymeric Materials & Application Technology of Hunan Province, College of Chemistry, Xiangtan University, Xiangtan, 411105, P. R. China
| | - Huawei Hu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Jiaying Wu
- The Hong Kong University of Science and Technology, Function Hub, Advanced Materials Thrust, Nansha, Guangzhou, 511400, P. R. China
| | - Zaifei Ma
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Xinhui Lu
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong, 999077, P. R. China
| | - Mingjie Li
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, 999077, P. R. China
| | - Guangye Zhang
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, 518118, P. R. China
| | - Gang Li
- Department of Electronic and Information Engineering, Research Institute for Smart Energy (RISE), Guangdong-Hong Kong-Macao (GHM) Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
| | - He Yan
- Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, 999077, P. R. China
- Hong Kong University of Science and Technology Fok Ying Tung Research Institute, S&T Building, Nansha IT Park, Guangzhou City, 511458, P. R. China
- eFlexPV Limited (Foshan), Guicheng Street, Nanhai District, Foshan, 528200, P. R. China
| |
Collapse
|
2
|
Zeng S, Li Z, Tan W, Si J, Li Y, Hou X. Ultrafast Charge Carrier Dynamics in InP/ZnSe/ZnS Core/Shell/Shell Quantum Dots. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3817. [PMID: 36364592 PMCID: PMC9657385 DOI: 10.3390/nano12213817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
The excellent performance of InP/ZnSe/ZnS core/shell/shell quantum dots (CSS-QDs) in light-emitting diodes benefits from the introduction of a ZnSe midshell. Understanding the changes of ultrafast carrier dynamics caused by the ZnSe midshell is important for their optoelectronic applications. Herein, we have compared the ultrafast carrier dynamics in CSS-QDs and InP/ZnS core/shell QDs (CS-QDs) using femtosecond transient absorption spectroscopy. The results show that the ZnSe midshell intensifies the electron delocalization and prolongs the in-band relaxation time of electrons from 238 fs to 350 fs, and that of holes from hundreds of femtoseconds to 1.6 ps. We also found that the trapping time caused by deep defects increased from 25.6 ps to 76 ps, and there were significantly reduced defect emissions in CSS-QDs. Moreover, the ZnSe midshell leads to a significantly increased density of higher-energy hole states above the valence band-edge, which may reduce the probability of Auger recombination caused by the positive trion. This work enhances our understanding of the excellent performance of the CSS-QDs applied to light-emitting diodes, and is likely to be helpful for the further optimization and design of optoelectronic devices based on the CSS-QDs.
Collapse
|
3
|
Rashid EU, Hadia NMA, Javed Iqbal, Mehmood RF, Somaily HH, Akram SJ, Shawky AM, Khan MI, Noor S, Khera RA. Engineering of W-shaped benzodithiophenedione-based small molecular acceptors with improved optoelectronic properties for high efficiency organic solar cells. RSC Adv 2022; 12:21801-21820. [PMID: 36043078 PMCID: PMC9358680 DOI: 10.1039/d2ra03280e] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/18/2022] [Indexed: 11/21/2022] Open
Abstract
In the current study, with the objective to improve the overall performance of organic solar cells, seven new W-shaped small molecular acceptors – were developed theoretically by the end-group alteration of the reference (WR) molecule. The MPW1PW91 functional with the basis set 6-31G(d,p) was used to explore the optoelectronic properties of the WR and W1–W7 molecules and the time-dependent self-consistent filed (TD-SCF) simulation was used to investigate the solvent-state calculations. The several explored photovoltaic attributes were the absorption spectra, excitation energies, bandgap between the FMOs, oscillator strength, full width at half maximum, light-harvesting efficiency, transition density matrices, open-circuit voltage, fill factor, density of states, binding energy, interaction coefficient, etc. Overall, the results revealed a bathochromic shift in the absorption maxima (λmax), a reduced HOMO–LUMO gap (Egap), and smaller excitation energy (Ex) of the altered molecules as compared to the WR molecule. Some of the optoelectronic aspects of a well-known fused ring based acceptor named Y6 are also compared with the studied W-shaped molecules. Additionally, the W1 molecule presented the smallest Egap, along with highest λmax and the lowest Ex, amongst all, in both the evaluated media (gas and solvent). The open circuit voltage (VOC) of all the considered small molecular acceptors was calculated by pairing them with the PTB7-Th donor. Here, W6 and W7 displayed the best results for the VOC (1.48 eV and 1.51 eV), normalized VOC (57.25 and 58.41) and FF (0.9131 and 0.9144). Consequently, in light of the results of this research, the altered molecules could be considered for practical implementation in the manufacturing of OSCs with improved photovoltaic capabilities. The developed molecules have a reduced band gap and lower excitation energy. Their VOC was calculated by making complexes of them with the PTB7-Th donor.![]()
Collapse
Affiliation(s)
- Ehsan Ullah Rashid
- Department of Chemistry, University of Agriculture Faisalabad 38000 Pakistan
| | - N M A Hadia
- Physics Department, College of Science, Jouf University Sakaka Al-Jouf P. O. Box 2014 Saudi Arabia
| | - Javed Iqbal
- Department of Chemistry, University of Agriculture Faisalabad 38000 Pakistan
| | - Rana Farhat Mehmood
- Department of Chemistry, Division of Science and Technology, University of Education Township Lahore 54770 Pakistan
| | - H H Somaily
- Research Center for Advanced Materials Science (RCAMS), King Khalid University Abha 61413 P.O. Box 9004 Saudi Arabia.,Department of Physics, Faculty of Science, King Khalid University Abha P.O. Box 9004 Saudi Arabia
| | - Sahar Javaid Akram
- Department of Chemistry, University of Agriculture Faisalabad 38000 Pakistan
| | - Ahmed M Shawky
- Science and Technology Unit (STU), Umm Al-Qura University Makkah 21955 Saudi Arabia
| | - Muhammad Imran Khan
- Department of Chemistry, University of Agriculture Faisalabad 38000 Pakistan
| | - Sadia Noor
- Department of Chemistry, University of Agriculture Faisalabad 38000 Pakistan
| | - Rasheed Ahmad Khera
- Department of Chemistry, University of Agriculture Faisalabad 38000 Pakistan
| |
Collapse
|