1
|
Cognigni L, Gobbato T, Benazzi E, Paoloni L, Vizio BD, Bonetto R, Rigodanza F, Bonetto A, Agnoli S, Bonchio M, Costa P. ON-OFF Switching of Photocatalytic Hydrogen Evolution by Built-in Pt-Nitrogen-Carbon Reticular Heterojunctions. CHEMSUSCHEM 2024:e202401977. [PMID: 39422457 DOI: 10.1002/cssc.202401977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/09/2024] [Accepted: 10/18/2024] [Indexed: 10/19/2024]
Abstract
COF engineering with a built-in, high concentration of defined N-doped sites overcomes the "black-box" drawback of conventional trial-and-error N-doping methods (used in polymeric carbon nitride and graphene), that hamper a directed evolution of functional carbon interfaces based on structure-reactivity guidelines. The cutting-edge challenge is to dissect the many complex and interdependent functions that originate from reticular N-doping, including modification of the material optoelectronics, band alignments, interfacial contacts and co-localization of active-sites, producing a multiple-set of effectors that can all play a role to regulate photocatalysis. Herein, an ON-OFF gated photocatalytic H2 evolution (PHE) is dictated by the Pt-NPyridine-carbon active sites and probed with a dual COF platform, based on stable β-ketoenamine connectivities made of triformylphloroglucinol (Tp) as the acceptor knots and 1,4-diaminonaphtalene (Naph) or 5,8-diaminoisoquinoline (IsoQ) as donors. Our results showcase two novel COF-Naph-Tp and COF-IsoQ-Tp frameworks featuring quasi-identical slip-stacked microporous structure, and similar surface area, band gap, light harvesting envelope up to 700 nm, fluorescence emission profile/lifetime, and PEIS response at the surface/water interface (Rct=16-10±4 KΩ). A divergent behaviour is indeed observed for COF-IsoQ-Tp with record photoelectrochemical outputs (J=-16 μA cm-2, Rt=3 KΩ at 0.40 V vs RHE) and two orders of magnitude higher rate of PHE (11.3 mmol g-1 h-1, λ>400 nm, pH 5) compared to the inactive COF-Naph-Tp analogue. It turns out that PHE is regulated by the isoquinoline residues at the COF pores where emergent Pt-NPyridine-carbon functional heterojunctions are formed upon photo-deposition of Pt nanoparticles as co-catalysts, as probed by combined XPS and DFT calculations evidence. This work sets a key guideline to direct the design of carbon-based materials encoding the installation of metal-nitrogen-carbon active sites within tailored coordination environments enabling the catalytic performance.
Collapse
Affiliation(s)
- Leonardo Cognigni
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, Padova, Italy
| | - Thomas Gobbato
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, Padova, Italy
| | - Elisabetta Benazzi
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, Padova, Italy
| | - Lorenzo Paoloni
- Department of Physics and Astronomy, University of Padova, Padova, Via Marzolo 8, 35131, Padova, Italy
| | - Biagio Di Vizio
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, Padova, Italy
| | - Ruggero Bonetto
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, Padova, Italy
| | - Francesco Rigodanza
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, Padova, Italy
| | - Alessandro Bonetto
- Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari Venice, Via Torino 155, Mestre, Venice, Italy
| | - Stefano Agnoli
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, Padova, Italy
| | - Marcella Bonchio
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, Padova, Italy
- Interuniversity Consortium on Materials Science and Technology, INSTM UdR Padova and Institute of Membrane Technology, ITM-CNR UoS Padova, Via Marzolo 1, Padova, Italy
| | - Paolo Costa
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, Padova, Italy
| |
Collapse
|
2
|
Xue F, Zhang J, Ma Z, Wang Z. Copper Dispersed Covalent Organic Framework for Azide-Alkyne Cycloaddition and Fast Synthesis of Rufinamide in Water. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307796. [PMID: 38185802 DOI: 10.1002/smll.202307796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/27/2023] [Indexed: 01/09/2024]
Abstract
A crystalline porous bipyridine-based Bpy-COF with a high BET surface area (1864 m2 g-1) and uniform mesopore (4.0 nm) is successfully synthesized from 1,3,5-tris-(4'-formyl-biphenyl-4-yl)triazine and 5,5'-diamino-2,2'-bipyridine via a solvothermal method. After Cu(I)-loading, the resultant Cu(I)-Bpy-COF remained the ordered porous structure with evenly distributed Cu(I) ions at a single-atom level. Using Cu(I)-Bpy-COF as a heterogeneous catalyst, high conversions for cycloaddition reactions are achieved within a short time (40 min) at 25 °C in water medium. Moreover, Cu(I)-Bpy-COF proves to be applicable for aromatic and aliphatic azides and alkynes bearing various substituents such as ester, hydroxyl, amido, pyridyl, thienyl, bulky triphenylamine, fluorine, and trifluoromethyl groups. The high conversions remain almost constant after five cycles. Additionally, the antiepileptic drug (rufinamide) is successfully prepared by a simple one-step reaction using Cu(I)-Bpy-COF, proving its practical feasibility for pharmaceutical synthesis.
Collapse
Affiliation(s)
- Fei Xue
- Department of Polymer Science and Materials, School of Chemical Engineering, Dalian University of Technology, Linggong Rd. 2, Dalian, 116024, China
| | - Jun Zhang
- Department of Polymer Science and Materials, School of Chemical Engineering, Dalian University of Technology, Linggong Rd. 2, Dalian, 116024, China
| | - Zhongcheng Ma
- Department of Polymer Science and Materials, School of Chemical Engineering, Dalian University of Technology, Linggong Rd. 2, Dalian, 116024, China
| | - Zhonggang Wang
- Department of Polymer Science and Materials, School of Chemical Engineering, Dalian University of Technology, Linggong Rd. 2, Dalian, 116024, China
| |
Collapse
|
3
|
He W, Zhou J, Xu W, Li C, Li J, Wang N. Regulating the Content of Donor Unit in Donor-Acceptor Covalent Triazine Frameworks for Promoting Photocatalytic H 2 Production. CHEMSUSCHEM 2024; 17:e202301175. [PMID: 37724486 DOI: 10.1002/cssc.202301175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 09/20/2023]
Abstract
Using their own triazine groups as natural receptors, the introduction of various donor units to construct donor-receptor configuration in covalent triazine frameworks (CTFs) has been shown to be an effective strategy to improve photocatalytic activity. In this work, the effect of donor unit content (D-content) on the photoelectric properties and photocatalytic activity of CTFs was thoroughly investigated. Four analogous CTFs with different D-content have been rationally designed and synthesized, in which the bithiophene (Btp) as the donor unit and triazine as the acceptor unit. And CTF-Btp with the highest D-content showed the best photocatalytic activity. The experimental and theoretical results indicated this improvement is attributed to stronger visible light absorption capacity and higher photoinduced charge carrier separation efficiency. This study elucidates the relationship between the structural features of CTFs with varying D-content and their photocatalytic activity, offering a promising strategy for developing efficient photocatalysts.
Collapse
Affiliation(s)
- Wei He
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, P. R. China
| | - Jing Zhou
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, P. R. China
| | - Wenhua Xu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, P. R. China
| | - Chengbo Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, P. R. China
| | - Jun Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, P. R. China
| | - Ning Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, P. R. China
- Shaanxi Key Laboratory for Carbon Neutral Technology, Northwest University, Xi'an, 710069, P. R. China
| |
Collapse
|
4
|
Yue JY, Song LP, Fan YF, Pan ZX, Yang P, Ma Y, Xu Q, Tang B. Thiophene-Containing Covalent Organic Frameworks for Overall Photocatalytic H 2 O 2 Synthesis in Water and Seawater. Angew Chem Int Ed Engl 2023; 62:e202309624. [PMID: 37526096 DOI: 10.1002/anie.202309624] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/02/2023]
Abstract
H2 O2 is a significant chemical widely utilized in the environmental and industrial fields, with growing global demand. Without sacrificial agents, simultaneous photocatalyzed H2 O2 synthesis through the oxygen reduction reaction (ORR) and water oxidation reaction (WOR) dual channels from seawater is green and sustainable but still challenging. Herein, two novel thiophene-containing covalent organic frameworks (TD-COF and TT-COF) were first constructed and served as catalysts for H2 O2 synthesis via indirect 2e- ORR and direct 2e- WOR channels. The photocatalytic H2 O2 production performance can be regulated by adjusting the N-heterocycle modules (pyridine and triazine) in COFs. Notably, with no sacrificial agents, just using air and water as raw materials, TD-COF exhibited high H2 O2 production yields of 4060 μmol h-1 g-1 and 3364 μmol h-1 g-1 in deionized water and natural seawater, respectively. Further computational mechanism studies revealed that the thiophene was the primary photoreduction unit for ORR, while the benzene ring (linked to the thiophene by the imine bond) was the central photooxidation unit for WOR. The current work exploits thiophene-containing COFs for overall photocatalytic H2 O2 synthesis via ORR and WOR dual channels and provides fresh insight into creating innovative catalysts for photocatalyzing H2 O2 synthesis.
Collapse
Affiliation(s)
- Jie-Yu Yue
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, 250014, Jinan, P. R. China
| | - Li-Ping Song
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, 250014, Jinan, P. R. China
| | - Yan-Fei Fan
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, 250014, Jinan, P. R. China
| | - Zi-Xian Pan
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, 250014, Jinan, P. R. China
| | - Peng Yang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, 250014, Jinan, P. R. China
| | - Yu Ma
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, 250014, Jinan, P. R. China
| | - Qing Xu
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute (SARI), Chinese Academy of Sciences (CAS), 201210, Shanghai, P. R. China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, 250014, Jinan, P. R. China
- Laoshan Laboratory, 266200, Qingdao, P. R. China
| |
Collapse
|
5
|
Fang X, Yang L, Dai Z, Cong D, Zheng D, Yu T, Tu R, Zhai S, Yang J, Song F, Wu H, Deng W, Liu C. Poly(ionic liquid)s for Photo-Driven CO 2 Cycloaddition: Electron Donor-Acceptor Segments Matter. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206687. [PMID: 36642842 PMCID: PMC10015876 DOI: 10.1002/advs.202206687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/19/2022] [Indexed: 06/17/2023]
Abstract
CO2 cycloaddition with epoxides is a key catalytic procedure for CO2 utilization. Several metal-based catalysts with cocatalysts are developed for photo-driven CO2 cycloaddition, while facing difficulties in product purification and continuous reaction. Here, poly(ionic liquid)s are proposed as metal-free catalysts for photo-driven CO2 cycloaddition without cocatalysts. A series of poly(ionic liquid)s with donor-acceptor segments are fabricated and their photo-driven catalytic performance (conversion rate of 83.5% for glycidyl phenyl ether) outstrips (≈4.9 times) their thermal-driven catalytic performance (17.2%) at the same temperature. Mechanism studies confirm that photo-induced charge separation is promoted by the donor-acceptor segments and can accelerate the CO2 cycloaddition reaction. This work paves the way for the further use of poly(ionic liquid)s as catalysts in photo-driven CO2 cycloaddition.
Collapse
Affiliation(s)
- Xu Fang
- Institute of Molecule Sciences and EngineeringInstitute of Frontier and Interdisciplinary ScienceShandong UniversityQingdao266237P. R. China
| | - Li Yang
- Institute of Molecule Sciences and EngineeringInstitute of Frontier and Interdisciplinary ScienceShandong UniversityQingdao266237P. R. China
| | - Zhangben Dai
- Institute of Molecule Sciences and EngineeringInstitute of Frontier and Interdisciplinary ScienceShandong UniversityQingdao266237P. R. China
- State Key Laboratory of Molecular Reaction DynamicsDalian Institute of Chemical Physics (DICP)Chinese Academy of SciencesDalianLiaoning116023China
| | - Die Cong
- Institute of Molecule Sciences and EngineeringInstitute of Frontier and Interdisciplinary ScienceShandong UniversityQingdao266237P. R. China
| | - Daoyuan Zheng
- Institute of Molecule Sciences and EngineeringInstitute of Frontier and Interdisciplinary ScienceShandong UniversityQingdao266237P. R. China
| | - Tie Yu
- Institute of Molecule Sciences and EngineeringInstitute of Frontier and Interdisciplinary ScienceShandong UniversityQingdao266237P. R. China
| | - Rui Tu
- Institute of Molecule Sciences and EngineeringInstitute of Frontier and Interdisciplinary ScienceShandong UniversityQingdao266237P. R. China
| | - Shengliang Zhai
- Institute of Molecule Sciences and EngineeringInstitute of Frontier and Interdisciplinary ScienceShandong UniversityQingdao266237P. R. China
| | - Junxia Yang
- Institute of Molecule Sciences and EngineeringInstitute of Frontier and Interdisciplinary ScienceShandong UniversityQingdao266237P. R. China
| | - Fengling Song
- Institute of Molecule Sciences and EngineeringInstitute of Frontier and Interdisciplinary ScienceShandong UniversityQingdao266237P. R. China
| | - Hao Wu
- Institute of Molecule Sciences and EngineeringInstitute of Frontier and Interdisciplinary ScienceShandong UniversityQingdao266237P. R. China
| | - Wei‐qiao Deng
- Institute of Molecule Sciences and EngineeringInstitute of Frontier and Interdisciplinary ScienceShandong UniversityQingdao266237P. R. China
| | - Chengcheng Liu
- Institute of Molecule Sciences and EngineeringInstitute of Frontier and Interdisciplinary ScienceShandong UniversityQingdao266237P. R. China
| |
Collapse
|
6
|
Mohr Y, Ranscht A, Alves-Favaro M, Alessandra Quadrelli E, M Wisser F, Canivet J. Nickel-Catalyzed Direct Arylation Polymerization for the Synthesis of Thiophene-Based Cross-linked Polymers. Chemistry 2023; 29:e202202667. [PMID: 36205632 DOI: 10.1002/chem.202202667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Indexed: 11/18/2022]
Abstract
An earth-abundant nickel(II) bipyridine catalyst, combined with lithium hexamethyldisilazide as base, demonstrates its wide applicability in the direct arylation polymerization of di- and tri-thiophene heteroaryls with poly(hetero)aryl halides. With a nickel catalyst loading of 2.5 mol%, a series of twenty highly cross-linked organic polymers is obtained in 34 to 99 % yields. Using mixed polytopic coupling partners allows obtaining alternating and optically active thiophene-based solids with intrinsic porosity.
Collapse
Affiliation(s)
- Yorck Mohr
- Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON - UMR 5256, 2 Av. Albert Einstein, 69626, Villeurbanne, France
| | - Alisa Ranscht
- Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON - UMR 5256, 2 Av. Albert Einstein, 69626, Villeurbanne, France
| | - Marcelo Alves-Favaro
- Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON - UMR 5256, 2 Av. Albert Einstein, 69626, Villeurbanne, France
| | - Elsje Alessandra Quadrelli
- Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON - UMR 5256, 2 Av. Albert Einstein, 69626, Villeurbanne, France
| | - Florian M Wisser
- Institute of Inorganic Chemistr, University of Regensburg, 93040, Regensburg, Germany
| | - Jérôme Canivet
- Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON - UMR 5256, 2 Av. Albert Einstein, 69626, Villeurbanne, France
| |
Collapse
|
7
|
Madaan V, Mohan B, Bhankar V, Ranga R, Kumari P, Singh P, Sillanpää M, Kumar A, Solovev AA, Kumar K. Metal-Decorated CeO2 nanomaterials for photocatalytic degradation of organic pollutants. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
8
|
Xu N, Diao Y, Xu Z, Ke H, Zhu X. Correction to Covalent Triazine Frameworks Embedded with Ir Complexes for Enhanced Photocatalytic Hydrogen Evolution. ACS APPLIED ENERGY MATERIALS 2022; 5:10328. [PMID: 36037041 PMCID: PMC9400016 DOI: 10.1021/acsaem.2c02271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Indexed: 06/09/2023]
Abstract
[This corrects the article DOI: 10.1021/acsaem.2c00977.].
Collapse
|