1
|
Yu Y, Liang L, Sun T, Lu H, Yang P, Li J, Pang Q, Zeng J, Shi P, Li J, Lu Y. Micro/Nanomotor-Driven Intelligent Targeted Delivery Systems: Dynamics Sources and Frontier Applications. Adv Healthc Mater 2024; 13:e2400163. [PMID: 39075811 DOI: 10.1002/adhm.202400163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 07/05/2024] [Indexed: 07/31/2024]
Abstract
Micro/nanomotors represent a promising class of drug delivery carriers capable of converting surrounding chemical or external energy into mechanical power, enabling autonomous movement. Their distinct autonomous propulsive force distinguishes them from other carriers, offering significant potential for enhancing drug penetration across cellular and tissue barriers. A comprehensive understanding of micro/nanomotor dynamics with various power sources is crucial to facilitate their transition from proof-of-concept to clinical application. In this review, micro/nanomotors are categorized into three classes based on their energy sources: endogenously stimulated, exogenously stimulated, and live cell-driven. The review summarizes the mechanisms governing micro/nanomotor movements under these energy sources and explores factors influencing autonomous motion. Furthermore, it discusses methods for controlling micro/nanomotor movement, encompassing aspects related to their structure, composition, and environmental factors. The remarkable propulsive force exhibited by micro/nanomotors makes them valuable for significant biomedical applications, including tumor therapy, bio-detection, bacterial infection therapy, inflammation therapy, gastrointestinal disease therapy, and environmental remediation. Finally, the review addresses the challenges and prospects for the application of micro/nanomotors. Overall, this review emphasizes the transformative potential of micro/nanomotors in overcoming biological barriers and enhancing therapeutic efficacy, highlighting their promising clinical applications across various biomedical fields.
Collapse
Affiliation(s)
- Yue Yu
- Guangyuan Central Hospital, Guangyuan, 628000, P. R. China
| | - Ling Liang
- Guangyuan Central Hospital, Guangyuan, 628000, P. R. China
| | - Ting Sun
- Guangyuan Central Hospital, Guangyuan, 628000, P. R. China
| | - Haiying Lu
- Guangyuan Central Hospital, Guangyuan, 628000, P. R. China
| | - Pushan Yang
- Guangyuan Central Hospital, Guangyuan, 628000, P. R. China
| | - Jinrong Li
- Guangyuan Central Hospital, Guangyuan, 628000, P. R. China
| | - Qinjiao Pang
- Guangyuan Central Hospital, Guangyuan, 628000, P. R. China
| | - Jia Zeng
- Guangyuan Central Hospital, Guangyuan, 628000, P. R. China
| | - Ping Shi
- Guangyuan Central Hospital, Guangyuan, 628000, P. R. China
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Yongping Lu
- Guangyuan Central Hospital, Guangyuan, 628000, P. R. China
| |
Collapse
|
2
|
Huang Y, Peng F. Micro/nanomotors for neuromodulation. NANOSCALE 2024; 16:11019-11027. [PMID: 38804105 DOI: 10.1039/d4nr00008k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Micro-nanomotors (MNMs) are micro/nanoscale intelligent devices with vast potential in the fields of drug delivery, precision medicine, biosensing, and environmental remediation. Their primary advantage lies in their ability to convert various forms of external energy (such as magnetic, ultrasonic, and light energy) into their own propulsive force. Additionally, MNMs offer high controllability and modifiability, enabling them to navigate in the microscopic world. Importantly, recent research has harnessed the unique advantages of MNMs to synergize their capabilities in neuromodulation. This mini-review presents the significant progress and pioneering achievements in the use of MNMs for neuromodulation, with the aim of inspiring readers to explore the broader biomedical applications of these MNMs. Through continuous innovation and diligent exploration, MNMs show promise to have a profound impact on the field of biomedicine.
Collapse
Affiliation(s)
- Yulin Huang
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Fei Peng
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China.
| |
Collapse
|
3
|
Wang W, Luo H, Wang H. Recent advances in micro/nanomotors for antibacterial applications. J Mater Chem B 2024; 12:5000-5023. [PMID: 38712692 DOI: 10.1039/d3tb02718j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Currently, the rapid spread of multidrug-resistant bacteria derived from the indiscriminate use of traditional antibiotics poses a significant threat to public health worldwide. Moreover, established bacterial biofilms are extremely difficult to eradicate because of their high tolerance to traditional antimicrobial agents and extraordinary resistance to phagocytosis. Hence, it is of universal significance to develop novel robust and efficient antibacterial strategies to combat bacterial infections. Micro/nanomotors exhibit many intriguing properties, including enhanced mass transfer and micro-mixing resulting from their locomotion, intrinsic antimicrobial capabilities, active cargo delivery, and targeted treatment with precise micromanipulation, which facilitate the targeted delivery of antimicrobials to infected sites and their deep permeation into sites of bacterial biofilms for fast inactivation. Thus, the ideal antimicrobial activity of antibacterial micro/nanorobots makes them desirable alternatives to traditional antimicrobial treatments and has aroused extensive interest in recent years. In this review, recent advancements in antibacterial micro/nanomotors are briefly summarized, focusing on their synthetic methods, propulsion mechanism, and versatile antibacterial applications. Finally, some personal insights into the current challenges and possible future directions to translate proof-of-concept research to clinic application are proposed.
Collapse
Affiliation(s)
- Wenxia Wang
- School of Biomedical and Phamaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Hangyu Luo
- School of Biomedical and Phamaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Han Wang
- School of Biomedical and Phamaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
4
|
Li Y, Liu J, Wu Y, He Q. Rotary F oF 1-ATP Synthase-Driven Flasklike Pentosan Colloidal Motors with ATP Synthesis and Storage. J Am Chem Soc 2024. [PMID: 38598314 DOI: 10.1021/jacs.4c00334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
We report the hierarchical assembly of a chloroplast-derived rotary FoF1-ATPase motor-propelled flasklike pentosan colloidal motor (FPCM) with the ability of the synthesis, storage, and triggered release of biological energy currency ATP. These streamlined and submicrometer-sized hollow flasklike pentosan colloidal motors are prepared by combining a soft-template-based hydrothermal polymerization with a vacuum infusion of chloroplast-derived proteoliposomes containing rotary FoF1-ATPase motors. The generation of proton motive force across the proteoliposomes by injecting an acidic buffer solution promotes the rotation of FoF1-ATPase motors to drive the self-propelled motion of FPCMs, accompanying the inner ATP synthesis and storage. These rotary FoF1-ATPase motor-powered FPCMs exhibit a chemotactic behavior by migrating from their neck opening to their round bottom along a proton gradient of the external environment (negative chemotaxis). Such rotary biomolecular motor-driven flasklike pentosan colloidal motors with ATP synthesis and on-demand release make them promising candidates for engineering novel intelligent nanocarriers to actively regulate cellular metabolism.
Collapse
Affiliation(s)
- Yue Li
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China
| | - Jun Liu
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China
- Wenzhou Institute, University of Chinese Academy of Sciences, 1 Jinlian Street, Wenzhou 325000, China
| | - Yingjie Wu
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China
| | - Qiang He
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
5
|
Zhang X, Liu C, Li J, Chu R, Lyu Y, Lan Z. Dual source-powered multifunctional Pt/FePc@Mn-MOF spindle-like Janus nanomotors for active CT imaging-guided synergistic photothermal/chemodynamic therapy. J Colloid Interface Sci 2024; 657:799-810. [PMID: 38081114 DOI: 10.1016/j.jcis.2023.12.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/14/2023] [Accepted: 12/03/2023] [Indexed: 01/02/2024]
Abstract
Nanomaterials capable of dual therapeutic effects of chemodynamic therapy (CDT) and photothermal therapy (PTT) is an efficacious strategy in cancer treatment. It is still a challenge to achieve complete apoptosis of tumor tissue in CDT/PTT due to the poor permeability of nanomaterials in tumor tissue. Herein, we prepared a dual-source driven Pt/FePc@Mn-MOF spindle-like Janus nanomotor by a facile oriented connection growth method for computed tomography (CT) imaging-guided CDT and PTT. The high catalase (CAT)-like activity of nanomotors allows the generation of oxygen (O2) bubbles by catalyzing the decomposition of endogenous H2O2, which alleviates the hypoxic state of the tumor microenvironment (TME) and simultaneously drive nanomotors. Pt/FePc@Mn-MOF nanomotor with excellent photothermal conversion efficiency exhibited dual peroxidase (POD)-like and oxidase (OXD)-like activities, which can produce large amounts of ROS to obtain PTT enhanced CDT. Meanwhile, near-infrared light, as "optical brakes", can trigger Janus nanomotor to realize self-thermophoretic movement. Chemical/NIR-assisted autonomous propulsion can significantly improve the accumulation of Janus nanomotors in solid tumors and enhance their ability to penetrate tumor tissue, thus brings synergistic enhancement effect to PTT and CDT. Moreover, Mn-MOF in nanomotor can deplete the antioxidant GSH by redox reaction to release massive Mn2+, which introduce Mn2+-based CT imaging properties. This novel dual-source controlled Janus nanomotor offers great potential for multimodal therapeutic medical applications.
Collapse
Affiliation(s)
- Xiaolei Zhang
- School of Material Science and Engineering, University of Jinan, Jinan, China
| | - Chang Liu
- School of Medicine, Shandong University, Jinan, China
| | - Jia Li
- School of Material Science and Engineering, University of Jinan, Jinan, China.
| | - Ran Chu
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yangsai Lyu
- Department of Mathematics and Statistics, Queen's University, Kingston, Canada
| | - Ziwei Lan
- School of Material Science and Engineering, University of Jinan, Jinan, China
| |
Collapse
|
6
|
Zhao Z, Chen J, Zhan G, Gu S, Cong J, Liu M, Liu Y. Controlling the Collective Behaviors of Ultrasound-Driven Nanomotors via Frequency Regulation. MICROMACHINES 2024; 15:262. [PMID: 38398990 PMCID: PMC10892131 DOI: 10.3390/mi15020262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/03/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024]
Abstract
Controlling the collective behavior of micro/nanomotors with ultrasound may enable new functionality in robotics, medicine, and other engineering disciplines. Currently, various collective behaviors of nanomotors, such as assembly, reconfiguration, and disassembly, have been explored by using acoustic fields with a fixed frequency, while regulating their collective behaviors by varying the ultrasound frequency still remains challenging. In this work, we designed an ultrasound manipulation methodology that allows nanomotors to exhibit different collective behaviors by regulating the applied ultrasound frequency. The experimental results and FEM simulations demonstrate that the secondary ultrasonic waves produced from the edge of the sample cell lead to the formation of complex acoustic pressure fields and microfluidic patterns, which causes these collective behaviors. This work has important implications for the design of artificial actuated nanomotors and optimize their performances.
Collapse
Affiliation(s)
- Zhihong Zhao
- Hubei Engineering Research Center of Weak Magnetic-Field Detection, College of Science, China Three Gorges University, Yichang 443002, China; (Z.Z.)
| | - Jie Chen
- Hubei Engineering Research Center of Weak Magnetic-Field Detection, College of Science, China Three Gorges University, Yichang 443002, China; (Z.Z.)
| | - Gaocheng Zhan
- Hubei Engineering Research Center of Weak Magnetic-Field Detection, College of Science, China Three Gorges University, Yichang 443002, China; (Z.Z.)
| | - Shuhao Gu
- Hubei Engineering Research Center of Weak Magnetic-Field Detection, College of Science, China Three Gorges University, Yichang 443002, China; (Z.Z.)
| | - Jiawei Cong
- School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China;
| | - Min Liu
- Hubei Engineering Research Center of Weak Magnetic-Field Detection, College of Science, China Three Gorges University, Yichang 443002, China; (Z.Z.)
| | - Yiman Liu
- Hubei Engineering Research Center of Weak Magnetic-Field Detection, College of Science, China Three Gorges University, Yichang 443002, China; (Z.Z.)
| |
Collapse
|
7
|
Sun J, Wu J, Ju H. Effects of Size and Asymmetry on Catalase-Powered Silica Micro/nanomotors. Chem Asian J 2024; 19:e202300900. [PMID: 37990785 DOI: 10.1002/asia.202300900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/06/2023] [Accepted: 11/20/2023] [Indexed: 11/23/2023]
Abstract
Enzyme-powered micro/nanomotors that can autonomously move in biological environment are attractive in the fields of biology and biomedicine. The fabrication of enzyme-powered micro/nanomotors normally focuses on constructing Janus structures of micro/nanomaterials, based on the intuition that the Janus coating of enzymes can generate driving force from asymmetric catalytic reactions. Here, in the fabrication of catalase-powered silica micro/nanomotors (C-MNMs), an archetypical model of enzyme-powered micro/nanomotors, we find the silica size rather than asymmetric coating of catalase determines the motion ability of C-MNMs. The effects of size and asymmetry have been investigated by a series of C-MNMs at various sizes (0.5, 2, 5 and 10 μm) and asymmetric levels (full-, half- and most-coated with catalase). The motion performance indicates that 500 nm and 2 μm C-MNMs show obvious increases (varying from 134% to 618%) of diffusion coefficient, but C-MNMs bigger than 5 μm have no self-propulsion behaviour at all, regardless of asymmetric levels. In addition, although asymmetry facilitates enhanced diffusion of C-MNMs, only 2 μm C-MNMs are sensitive to asymmetric level. This work elucidates the primary and secondary roles of size and asymmetry in the preparation of C-MNMs, paving the way to fabricate enzyme-powered micro/nanomotors with high motion performance in future.
Collapse
Affiliation(s)
- Jun Sun
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 163 xianlin Road, Nanjing, 210023, P. R. China
| | - Jie Wu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 163 xianlin Road, Nanjing, 210023, P. R. China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 163 xianlin Road, Nanjing, 210023, P. R. China
| |
Collapse
|
8
|
Wang K, Li JQ, He S, Lu J, Wang D, Wang JX, Chen JF. Redox/Near-Infrared Dual-Responsive Hollow Mesoporous Organosilica Nanoparticles for Pesticide Smart Delivery. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:18466-18475. [PMID: 38054693 DOI: 10.1021/acs.langmuir.3c02752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Extremely inefficient utilization of pesticides has prompted a study of low-cost, sustainable, and smart application systems. Herein, as a promising pesticide nanocarrier, hollow mesoporous organosilica nanoparticles (HMONs) were first synthesized by using inexpensive CaCO3 nanoparticles as the hollow templates. A redox/near-infrared light dual-triggered pesticide release system was further achieved via loading avermectin (AVM) into the HMONs and coating a layer of polydopamine (PDA). The as-prepared AVM@HMONs@PDA displays a favorable pesticide load capability (24.8 wt %), outstanding photothermal performance, and high adhesion to leaves. In addition, with glutathione (GSH), the AVM cumulative release from AVM@HMONs@PDA was 3.5 times higher than that without GSH. Under ultraviolet light irradiation, the half-life of AVM@HMONs@PDA was prolonged by 17.0-fold compared to that of the AVM technical. At day 21 after treatment in the insecticidal activity, the median lethal concentrations (LC50) values displayed that the toxicity of AVM@HMONs@PDA for Panonychus citri (McGregor) was enhanced 4.0-fold compared with the commercial emulsifiable concentrate. In the field trial, at day 28 after spraying, AVM@HMONs@PDA was significantly more control effective than AVM-EC in controlling the P. citri (McGregor), even at a 50% reduced dosage. Moreover, HMONs@PDA was safe for crops. This research presents a novel preparation approach for HMONs, and it also offers a promising nanoplatform for the precise release of pesticides.
Collapse
Affiliation(s)
- Kang Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jia-Qing Li
- The Center of Crop Nanobiotechnology, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Wuhan 430074, China
| | - Shun He
- The Center of Crop Nanobiotechnology, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Wuhan 430074, China
| | - Jun Lu
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Dan Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jie-Xin Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jian-Feng Chen
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
9
|
Xue J, Zhang M, Yong J, Chen Q, Wang J, Xu J, Liang K. Light-Switchable Biocatalytic Covalent-Organic Framework Nanomotors for Aqueous Contaminants Removal. NANO LETTERS 2023. [PMID: 38011156 DOI: 10.1021/acs.nanolett.3c03766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Self-propelled nanomotors represent a promising class of adaptable and versatile technologies with broad applications in the realms of biomedicine and environmental remediation. Herein, we report a biocatalytic nanomotor based on a covalent-organic framework (COF) that demonstrates intelligent and switchable motion triggered by a blue-to-red light switch. Consequently, when exposed to blue light, the nanomotor significantly enhances the removal of contaminants in aqueous solutions due to its elevated mobility. Conversely, it effectively deactivates its motion and contaminant removal upon exposure to red light. This study explores the heterogeneous assembly strategy of the COF-based nanomotor and its light-controlled propulsion performance and provides a novel strategy for the regulation of movement, offering valuable insights for the design and practical applications of nanomotors.
Collapse
Affiliation(s)
- Jueyi Xue
- School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
- Australian Centre for NanoMedicine, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Mengnan Zhang
- School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
- Australian Centre for NanoMedicine, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Joel Yong
- School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
- Australian Centre for NanoMedicine, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Qianfan Chen
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Joseph Wang
- Department of Nanoengineering, University of California San Diego, La Jolla, California 92093, United States
| | - Jiangtao Xu
- School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
- Australian Centre for NanoMedicine, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Kang Liang
- School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
- Australian Centre for NanoMedicine, The University of New South Wales, Sydney, NSW 2052, Australia
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
10
|
Lv S, Hong T, Wan M, Peng L, Zhao Y, Sun L, Zou X. Multifunctional Mesoporous Silica Nanosheets for Smart Pesticide Delivery and Enhancing Pesticide Deposition. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:12807-12816. [PMID: 37625097 DOI: 10.1021/acs.langmuir.3c01661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2023]
Abstract
A multifunctional nanopesticide delivery system is considered to be a novel and efficient tool for controlling pests in modern agriculture. In this study, a mesoporous silica nanosheet (H-MSN) carrier for intelligent delivery of pesticides was prepared by the sol-gel method. The prepared H-MSN carrier had obvious hexagonal flat structure, with a specific surface area of 759.9 m2/g, a transverse diameter of about 340 nm, a thickness of about 80 nm, and regular channels being perpendicular to the plane. Polyethylene glycol diacrylate (PEGDA) and sulfhydryl-modified polyethylenimide (PEI-SH) were used to block the insecticide after loading the insecticide imidacloprid (IMI). The introduction of hydrophilic PEI-SH/PEGDA greatly improved the leaf wettability and adhesion ability of H-MSN. The retention amount of IMI@H-MSN@PEI-SH/PEGDA on cucumber and cabbage leaves was up to 46.0 mg/cm2 and 19.0 mg/cm2, respectively. IMI@H-MSN@PEI-SH/PEGDA showed pH- and GSH-responsive release. Compared with pure IMI, IMI entrapped in MSN carriers has favorable biocompatibility and antiphotolytic properties.
Collapse
Affiliation(s)
- Shuoshuo Lv
- National & Local Joint Engineering Research Center for Applied Technology of Hybrid Nanomaterials, Henan University, Kaifeng 475001, China
| | - Tao Hong
- National & Local Joint Engineering Research Center for Applied Technology of Hybrid Nanomaterials, Henan University, Kaifeng 475001, China
| | - Menghui Wan
- National & Local Joint Engineering Research Center for Applied Technology of Hybrid Nanomaterials, Henan University, Kaifeng 475001, China
| | - Lichao Peng
- National & Local Joint Engineering Research Center for Applied Technology of Hybrid Nanomaterials, Henan University, Kaifeng 475001, China
| | - Yanbao Zhao
- National & Local Joint Engineering Research Center for Applied Technology of Hybrid Nanomaterials, Henan University, Kaifeng 475001, China
| | - Lei Sun
- National & Local Joint Engineering Research Center for Applied Technology of Hybrid Nanomaterials, Henan University, Kaifeng 475001, China
| | - Xueyan Zou
- National & Local Joint Engineering Research Center for Applied Technology of Hybrid Nanomaterials, Henan University, Kaifeng 475001, China
| |
Collapse
|
11
|
Liu T, Yan M, Zhou S, Liang Q, He Y, Zhang X, Zeng H, Liu J, Kong B. Site-Selective Superassembly of a Multilevel Asymmetric Nanomotor with Wavelength-Modulated Propulsion Mechanisms. ACS NANO 2023. [PMID: 37498219 DOI: 10.1021/acsnano.3c03346] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Micro-/nanomotors with advanced motion manipulation have recently received mounting interest; however, research focusing on the motion regulation strategies is still limited, as the simple construction and composition of micro-/nanomotors restrict the functionality. Herein, a multifunctional TiO2-SiO2-mesoporous carbon nanomotor is synthesized via an interfacial superassembly strategy. This nanomotor shows an asymmetric matchstick-like structure, with a head composed of TiO2 and a tail composed of SiO2. Mesoporous carbon is selectively grown on the surface of TiO2 through surface-charge-mediated assembly. The spatially anisotropic distribution of the photocatalytic TiO2 domain and photothermal carbon domain enables multichannel control of the motion, where the speed can be regulated by energy input and the directionality can be regulated by wavelength. Upon UV irradiation, the nanomotor exhibits a head-leading self-diffusiophoretic motion, while upon NIR irradiation, the nanomotor exhibits a tail-leading self-thermophoretic motion. As a proof-of-concept, this mechanism-switchable nanomotor is employed in wavelength-regulated targeted cargo delivery on a microfluidic chip. From an applied point of view, this nanomotor holds potential in biomedical applications such as active drug delivery and phototherapy. From a fundamental point of view, this research can provide insight into the relationship between the nanostructures, propulsion mechanisms, and motion performance.
Collapse
Affiliation(s)
- Tianyi Liu
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200438, P. R. China
- DICP-Surrey Joint Centre for Future Materials, Department of Chemical and Process Engineering, University of Surrey, Guildford, Surrey GU2 7XH, U.K
| | - Miao Yan
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200438, P. R. China
| | - Shan Zhou
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200438, P. R. China
| | - Qirui Liang
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200438, P. R. China
| | - Yanjun He
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200438, P. R. China
| | - Xin Zhang
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200438, P. R. China
| | - Hui Zeng
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200438, P. R. China
| | - Jian Liu
- DICP-Surrey Joint Centre for Future Materials, Department of Chemical and Process Engineering, University of Surrey, Guildford, Surrey GU2 7XH, U.K
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, Inner Mongolia, P.R. China
| | - Biao Kong
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200438, P. R. China
- Yiwu Research Institute of Fudan University, Yiwu, Zhejiang 322000, China
- Shandong Research Institute, Fudan University, Shandong 250103, China
| |
Collapse
|
12
|
Yang Y, Shi L, Lin J, Zhang P, Hu K, Meng S, Zhou P, Duan X, Sun H, Wang S. Confined Tri-Functional FeO x @MnO 2 @SiO 2 Flask Micromotors for Long-Lasting Motion and Catalytic Reactions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207666. [PMID: 36703516 DOI: 10.1002/smll.202207666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Indexed: 06/08/2023]
Abstract
H2 O2 -fueled micromotors are state-of-the-art mobile microreactors in environmental remediation. In this work, a magnetic FeOx @MnO2 @SiO2 micromotor with multi-functions is designed and demonstrated its catalytic performance in H2 O2 /peroxymonosulfate (PMS) activation for simultaneously sustained motion and organic degradation. Moreover, this work reveals the correlations between catalytic efficiency and motion behavior/mechanism. The inner magnetic FeOx nanoellipsoids primarily trigger radical species (• OH and O2 •- ) to attack organics via Fenton-like reactions. The coated MnO2 layers on FeOx surface are responsible for decomposing H2 O2 into O2 bubbles to provide a propelling torque in the solution and generating SO4 •- and • OH for organic degradation. The outer SiO2 microcapsules with a hollow head and tail result in an asymmetrical Janus structure for the motion, driven by O2 bubbles ejecting from the inner cavity via the opening tail. Intriguingly, PMS adjusts the local environment to control over-violent O2 formation from H2 O2 decomposition by occupying the Mn sites via inter-sphere interactions and enhances organic removal due to the strengthened contacts and Fenton-like reactions between inner FeOx and peroxides within the microreactor. The findings will advance the design of functional micromotors and the knowledge of micromotor-based remediation with controlled motion and high-efficiency oxidation using multiple peroxides.
Collapse
Affiliation(s)
- Yangyang Yang
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, North Terrace, Adelaide, South Australia, 5005, Australia
| | - Lei Shi
- Joint International Research Laboratory of Biomass Energy and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Jingkai Lin
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, North Terrace, Adelaide, South Australia, 5005, Australia
| | - Panpan Zhang
- School of Material Science and Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Kunsheng Hu
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, North Terrace, Adelaide, South Australia, 5005, Australia
| | - Shuang Meng
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Peng Zhou
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Xiaoguang Duan
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, North Terrace, Adelaide, South Australia, 5005, Australia
| | - Hongqi Sun
- School of Science, Edith Cowan University, 270 Joondalup Drive, Joondalup, Western Australia, 6027, Australia
| | - Shaobin Wang
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, North Terrace, Adelaide, South Australia, 5005, Australia
| |
Collapse
|
13
|
Liu T, Xie L, Price CAH, Liu J, He Q, Kong B. Controlled propulsion of micro/nanomotors: operational mechanisms, motion manipulation and potential biomedical applications. Chem Soc Rev 2022; 51:10083-10119. [PMID: 36416191 DOI: 10.1039/d2cs00432a] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Inspired by natural mobile microorganisms, researchers have developed micro/nanomotors (MNMs) that can autonomously move by transducing different kinds of energies into kinetic energy. The rapid development of MNMs has created tremendous opportunities for biomedical fields including diagnostics, therapeutics, and theranostics. Although the great progress has been made in MNM research, at a fundamental level, the accepted propulsion mechanisms are still a controversial matter. In practical applications such as precision nanomedicine, the precise control of the motion, including the speed and directionality, of MNMs is also important, which makes advanced motion manipulation desirable. Very recently, diverse MNMs with different propulsion strategies, morphologies, sizes, porosities and chemical structures have been fabricated and applied for various uses. Herein, we thoroughly summarize the physical principles behind propulsion strategies, as well as the recent advances in motion manipulation methods and relevant biomedical applications of these MNMs. The current challenges in MNM research are also discussed. We hope this review can provide a bird's eye overview of the MNM research and inspire researchers to create novel and more powerful MNMs.
Collapse
Affiliation(s)
- Tianyi Liu
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200438, China. .,DICP-Surrey Joint Centre for Future Materials, Department of Chemical and Process Engineering, University of Surrey, Guildford, Surrey GU2 7XH, UK.
| | - Lei Xie
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200438, China.
| | - Cameron-Alexander Hurd Price
- DICP-Surrey Joint Centre for Future Materials, Department of Chemical and Process Engineering, University of Surrey, Guildford, Surrey GU2 7XH, UK.
| | - Jian Liu
- DICP-Surrey Joint Centre for Future Materials, Department of Chemical and Process Engineering, University of Surrey, Guildford, Surrey GU2 7XH, UK. .,State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China.,College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia, 010021, PR China
| | - Qiang He
- Key Laboratory of Microsystems and Microstructures Manufacturing (Ministry of Education), Harbin Institute of Technology, Harbin, China.
| | - Biao Kong
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200438, China. .,Yiwu Research Institute of Fudan University, Yiwu, Zhejiang 322000, China
| |
Collapse
|
14
|
Lv J, Xing Y, Li X, Du X. NIR light-propelled bullet-shaped carbon hollow nanomotors with controllable shell thickness for the enhanced dye removal. EXPLORATION (BEIJING, CHINA) 2022; 2:20210162. [PMID: 37324801 PMCID: PMC10191002 DOI: 10.1002/exp.20210162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 10/19/2022] [Indexed: 06/17/2023]
Abstract
Materials with asymmetric nanostructures have attracted tremendous research attention due to their unique structural characteristics, excellent physicochemical properties, and promising prospects. However, it is still difficult to design and fabricate bullet-shaped nanostructure due to its structural complexity. Herein, for the first time, we successfully constructed NIR light-propelled bullet-shaped hollow carbon nanomotors (BHCNs) with an open mouth on the bottom of nano-bullet for the enhanced dye removal, by employing bullet-shaped silica nanoparticles (B-SiO2 NPs) as a hard template. BHCNs were formed by the growth of polydopamine (PDA) layer on the heterogeneous surface of B-SiO2 NPs, followed by the carbonization of PDA and subsequent selective etching of SiO2. The shell thickness of BHCNs was able to be facilely controlled from ≈ 14 to 30 nm by tuning the added amount of dopamine. The combination of streamlined bullet-shaped nanostructure with good photothermal conversion efficiency of carbon materials facilitated the generation of asymmetric thermal gradient field around itself, thus driving the motion of BHCNs by self-thermophoresis. Noteworthily, the diffusion coefficient (De) and velocity of BCHNs with shell thickness of 15 nm (BHCNs-15) reached to 43.8 μm⋅cm-2 and 11.4 μm⋅s-1, respectively, under the illumination of 808 nm NIR laser with the power density of 1.5 W⋅cm-2. The NIR laser propulsion caused BCHNs-15 to enhance the removal efficiency (53.4% vs. 25.4%) of methylene blue (MB) as a typical dye because the faster velocity could produce the higher micromixing role between carbon adsorbent and MB. Such a smart design of the streamlined nanomotors may provide a promising potential in environmental treatment, biomedical and biosensing applications.
Collapse
Affiliation(s)
- Jinyang Lv
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological EngineeringUniversity of Science and Technology BeijingBeijingChina
| | - Yi Xing
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological EngineeringUniversity of Science and Technology BeijingBeijingChina
| | - Xiaoyu Li
- National Engineering Laboratory for Hydrometallurgical Cleaner Production TechnologyKey Laboratory of Green Process and EngineeringInstitute of Process EngineeringChinese Academic of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xin Du
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological EngineeringUniversity of Science and Technology BeijingBeijingChina
| |
Collapse
|
15
|
Liu C, Niu J, Cui T, Ren J, Qu X. A Motor-Based Carbonaceous Nanocalabash Catalyst for Deep-Layered Bioorthogonal Chemistry. J Am Chem Soc 2022; 144:19611-19618. [PMID: 36240426 DOI: 10.1021/jacs.2c09599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) reaction has been widely regarded as a promising avenue in bioorthogonal chemistry. The emerging heterogeneous copper catalysts have been developed with a series of exciting applications such as in situ activation of prodrugs because of their excellent stability and biocompatibility. However, due largely to the complex biophysical barriers in living organisms, most synthetic bioorthogonal drugs cannot penetrate deep pathological tissues. Especially in biofilm-associated infections, the biofilms severely block the penetration of traditional antimicrobial agents and increase the antibiotic resistance, which makes it extremely difficult to eliminate the biofilms. Inspired by self-propelled biological motors, such as enzymes, herein, we develop a NIR light-controllable carbonaceous nanocalabash (CNC) motor catalyst with good biocompatibility for active targeted synthesis of drugs inside the biofilms as a robust general-purpose bioorthogonal platform. Under the NIR laser, the CNC motor catalysts display a rapid autonomous motion and generate active molecules in the deep biofilm layers, removing the biofilms and eradicating the shielded bacteria. Our work will shed light on developing a robust bioorthogonal platform for active targeted synthesis of drugs in deep-layered living systems.
Collapse
Affiliation(s)
- Chun Liu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China.,University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Jingsheng Niu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China.,University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Tingting Cui
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China.,University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China.,University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China.,University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|