1
|
Bhattarai R, Rhone TD. Exploring Bonding Configurations in MnBi 2Te 4-Type Materials. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39468896 DOI: 10.1021/acsami.4c12946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
We perform a systematic investigation of several crystal structures, based on monolayer MnBi2Te4, of the form MnBiBiiXi2Xii2 using first-principles calculations. Our analysis shows that the most energetically favorable bonding configuration of the constituent elements in monolayer MnBiBiiXi2Xii2 is determined by the bond length between the Mn atom and its nearest X-site atoms. Tuning the bonding configuration of the material alters the magnetic, electronic, and topological properties. We also calculate the magnetic exchange parameters and magnetic anisotropy energy of the predicted structures. The calculations show that the elements at the X sites mainly determine the magnetic properties. Finally, we propose a stable phase of monolayer MnBi2S2Te2 (i.e., γ-MnBi2S2Te2) that exhibits the quantum anomalous Hall effect (QAHE). This study demonstrates that the bonding configuration of MnBi2Te4-type materials provides avenues for tuning the magnetic, electronic, and topological properties of van der Waals (vdW) materials.
Collapse
Affiliation(s)
- Romakanta Bhattarai
- Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Trevor David Rhone
- Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| |
Collapse
|
2
|
Goldreich A, Prilusky J, Prasad N, Puravankara A, Yadgarov L. Highly Stable CsPbBr 3@MoS 2 Nanostructures: Synthesis and Optoelectronic Properties Toward Implementation into Solar Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2404727. [PMID: 39092690 DOI: 10.1002/smll.202404727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/03/2024] [Indexed: 08/04/2024]
Abstract
Halide perovskites (HPs) have gained significant interest in the scientific and technological sectors due to their unique optical, catalytic, and electrical characteristics. However, the HPs are prone to decomposition when exposed to air, oxygen, or heat. The instability of HP materials limits their commercialization, prompting significant efforts to address and overcome these limitations. Transition metal dichalcogenides, such as MoS2, are chemically stable and are suitable for electronic, optical, and catalytic applications. Moreover, it can be used as a protective media or shell for other nanoparticles. In this study, a novel CsPbBr3@MoS2 core-shell nanostructure (CS-NS) is successfully synthesized by enveloping CsPbBr3 within a MoS2 shell for the first time. Significant stability of CS-NSs dispersed in polar solvents for extended periods is also demonstrated. Remarkably, the hybrid CS-NS exhibits an absorption of MoS2 and quenching of the HP's photoluminescence, implying potential charge or energy transfer from HPs to MoS2. Using finite difference time domain simulations, it is found that the CS-NSs can be utilized to produce efficient solar cells. The addition of a MoS2 shell enhances the performance of CS-NS-based solar cells by 220% compared to their CsPbBr3 counterparts. The innovative CS-NS represents important progress in harnessing HPs for photovoltaic and optoelectronic applications.
Collapse
Affiliation(s)
- Achiad Goldreich
- Department of Chemical Engineering, Ariel University, Ariel, 4076414, Israel
| | - Jonathan Prilusky
- Department of Chemical Engineering, Ariel University, Ariel, 4076414, Israel
| | - Neena Prasad
- Department of Chemical Engineering, Ariel University, Ariel, 4076414, Israel
| | - Akshay Puravankara
- Department of Chemical Engineering, Ariel University, Ariel, 4076414, Israel
| | - Lena Yadgarov
- Department of Chemical Engineering, Ariel University, Ariel, 4076414, Israel
| |
Collapse
|
3
|
Dey AK, Das S, Jose SM, Sreedharan S, Kandoth N, Barman S, Patra A, Das A, Pramanik SK. Surface functionalized perovskite nanocrystals: a design strategy for organelle-specific fluorescence lifetime multiplexing. Chem Sci 2024; 15:10935-10944. [PMID: 39027267 PMCID: PMC11253202 DOI: 10.1039/d4sc01447b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/06/2024] [Indexed: 07/20/2024] Open
Abstract
Fluorescent molecules or materials with high photoluminescence quantum yields and stability towards photobleaching are ideally suited for multiplex imaging. Despite complying with such properties, perovskite nanocrystals (Pv-NCs) are rarely used for bioimaging owing to their toxicity and limited stability in aqueous media and towards human physiology. We aim to address these deficiencies by designing core-shell structures with Pv-NCs as the core and surface-engineered silica as the shell (SiO2@Pv-NCs) since silica is recognized as a biologically benign carrier material and is known to be excreted through urine. The post-grafting methodology is adopted for developing [SiO2@Pv-NCs]tpm and [SiO2@Pv-NCs]tsy (tpm: triphenylphosphonium ion, tsy: tosylsulfonamide) for specific imaging of mitochondria and endoplasmic reticulum (ER) of the live HeLa cell, respectively. A subtle difference in their average fluorescence decay times ([SiO2@Pv-NCs]tpm: tpm τ av = 3.1 ns and [SiO2@Pv-NCs]tsy: tsy τ av = 2.1 ns) is used for demonstrating a rare example of perovskite nanocrystals in fluorescence lifetime multiplex imaging.
Collapse
Affiliation(s)
- Anik Kumar Dey
- CSIR - Central Salt and Marine Chemicals Research Institute Gijubhai Badheka Marg Bhavnagar Gujarat 364002 India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre Ghaziabad Uttar Pradesh 201 002 India
| | - Subhadeep Das
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal India
| | - Sharon Mary Jose
- Department of Biological Sciences, Indian Institute of Science Education and Research, Kolkata Mohanpur West Bengal India
| | - Sreejesh Sreedharan
- Human Science Research Centre, University of Derby Kedleston Road DE22 1GB UK
| | - Noufal Kandoth
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research Kolkata West Bengal India
| | - Surajit Barman
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research Kolkata West Bengal India
| | - Abhijit Patra
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal India
| | - Amitava Das
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research Kolkata West Bengal India
| | - Sumit Kumar Pramanik
- CSIR - Central Salt and Marine Chemicals Research Institute Gijubhai Badheka Marg Bhavnagar Gujarat 364002 India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre Ghaziabad Uttar Pradesh 201 002 India
| |
Collapse
|
4
|
AL-Shujaa S, Zhao P, He D, Al-Anesi B, Feng Y, Xia J, Zhang B, Zhang Y. Improving the Efficiency and Stability of Perovskite Solar Cells by Refining the Perovskite-Electron Transport Layer Interface and Shielding the Absorber from UV Effects. ACS APPLIED MATERIALS & INTERFACES 2024; 16:28493-28504. [PMID: 38798187 PMCID: PMC11163405 DOI: 10.1021/acsami.4c03329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/30/2024] [Accepted: 05/15/2024] [Indexed: 05/29/2024]
Abstract
This study aims to enhance the performance of perovskite solar cells (PSCs) by optimizing the interface between the perovskite and electron transport layers (ETLs). Additionally, we plan to protect the absorber layer from ultraviolet (UV) degradation using a ternary oxide system comprising SnO2, strontium stannate (SrSnO3), and strontium oxide (SrO). In this structure, the SnO2 layer functions as an electron transport layer, SrSnO3 acts as a layer for UV filtration, and SrO is employed to passivate the interface. SrSnO3 is characterized by its chemical stability, electrical conductivity, extensive wide band gap energy, and efficient absorption of UV radiation, all of which significantly enhance the photostability of PSCs against UV radiation. Furthermore, incorporating SrSnO3 into the ETL improves its electronic properties, potentially raising the energy level and improving alignment, thereby enhancing the electron transfer from the perovskite layer to the external circuit. Integrating SrO at the interface between the ETL and perovskite layer reduces interface defects, thereby reducing charge recombination and improving electron transfer. This improvement results in higher solar cell efficiency, reduced hysteresis, and extended device longevity. The benefits of this method are evident in the observed improvements: a noticeable increase in open-circuit voltage (Voc) from 1.12 to 1.16 V, an enhancement in the fill factor from 79.4 to 82.66%, a rise in the short-circuit current density (Jsc) from 24.5 to 24.9 mA/cm2 and notably, a marked improvement in the power conversion efficiency (PCE) of PSCs, from 21.79 to 24.06%. Notably, the treated PSCs showed only a slight decline in PCE, reducing from 24.15 to 22.50% over nearly 2000 h. In contrast, untreated SnO2 perovskite devices experienced a greater decline, with efficiency decreasing from 21.79 to 17.83% in just 580 h.
Collapse
Affiliation(s)
- Salah AL-Shujaa
- School
of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Peng Zhao
- School
of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Dingqian He
- School
of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Basheer Al-Anesi
- Faculty
of Engineering and Natural Sciences, Tampere
University, Tampere 33014, Finland
| | - Yaqing Feng
- School
of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Jianxing Xia
- Institute
of Molecular Plus, Tianjin University, Tianjin 300072, China
| | - Bao Zhang
- School
of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Haihe
Laboratory of Sustainable Chemical Transformations, 300192 Tianjin, China
| | - Yi Zhang
- School
of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Institute
of Molecular Plus, Tianjin University, Tianjin 300072, China
- Haihe
Laboratory of Sustainable Chemical Transformations, 300192 Tianjin, China
| |
Collapse
|
5
|
Zhong J, Ge M, Gu T, Wang T, Liu Z, Bai P. Ultra-stable and highly-bright CsPbBr 3 perovskite/silica nanocomposites for miRNA detection based on digital single-nanoparticle counting. Talanta 2024; 273:125903. [PMID: 38503120 DOI: 10.1016/j.talanta.2024.125903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/21/2024] [Accepted: 03/09/2024] [Indexed: 03/21/2024]
Abstract
Single-nanoparticle counting (SNPC) based on fluorescent tag (FT) stands out for its capacity to achieve amplification-free and sensitive detection of biomarkers. The stability and luminescence of FT are important to the sensitivity and reliability of SPNC. In this work, we developed novel perovskite/silica nanocomposites by in-situ nanoconfined growth of CsPbBr3 nanocrystals inside mesoporous structure of silica nanoparticles. PbBr(OH) was formed in an alkaline-assisted reaction triggered by water on the surface of CsPbBr3 nanocrystals. The as-obtained nanocomposites, featuring dual protection from silica matrix and PbBr(OH), exhibited high absolute photoluminescence quantum yield (PLQY) of 86.5% and demonstrated outstanding PL stability confronting with water, heat, ultrasound and UV-irradiation, which is desired by SNPC-based biosensor. Thereafter, these nanocomposites were used to construct an operationally friendly SNPC assay for the amplification-free quantification of cancer-associated miRNA. Quantitative detection of miRNA could be accomplished by directly counting the number of nanocomposites using a flow cytometer in this assay. This strategy did not ask for multiple washing steps and demonstrated specific and sensitive detection of miRNA 21, which exhibited a dynamic range of 1-1000 pM and limit of detection of 79 amol. The employment of highly stable perovskite/silica nanocomposites improved the test reliability and stability of SNPC, revealing the vast potential of perovskites in biosensing.
Collapse
Affiliation(s)
- Jiajun Zhong
- Jihua Laboratory, No. 28 Island Ring South Road, Guicheng Street, Nanhai District, Foshan, Guangdong, 528200, People's Republic of China
| | - Minghao Ge
- Jihua Laboratory, No. 28 Island Ring South Road, Guicheng Street, Nanhai District, Foshan, Guangdong, 528200, People's Republic of China
| | - Tongxu Gu
- Jihua Laboratory, No. 28 Island Ring South Road, Guicheng Street, Nanhai District, Foshan, Guangdong, 528200, People's Republic of China.
| | - Tong Wang
- Jihua Laboratory, No. 28 Island Ring South Road, Guicheng Street, Nanhai District, Foshan, Guangdong, 528200, People's Republic of China; CAS Key Lab of Bio-medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, 215163, People's Republic of China
| | - Zhizhou Liu
- CAS Key Lab of Bio-medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, 215163, People's Republic of China
| | - Pengli Bai
- Jihua Laboratory, No. 28 Island Ring South Road, Guicheng Street, Nanhai District, Foshan, Guangdong, 528200, People's Republic of China; CAS Key Lab of Bio-medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, 215163, People's Republic of China.
| |
Collapse
|
6
|
Cova F, Erroi A, Zaffalon ML, Cemmi A, Di Sarcina I, Perego J, Monguzzi A, Comotti A, Rossi F, Carulli F, Brovelli S. Scintillation Properties of CsPbBr 3 Nanocrystals Prepared by Ligand-Assisted Reprecipitation and Dual Effect of Polyacrylate Encapsulation toward Scalable Ultrafast Radiation Detectors. NANO LETTERS 2024; 24:905-913. [PMID: 38197790 DOI: 10.1021/acs.nanolett.3c04083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Lead halide perovskite nanocrystals (LHP-NCs) embedded in polymeric hosts are gaining attention as scalable and low-cost scintillation detectors for technologically relevant applications. Despite rapid progress, little is currently known about the scintillation properties and stability of LHP-NCs prepared by the ligand assisted reprecipitation (LARP) method, which allows mass scalability at room temperature unmatched by any other type of nanostructure, and the implications of incorporating LHP-NCs into polyacrylate hosts are still largely debated. Here, we show that LARP-synthesized CsPbBr3 NCs are comparable to particles from hot-injection routes and unravel the dual effect of polyacrylate incorporation, where the partial degradation of LHP-NCs luminescence is counterbalanced by the passivation of electron-poor defects by the host acrylic groups. Experiments on NCs with tailored surface defects show that the balance between such antithetical effects of polymer embedding is determined by the surface defect density of the NCs and provide guidelines for further material optimization.
Collapse
Affiliation(s)
- Francesca Cova
- Department of Materials Science, University of Milano─Bicocca, Via Roberto Cozzi 55, 20125 Milano, Italy
| | - Andrea Erroi
- Department of Materials Science, University of Milano─Bicocca, Via Roberto Cozzi 55, 20125 Milano, Italy
| | - Matteo L Zaffalon
- Department of Materials Science, University of Milano─Bicocca, Via Roberto Cozzi 55, 20125 Milano, Italy
| | - Alessia Cemmi
- ENEA Fusion and Technology for Nuclear Safety and Security Department, ENEA Casaccia Research Center, Via Anguillarese 301, 00123 Rome, Italy
| | - Ilaria Di Sarcina
- ENEA Fusion and Technology for Nuclear Safety and Security Department, ENEA Casaccia Research Center, Via Anguillarese 301, 00123 Rome, Italy
| | - Jacopo Perego
- Department of Materials Science, University of Milano─Bicocca, Via Roberto Cozzi 55, 20125 Milano, Italy
| | - Angelo Monguzzi
- Department of Materials Science, University of Milano─Bicocca, Via Roberto Cozzi 55, 20125 Milano, Italy
| | - Angiolina Comotti
- Department of Materials Science, University of Milano─Bicocca, Via Roberto Cozzi 55, 20125 Milano, Italy
| | - Francesca Rossi
- IMEM-CNR Institute, Parco Area delle Scienze, 37/A, 43124, Parma, Italy
| | - Francesco Carulli
- Department of Materials Science, University of Milano─Bicocca, Via Roberto Cozzi 55, 20125 Milano, Italy
| | - Sergio Brovelli
- Department of Materials Science, University of Milano─Bicocca, Via Roberto Cozzi 55, 20125 Milano, Italy
| |
Collapse
|
7
|
Kirsch C, Naujoks T, Haizmann P, Frech P, Peisert H, Chassé T, Brütting W, Scheele M. Zwitterionic Carbazole Ligands Enhance the Stability and Performance of Perovskite Nanocrystals in Light-Emitting Diodes. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37367642 DOI: 10.1021/acsami.3c05756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
We introduce a new carbazole-based zwitterionic ligand (DCzGPC) synthesized via Yamaguchi esterification which enhances the efficiency of lead halide perovskite (LHP) nanocrystals (NCs) in light-emitting diodes (LED). A facile ligand exchange of the native ligand shell, monitored by nuclear magnetic resonance (NMR), ultraviolet-visible (UV-vis), and photoluminescence (PL) spectroscopy, enables more stable and efficient LHP NCs. The improved stability is demonstrated in solution and solid-state LEDs, where the NCs exhibit prolonged luminescence lifetimes and improved luminance, respectively. These results represent a promising strategy to enhance the stability of LHP NCs and to tune their optoelectronic properties for further application in LEDs or solar cells.
Collapse
Affiliation(s)
- Christopher Kirsch
- Institut für Physikalische und Theoretische Chemie, Universität Tübingen, 72076 Tübingen, Germany
| | - Tassilo Naujoks
- Institut für Physik, Universität Augsburg, Augsburg 86135, Germany
| | - Philipp Haizmann
- Institut für Physikalische und Theoretische Chemie, Universität Tübingen, 72076 Tübingen, Germany
| | - Philipp Frech
- Institut für Physikalische und Theoretische Chemie, Universität Tübingen, 72076 Tübingen, Germany
| | - Heiko Peisert
- Institut für Physikalische und Theoretische Chemie, Universität Tübingen, 72076 Tübingen, Germany
| | - Thomas Chassé
- Institut für Physikalische und Theoretische Chemie, Universität Tübingen, 72076 Tübingen, Germany
| | | | - Marcus Scheele
- Institut für Physikalische und Theoretische Chemie, Universität Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
8
|
Chen WC, Chen LC, Liu FJ, Tsai WC, Tung BH, Venkatesan M, Tsai ML, Lin JH, Kuo CC. Perovskite-Nanocrystal-Doped Cellulose Nanocrystal Ligands for Electrospun Nanofibers with Excellent Stability. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207685. [PMID: 36897028 DOI: 10.1002/smll.202207685] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/14/2023] [Indexed: 06/08/2023]
Abstract
Because of their exceptional physical and thermal properties, cellulose nanocrystals (CNCs) are a highly promising bio-based material for reinforcing fillers. Studies have revealed that some functional groups from CNCs can be used as a capping ligand to coordinate with metal nanoparticles or semiconductor quantum dots during the fabrication of novel complex materials. Therefore, through CNCs ligand encapsulation and electrospinning, perovskite-NC-embedded nanofibers with exceptional optical and thermal stability are demonstrated. The results indicate that, after continuous irradiation or heat cycling, the relative photoluminescence (PL) emission intensity of the CNCs-capped perovskite-NC-embedded nanofibers is maintained at ≈90%. However, the relative PL emission intensity of both ligand-free and long-alkyl-ligand-doped perovskite-NC-embedded nanofibers decrease to almost 0%. These results are attributable to the formation of specific clusters of perovskite NCs along with the CNCs structure and thermal property improvement of polymers. CNCs-doped luminous complex materials offer a promising avenue for stability-demanding optoelectronic devices and other novel optical applications.
Collapse
Affiliation(s)
- Wei-Cheng Chen
- Institute of Organic and Polymeric Materials, Research and Development Center of Smart Textile Technology, National Taipei University of Technology, Taipei, 106, Taiwan
- Department of Chemical Engineering and Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei, 10617, Taiwan
| | - Lung-Chih Chen
- Institute of Organic and Polymeric Materials, Research and Development Center of Smart Textile Technology, National Taipei University of Technology, Taipei, 106, Taiwan
| | - Fu-Jie Liu
- Institute of Organic and Polymeric Materials, Research and Development Center of Smart Textile Technology, National Taipei University of Technology, Taipei, 106, Taiwan
| | - Wei-Chen Tsai
- Institute of Electro-Optical Engineering, National Taipei University of Technology, Taipei, 106, Taiwan
| | - Bo-Han Tung
- Institute of Electro-Optical Engineering, National Taipei University of Technology, Taipei, 106, Taiwan
| | - Manikandan Venkatesan
- Institute of Organic and Polymeric Materials, Research and Development Center of Smart Textile Technology, National Taipei University of Technology, Taipei, 106, Taiwan
| | - Meng-Lin Tsai
- Institute of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei, 106, Taiwan
| | - Ja-Hon Lin
- Institute of Electro-Optical Engineering, National Taipei University of Technology, Taipei, 106, Taiwan
| | - Chi-Ching Kuo
- Institute of Organic and Polymeric Materials, Research and Development Center of Smart Textile Technology, National Taipei University of Technology, Taipei, 106, Taiwan
| |
Collapse
|
9
|
Raksha K, Kandoth N, Gupta S, Gupta S, Pramanik SK, Das A. Modulating Resonance Energy Transfer with Supramolecular Control in a Layered Hybrid Perovskite and Chromium Photosensitizer Assembly. ACS APPLIED MATERIALS & INTERFACES 2023; 15:25148-25160. [PMID: 35944204 DOI: 10.1021/acsami.2c09281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Recently, the low-dimensional organic-inorganic halide perovskites (OIHP) have been exploited heavily for their favorable exciton dynamics, broad-band emission, remarkable stability, and tunable band-edge excited-state energy compared to their 3D counterparts for potential optoelectronic applications. Low-dimensional perovskites are generally good candidates for utilization as room-temperature photoluminescence (PL) materials. Further, doping divalent transition metals like Mn2+ into OIHP is expected to introduce a 4T1-6A1-based low-energy luminescence emission around 600 nm; an optical property that is favorable for biomedical optoelectronics. Doping Mn2+ in the perovskite lattice is also expected to induce the generation of cytotoxic singlet oxygen species (1O2), a ROS that is being exploited for various therapeutic applications. To integrate these optical and therapeutic properties of a 2D (PEA)2PbBr4 (Pb PeV; PEA = phenylethylammonium cation) perovskite alloyed with Mn2+ ions (Mn:PbPeV) and the option for a photoinduced energy transfer process involving a Cr(III)-based 1O2 generating photosensitizer (CrPS), we designed a unique purpose-built nanoassembly (Mn:PbPeV@PCD) using the encapsulation properties of a water-soluble polymer derived from β-cyclodextrin (PCD). Here the PCD is observed to modulate the classical internal energy transfer of Pb2+ exciton to alloyed Mn2+ orange emission, resulting in the emergence of a new blue emission. The addition of CrPS into the Mn:PbPeV@PCD to generate the CrPS@Mn:PbPeV@PCD assembly results in restoring perovskite luminescence followed by the external energy transfer to CrPS. We have elucidated the mechanism of these cascade energy transfer processes between multiple components using steady-state and time-resolved luminescence techniques. Efficient ROS generation and its potential to induce an oxidation reaction of a biomolecule are realized using guanine as the target molecule. Further photoinduced cleavage studies with biomolecules confirmed the efficacy of the nanoassembly in inducing the cleavage of guanine-rich DNA. The study opens up a new direction in the field of perovskite for biomedical applications.
Collapse
Affiliation(s)
- Kumari Raksha
- Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Noufal Kandoth
- Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Shresth Gupta
- Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Subhadeep Gupta
- Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Sumit Kumar Pramanik
- Central Salt and Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar, Gujarat 364002, India
| | - Amitava Das
- Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| |
Collapse
|
10
|
Zhang Y, Hou G, Wu Y, Chen M, Dai Y, Liu S, Zhao Q, Lin H, Fang J, Jing C, Chu J. Surface Reconstruction of CsPbBr 3 Nanocrystals by the Ligand Engineering Approach for Achieving High Quantum Yield and Improved Stability. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:6222-6230. [PMID: 37079335 DOI: 10.1021/acs.langmuir.3c00393] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Oleylamine/oleic acid (OAm/OA) as the commonly used ligand is indispensable in the synthesis of perovskite nanocrystals (PNCs). Unfortunately, poor colloidal stability and unsatisfactory photoluminescence quantum yield (PLQY) are observed, resulting from a highly dynamic binding nature between ligands. Herein, we adopt a facile hybrid ligand (DDAB/ZnBr2) passivation strategy to reconstruct the surface chemistry of CsPbBr3 NCs. The hybrid ligand can detach the native surface ligand, in which the acid-base reactions between ligands are suppressed effectively. Also, they can substitute the loose capping ligand, anchor to the surface firmly, and supply sufficient halogens to passivate the surface trap, realizing an exceptional PLQY of 95% and an enhanced tolerance toward ambient storage, UV irradiation, anti-solvents, and thermal treatment. Besides, the as-fabricated white light-emitting diode (WLED) utilizing the PNCs as the green-emitting phosphor has a luminous efficiency around 73 lm/W; the color gamut covers 125% of the NTSC standard.
Collapse
Affiliation(s)
- Yu Zhang
- Engineering Research Center for Nanophotonics & Advanced Instrument of Ministry of Education, Key Laboratory of Polar Materials and Devices (Ministry of Education), Department of Materials, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, PR China
| | - Guangning Hou
- Engineering Research Center for Nanophotonics & Advanced Instrument of Ministry of Education, Key Laboratory of Polar Materials and Devices (Ministry of Education), Department of Materials, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, PR China
| | - Yong Wu
- Engineering Research Center for Nanophotonics & Advanced Instrument of Ministry of Education, Key Laboratory of Polar Materials and Devices (Ministry of Education), Department of Materials, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, PR China
| | - Maosheng Chen
- Engineering Research Center for Nanophotonics & Advanced Instrument of Ministry of Education, Key Laboratory of Polar Materials and Devices (Ministry of Education), Department of Materials, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, PR China
| | - Yannan Dai
- Engineering Research Center for Nanophotonics & Advanced Instrument of Ministry of Education, Key Laboratory of Polar Materials and Devices (Ministry of Education), Department of Materials, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, PR China
| | - Shaohua Liu
- Engineering Research Center for Nanophotonics & Advanced Instrument of Ministry of Education, Key Laboratory of Polar Materials and Devices (Ministry of Education), Department of Materials, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, PR China
| | - Qingbiao Zhao
- Engineering Research Center for Nanophotonics & Advanced Instrument of Ministry of Education, Key Laboratory of Polar Materials and Devices (Ministry of Education), Department of Materials, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, PR China
| | - Hechun Lin
- Engineering Research Center for Nanophotonics & Advanced Instrument of Ministry of Education, Key Laboratory of Polar Materials and Devices (Ministry of Education), Department of Materials, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, PR China
| | - Junfeng Fang
- Engineering Research Center for Nanophotonics & Advanced Instrument of Ministry of Education, Key Laboratory of Polar Materials and Devices (Ministry of Education), Department of Materials, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, PR China
| | - Chengbin Jing
- Engineering Research Center for Nanophotonics & Advanced Instrument of Ministry of Education, Key Laboratory of Polar Materials and Devices (Ministry of Education), Department of Materials, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, PR China
| | - Junhao Chu
- Engineering Research Center for Nanophotonics & Advanced Instrument of Ministry of Education, Key Laboratory of Polar Materials and Devices (Ministry of Education), Department of Materials, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, PR China
| |
Collapse
|
11
|
Kipkorir A, Jin X, Gao H, Kamat PV. Photoinduced electron transfer across the polymer-capped CsPbBr 3 interface in a polar medium. J Chem Phys 2023; 158:144702. [PMID: 37061503 DOI: 10.1063/5.0143920] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2023] Open
Abstract
In-situ polymer capping of cesium lead bromide (CsPbBr3) nanocrystals with polymethyl acrylate is an effective approach to improve the colloidal stability in the polar medium and thus extends their use in photocatalysis. The photoinduced electron transfer properties of polymethyl acrylate (PMA)-capped CsPbBr3 nanocrystals have been probed using surface-bound viologen molecules with different alkyl chains as electron acceptors. The apparent association constant (Kapp) obtained for the binding of viologen molecules with PMA-capped CsPbBr3 was 2.3 × 107 M-1, which is an order of magnitude greater than that obtained with oleic acid/oleylamine-capped CsPbBr3. Although the length of the alkyl chain of the viologen molecule did not show any impact on the electron transfer rate constant, it influenced the charge separation efficiency and net electron transfer quantum yield. Viologen moieties with a shorter alkyl chain length exhibited a charge separation efficiency of 72% compared with 50% for the longer chain alkyl chain length viologens. Implications of polymer-capped CsPbBr3 perovskite nanocrystals for carrying out photocatalytic reduction in the polar medium are discussed.
Collapse
Affiliation(s)
- Anthony Kipkorir
- Radiation Laboratory, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Xiuyu Jin
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Haifeng Gao
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Prashant V Kamat
- Radiation Laboratory, University of Notre Dame, Notre Dame, Indiana 46556, USA
| |
Collapse
|
12
|
Precursor silanization assisted synthesis and optical tuning of dual-phase perovskite nanocrystals embedded in silica matrix with high environmental stability. J Colloid Interface Sci 2023; 630:212-222. [DOI: 10.1016/j.jcis.2022.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/27/2022] [Accepted: 10/03/2022] [Indexed: 11/11/2022]
|
13
|
A Critical Review of the Use of Bismuth Halide Perovskites for CO2 Photoreduction: Stability Challenges and Strategies Implemented. Catalysts 2022. [DOI: 10.3390/catal12111410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Inspired by natural photosynthesis, the photocatalytic CO2 reduction reaction (CO2RR) stands as a viable strategy for the production of solar fuels to mitigate the high dependence on highly polluting fossil fuels, as well as to decrease the CO2 concentration in the atmosphere. The design of photocatalytic materials is crucial to ensure high efficiency of the CO2RR process. So far, perovskite materials have shown high efficiency and selectivity in CO2RR to generate different solar fuels. Particularly, bismuth halide perovskites have gained much attention due to their higher absorption coefficients, their more efficient charge transfer (compared to oxide perovskites), and their required thermodynamic potential for CO2RR. Moreover, these materials represent a promising alternative to the highly polluting lead halide perovskites. However, despite all the remarkable advantages of bismuth halide perovskites, their use has been limited, owing to instability concerns. As a consequence, recent reports have offered solutions to obtain structures highly stable against oxygen, water, and light, promoting the formation of solar fuels with promising efficiency for CO2RR. Thus, this review analyzes the current state of the art in this field, particularly studies about stability strategies from intrinsic and extrinsic standpoints. Lastly, we discuss the challenges and opportunities in designing stable bismuth halide perovskites, which open new opportunities for scaling up the CO2RR.
Collapse
|
14
|
Jin X, Ma K, Gao H. Tunable Luminescence and Enhanced Polar Solvent Resistance of Perovskite Nanocrystals Achieved by Surface-Initiated Photopolymerization. J Am Chem Soc 2022; 144:20411-20420. [DOI: 10.1021/jacs.2c08622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xiuyu Jin
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Kangling Ma
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Haifeng Gao
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|