1
|
Xia Y, Zha J, Huang H, Wang H, Yang P, Zheng L, Zhang Z, Yang Z, Chen Y, Chan HP, Ho JC, Tan C. Uncovering the Role of Crystal Phase in Determining Nonvolatile Flash Memory Device Performance Fabricated from MoTe 2-Based 2D van der Waals Heterostructures. ACS APPLIED MATERIALS & INTERFACES 2023; 15:35196-35205. [PMID: 37459597 DOI: 10.1021/acsami.3c06316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Although the crystal phase of two-dimensional (2D) transition metal dichalcogenides (TMDs) has been proven to play an essential role in fabricating high-performance electronic devices in the past decade, its effect on the performance of 2D material-based flash memory devices still remains unclear. Here, we report the exploration of the effect of MoTe2 in different phases as the charge-trapping layer on the performance of 2D van der Waals (vdW) heterostructure-based flash memory devices, where a metallic 1T'-MoTe2 or semiconducting 2H-MoTe2 nanoflake is used as the floating gate. By conducting comprehensive measurements on the two kinds of vdW heterostructure-based devices, the memory device based on MoS2/h-BN/1T'-MoTe2 presents much better performance, including a larger memory window, faster switching speed (100 ns), and higher extinction ratio (107), than that of the device based on the MoS2/h-BN/2H-MoTe2 heterostructure. Moreover, the device based on the MoS2/h-BN/1T'-MoTe2 heterostructure also shows a long cycle (>1200 cycles) and retention (>3000 s) stability. Our study clearly demonstrates that the crystal phase of 2D TMDs has a significant impact on the performance of nonvolatile flash memory devices based on 2D vdW heterostructures, which paves the way for the fabrication of future high-performance memory devices based on 2D materials.
Collapse
Affiliation(s)
- Yunpeng Xia
- Department of Electrical Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong SAR, China
| | - Jiajia Zha
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong SAR, China
| | - Haoxin Huang
- Department of Electrical Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong SAR, China
| | - Huide Wang
- Department of Electrical Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong SAR, China
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong SAR, China
| | - Peng Yang
- College of Integrated Circuits and Optoelectronic Chips, Shenzhen Technology University, Shenzhen 518118, China
| | - Long Zheng
- Department of Chemistry, The Chinese University of Hong Kong, Shatin 999077, Hong Kong SAR, China
| | - Zhuomin Zhang
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong SAR, China
| | - Zhengbao Yang
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong SAR, China
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Kowloon 999077, Hong Kong SAR, China
| | - Ye Chen
- Department of Chemistry, The Chinese University of Hong Kong, Shatin 999077, Hong Kong SAR, China
| | - Hau Ping Chan
- Department of Electrical Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong SAR, China
| | - Johnny C Ho
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong SAR, China
| | - Chaoliang Tan
- Department of Electrical Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong SAR, China
- Department of Chemistry and Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Kowloon 999077, Hong Kong SAR, China
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam 999077, Hong Kong SAR, China
| |
Collapse
|
2
|
Shtansky DV, Matveev AT, Permyakova ES, Leybo DV, Konopatsky AS, Sorokin PB. Recent Progress in Fabrication and Application of BN Nanostructures and BN-Based Nanohybrids. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2810. [PMID: 36014675 PMCID: PMC9416166 DOI: 10.3390/nano12162810] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 05/27/2023]
Abstract
Due to its unique physical, chemical, and mechanical properties, such as a low specific density, large specific surface area, excellent thermal stability, oxidation resistance, low friction, good dispersion stability, enhanced adsorbing capacity, large interlayer shear force, and wide bandgap, hexagonal boron nitride (h-BN) nanostructures are of great interest in many fields. These include, but are not limited to, (i) heterogeneous catalysts, (ii) promising nanocarriers for targeted drug delivery to tumor cells and nanoparticles containing therapeutic agents to fight bacterial and fungal infections, (iii) reinforcing phases in metal, ceramics, and polymer matrix composites, (iv) additives to liquid lubricants, (v) substrates for surface enhanced Raman spectroscopy, (vi) agents for boron neutron capture therapy, (vii) water purifiers, (viii) gas and biological sensors, and (ix) quantum dots, single photon emitters, and heterostructures for electronic, plasmonic, optical, optoelectronic, semiconductor, and magnetic devices. All of these areas are developing rapidly. Thus, the goal of this review is to analyze the critical mass of knowledge and the current state-of-the-art in the field of BN-based nanomaterial fabrication and application based on their amazing properties.
Collapse
Affiliation(s)
- Dmitry V. Shtansky
- Labotoary of Inorganic Nanomaterials, National University of Science and Technology “MISiS”, Leninsky Prospect 4, 119049 Moscow, Russia
| | | | | | | | | | | |
Collapse
|