1
|
Caselli L, Parra-Ortiz E, Micciulla S, Skoda MWA, Häffner SM, Nielsen EM, van der Plas MJA, Malmsten M. Boosting Membrane Interactions and Antimicrobial Effects of Photocatalytic Titanium Dioxide Nanoparticles by Peptide Coating. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309496. [PMID: 38402437 DOI: 10.1002/smll.202309496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/30/2024] [Indexed: 02/26/2024]
Abstract
Photocatalytic nanoparticles offer antimicrobial effects under illumination due to the formation of reactive oxygen species (ROS), capable of degrading bacterial membranes. ROS may, however, also degrade human cell membranes and trigger toxicity. Since antimicrobial peptides (AMPs) may display excellent selectivity between human cells and bacteria, these may offer opportunities to effectively "target" nanoparticles to bacterial membranes for increased selectivity. Investigating this, photocatalytic TiO2 nanoparticles (NPs) are coated with the AMP LL-37, and ROS generation is found by C11-BODIPY to be essentially unaffected after AMP coating. Furthermore, peptide-coated TiO2 NPs retain their positive ζ-potential also after 1-2 h of UV illumination, showing peptide degradation to be sufficiently limited to allow peptide-mediated targeting. In line with this, quartz crystal microbalance measurements show peptide coating to promote membrane binding of TiO2 NPs, particularly so for bacteria-like anionic and cholesterol-void membranes. As a result, membrane degradation during illumination is strongly promoted for such membranes, but not so for mammalian-like membranes. The mechanisms of these effects are elucidated by neutron reflectometry. Analogously, LL-37 coating promoted membrane rupture by TiO2 NPs for Gram-negative and Gram-positive bacteria, but not for human monocytes. These findings demonstrate that AMP coating may selectively boost the antimicrobial effects of photocatalytic NPs.
Collapse
Affiliation(s)
- Lucrezia Caselli
- Department of Pharmacy, University of Copenhagen, Copenhagen, DK-2100, Denmark
- Department of Physical Chemistry 1, Lund University, Lund, SE-22100, Sweden
| | - Elisa Parra-Ortiz
- Department of Pharmacy, University of Copenhagen, Copenhagen, DK-2100, Denmark
- Novonesis, Biologiens Vej 2, Lyngby, DK-2800 Kgs, Denmark
| | - Samantha Micciulla
- Institut Laue-Langevin, CS 20156, Grenoble Cedex 9, 38042, France
- Laboratoire Interdisciplinaire de Physique (LIPhy), Saint Martin d'Hères, 38402, France
- Centre National de la Recherche Scientifique (CNRS), Saint-Martin-d'Hères, Auvergne-Rhône-Alpes, France
| | - Maximilian W A Skoda
- ISIS Pulsed Neutron and Muon Source, Rutherford Appleton Laboratory, Harwell, OX11 0QX, UK
| | - Sara Malekkhaiat Häffner
- Department of Pharmacy, University of Copenhagen, Copenhagen, DK-2100, Denmark
- RISE Research Institutes of Sweden, Malvinas väg 3, Stockholm, 114 86, Sweden
| | | | | | - Martin Malmsten
- Department of Pharmacy, University of Copenhagen, Copenhagen, DK-2100, Denmark
- Department of Physical Chemistry 1, Lund University, Lund, SE-22100, Sweden
| |
Collapse
|
2
|
Mousavi SM, Pouramini Z, Babapoor A, Binazadeh M, Rahmanian V, Gholami A, Omidfar N, Althomali RH, Chiang WH, Rahman MM. Photocatalysis air purification systems for coronavirus removal: Current technologies and future trends. CHEMOSPHERE 2024; 353:141525. [PMID: 38395369 DOI: 10.1016/j.chemosphere.2024.141525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 02/25/2024]
Abstract
Air pollution causes extreme toxicological repercussions for human health and ecology. The management of airborne bacteria and viruses has become an essential goal of air quality control. Existing pathogens in the air, including bacteria, archaea, viruses, and fungi, can have severe effects on human health. The photocatalysis process is one of the favorable approaches for eliminating them. The oxidative nature of semiconductor-based photocatalysts can be used to fight viral activation as a green, sustainable, and promising approach with significant promise for environmental clean-up. The photocatalysts show wonderful performance under moderate conditions while generating negligible by-products. Airborne viruses can be inactivated by various photocatalytic processes, such as chemical oxidation, toxicity due to the metal ions released from photocatalysts composed of metals, and morphological damage to viruses. This review paper provides a thorough and evaluative analysis of current information on using photocatalytic oxidation to deactivate viruses.
Collapse
Affiliation(s)
- Seyyed Mojtaba Mousavi
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taiwan
| | - Zahra Pouramini
- Department of Civil and Environmental Engineering, Tarbiat Modares University, Tehran, Iran
| | - Aziz Babapoor
- Department of Chemical Engineering, University of Mohaghegh Ardabil, Ardabil, Iran
| | - Mojtaba Binazadeh
- Department of Chemical Engineering, School of Chemical and Petroleum Engineering, Shiraz University, Mollasadra Street, 71345, Shiraz, Fars, Iran
| | - Vahid Rahmanian
- Department of Mechanical Engineering, Université du Québec à Trois-Rivières, Drummondville, QC, Canada.
| | - Ahmad Gholami
- Biotechnology Research Center, Shiraz University of Medical Science, Shiraz, 71439-14693, Iran
| | - Navid Omidfar
- Department of Pathology, Shiraz University of Medical Science, Shiraz, 71439-14693, Iran
| | - Raed H Althomali
- Department of Chemistry, College of Art and Science, Prince Sattam Bin Abdulaziz University, Wadi Al-Dawasir, 11991, Saudi Arabia
| | - Wei-Hung Chiang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taiwan.
| | - Mohammed M Rahman
- Center of Excellence for Advanced Materials Research (CEAMR) & Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, P.O.Box 80203, Saudi Arabia.
| |
Collapse
|
3
|
Bell M, Ye K, Yap TF, Rajappan A, Liu Z, Tao YJ, Preston DJ. Rapid In Situ Thermal Decontamination of Wearable Composite Textile Materials. ACS APPLIED MATERIALS & INTERFACES 2023; 15:44521-44532. [PMID: 37695080 PMCID: PMC10521748 DOI: 10.1021/acsami.3c09063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/21/2023] [Indexed: 09/12/2023]
Abstract
Pandemics stress supply lines and generate shortages of personal protective equipment (PPE), in part because most PPE is single-use and disposable, resulting in a need for constant replenishment to cope with high-volume usage. To better prepare for the next pandemic and to reduce waste associated with disposable PPE, we present a composite textile material capable of thermally decontaminating its surface via Joule heating. This material can achieve high surface temperatures (>100 °C) and inactivate viruses quickly (<5 s of heating), as evidenced experimentally with the surrogate virus HCoV-OC43 and in agreement with analytical modeling for both HCoV-OC43 and SARS-CoV-2. Furthermore, it does not require doffing because it remains relatively cool near the skin (<40 °C). The material can be easily integrated into clothing and provides a rapid, reusable, in situ decontamination method capable of reducing PPE waste and mitigating the risk of supply line disruptions in times of need.
Collapse
Affiliation(s)
- Marquise
D. Bell
- Department
of Mechanical Engineering, George R. Brown School of Engineering, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Kai Ye
- Department
of Biosciences, Wiess School of Natural Sciences, Rice University, 6100
Main Street, Houston, Texas 77005, United States
| | - Te Faye Yap
- Department
of Mechanical Engineering, George R. Brown School of Engineering, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Anoop Rajappan
- Department
of Mechanical Engineering, George R. Brown School of Engineering, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Zhen Liu
- Department
of Mechanical Engineering, George R. Brown School of Engineering, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Yizhi Jane Tao
- Department
of Biosciences, Wiess School of Natural Sciences, Rice University, 6100
Main Street, Houston, Texas 77005, United States
| | - Daniel J. Preston
- Department
of Mechanical Engineering, George R. Brown School of Engineering, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| |
Collapse
|
4
|
Markowska-Szczupak A, Paszkiewicz O, Yoshiiri K, Wang K, Kowalska E. Can photocatalysis help in the fight against COVID-19 pandemic? CURRENT OPINION IN GREEN AND SUSTAINABLE CHEMISTRY 2023; 40:100769. [PMID: 36846296 PMCID: PMC9942773 DOI: 10.1016/j.cogsc.2023.100769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 01/21/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Mould fungi are serious threats to humans and animals (allergen) and might be the main cause of COVID-19-associated pulmonary aspergillosis. The common methods of disinfection are not highly effective against fungi due to the high resistance of fungal spores. Recently, photocatalysis has attracted significant attention towards antimicrobial action. Outstanding properties of titania photocatalysts have already been used in many areas, e.g., for building materials, air conditioner filters, and air purifiers. Here, the efficiency of photocatalytic methods to remove fungi and bacteria (risk factors for Severe Acute Respiratory Syndrome Coronavirus 2 co-infection) is presented. Based on the relevant literature and own experience, there is no doubt that photocatalysis might help in the fight against microorganisms, and thus prevent the severity of COVID-19 pandemic.
Collapse
Affiliation(s)
- Agata Markowska-Szczupak
- Department of Chemical and Process Engineering, West Pomeranian University of Technology in Szczecin, Piastow 42, 71-065 Szczecin, Poland
| | - Oliwia Paszkiewicz
- Department of Chemical and Process Engineering, West Pomeranian University of Technology in Szczecin, Piastow 42, 71-065 Szczecin, Poland
| | - Kenta Yoshiiri
- Institute for Catalysis (ICAT), Hokkaido University, N21, W10, 001-0021 Sapporo, Japan
- Graduate School of Environmental Science, Hokkaido University, N10, W5, 060-0810 Sapporo, Japan
| | - Kunlei Wang
- Institute for Catalysis (ICAT), Hokkaido University, N21, W10, 001-0021 Sapporo, Japan
| | - Ewa Kowalska
- Institute for Catalysis (ICAT), Hokkaido University, N21, W10, 001-0021 Sapporo, Japan
- Graduate School of Environmental Science, Hokkaido University, N10, W5, 060-0810 Sapporo, Japan
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| |
Collapse
|