1
|
Lin D, Zhou Z, Zhang M, Yao S, Yuan L, Xu M, Zhang X, Hu X. Electrical Stimulations Generated by P(VDF-TrFE) Films Enhance Adhesion Forces and Odontogenic Differentiation of Dental Pulp Stem Cells (DPSCs). ACS APPLIED MATERIALS & INTERFACES 2024; 16:28029-28040. [PMID: 38775012 DOI: 10.1021/acsami.4c00769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Biophysical and biochemical cues of biomaterials can regulate cell behaviors. Dental pulp stem cells (DPSCs) in pulp tissues can differentiate to odontoblast-like cells and secrete reparative dentin to form a barrier to protect the underlying pulp tissues and enable complete pulp healing. Promotion of the odontogenic differentiation of DPSCs is essential for dentin regeneration. The effects of the surface potentials of biomaterials on the adhesion and odontogenic differentiation of DPSCs remain unclear. Here, poly(vinylidene fluoride-trifluoro ethylene) (P(VDF-TrFE)) films with different surface potentials were prepared by the spin-coating technique and the contact poling method. The cytoskeletal organization of DPSCs grown on P(VDF-TrFE) films was studied by immunofluorescence staining. Using atomic force microscopy (AFM), the lateral detachment forces of DPSCs from P(VDF-TrFE) films were quantified. The effects of electrical stimulation generated from P(VDF-TrFE) films on odontogenic differentiation of DPSCs were evaluated in vitro and in vivo. The unpolarized, positively polarized, and negatively polarized films had surface potentials of -52.9, +902.4, and -502.2 mV, respectively. DPSCs on both negatively and positively polarized P(VDF-TrFE) films had larger cell areas and length-to-width ratios than those on the unpolarized films (P < 0.05). During the detachment of DPSCs from P(VDF-TrFE) films, the average magnitudes of the maximum detachment forces were 29.4, 72.1, and 53.9 nN for unpolarized, positively polarized, and negatively polarized groups, respectively (P < 0.05). The polarized films enhanced the mineralization activities and increased the expression levels of the odontogenic-related proteins of DPSCs compared to the unpolarized films (P < 0.05). The extracellular signal-regulated kinase (ERK) signaling pathway was involved in the odontogenic differentiation of DPSCs as induced by surface charge. In vivo, the polarized P(VDF-TrFE) films enhanced adhesion of DPSCs and promoted the odontogenic differentiation of DPSCs by electrical stimulation, demonstrating a potential application of electroactive biomaterials for reparative dentin formation in direct pulp capping.
Collapse
Affiliation(s)
- Danle Lin
- Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
- Department of Stomatology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361101, China
| | - Ziyu Zhou
- Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Mengdan Zhang
- Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Songyou Yao
- Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
- Centre for Physical Mechanics and Biophysics, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
| | - Lingling Yuan
- Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Meng Xu
- Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Xiaoyue Zhang
- Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
- Centre for Physical Mechanics and Biophysics, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
| | - Xiaoli Hu
- Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| |
Collapse
|
2
|
Sun W, Gao C, Liu H, Zhang Y, Guo Z, Lu C, Qiao H, Yang Z, Jin A, Chen J, Dai Q, Liu Y. Scaffold-Based Poly(Vinylidene Fluoride) and Its Copolymers: Materials, Fabrication Methods, Applications, and Perspectives. ACS Biomater Sci Eng 2024; 10:2805-2826. [PMID: 38621173 DOI: 10.1021/acsbiomaterials.3c01989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Tissue engineering involves implanting grafts into damaged tissue sites to guide and stimulate the formation of new tissue, which is an important strategy in the field of tissue defect treatment. Scaffolds prepared in vitro meet this requirement and are able to provide a biochemical microenvironment for cell growth, adhesion, and tissue formation. Scaffolds made of piezoelectric materials can apply electrical stimulation to the tissue without an external power source, speeding up the tissue repair process. Among piezoelectric polymers, poly(vinylidene fluoride) (PVDF) and its copolymers have the largest piezoelectric coefficients and are widely used in biomedical fields, including implanted sensors, drug delivery, and tissue repair. This paper provides a comprehensive overview of PVDF and its copolymers and fillers for manufacturing scaffolds as well as the roles in improving piezoelectric output, bioactivity, and mechanical properties. Then, common fabrication methods are outlined such as 3D printing, electrospinning, solvent casting, and phase separation. In addition, the applications and mechanisms of scaffold-based PVDF in tissue engineering are introduced, such as bone, nerve, muscle, skin, and blood vessel. Finally, challenges, perspectives, and strategies of scaffold-based PVDF and its copolymers in the future are discussed.
Collapse
Affiliation(s)
- Wenbin Sun
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
| | - Chuang Gao
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
| | - Huazhen Liu
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Yi Zhang
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
| | - Zilong Guo
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
| | - Chunxiang Lu
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
| | - Hao Qiao
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
| | - Zhiqiang Yang
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
| | - Aoxiang Jin
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
| | - Jianan Chen
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
| | - Qiqi Dai
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Yuanyuan Liu
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
- School of Medicine, Shanghai University, Shanghai 200444, China
- Wenzhou Institute of Shanghai University, Wenzhou, 325000, China
| |
Collapse
|
3
|
Martin-Iglesias S, Herrera L, Santos S, Vesga MÁ, Eguizabal C, Lanceros-Mendez S, Silvan U. Analysis of the impact of handling and culture on the expansion and functionality of NK cells. Front Immunol 2023; 14:1225549. [PMID: 37638054 PMCID: PMC10451065 DOI: 10.3389/fimmu.2023.1225549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/13/2023] [Indexed: 08/29/2023] Open
Abstract
Natural killer (NK) cells are lymphocytes of the innate immune system that play a key role in the elimination of tumor and virus-infected cells. Unlike T cells, NK cell activation is governed by their direct interaction with target cells via the inhibitory and activating receptors present on their cytoplasmic membrane. The simplicity of this activation mechanism has allowed the development of immunotherapies based on the transduction of NK cells with CAR (chimeric antigen receptor) constructs for the treatment of cancer. Despite the advantages of CAR-NK therapy over CAR-T, including their inability to cause graft-versus-host disease in allogenic therapies, a deeper understanding of the impact of their handling is needed in order to increase their functionality and applicability. With that in mind, the present work critically examines the steps required for NK cell isolation, expansion and storage, and analyze the response of the NK cells to these manipulations. The results show that magnetic-assisted cell sorting, traditionally used for NK isolation, increases the CD16+ population of NK cultures only if the protocol includes both, antibody incubation and passage through the isolation column. Furthermore, based on the importance of surface potential on cellular responses, the influence of surfaces with different net surface charge on NK cells has been evaluated, showing that NK cells displayed higher proliferation rates on charged surfaces than on non-charged ones. The present work highlights the relevance of NK cells manipulation for improving the applicability and effectiveness of NK cell-based therapies.
Collapse
Affiliation(s)
- Sara Martin-Iglesias
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, Leioa, Spain
| | - Lara Herrera
- Cell Therapy, Stem Cells and Tissues Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
- Research Unit, Basque Centre for Blood Transfusion and Human Tissues, Galdakao, Spain
| | - Silvia Santos
- Cell Therapy, Stem Cells and Tissues Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
- Research Unit, Basque Centre for Blood Transfusion and Human Tissues, Galdakao, Spain
- Red Española de Terapias Avanzadas (TERAV), Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS RD21/0017/0024), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Miguel Ángel Vesga
- Cell Therapy, Stem Cells and Tissues Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
- Research Unit, Basque Centre for Blood Transfusion and Human Tissues, Galdakao, Spain
- Red Española de Terapias Avanzadas (TERAV), Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS RD21/0017/0024), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Cristina Eguizabal
- Cell Therapy, Stem Cells and Tissues Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
- Research Unit, Basque Centre for Blood Transfusion and Human Tissues, Galdakao, Spain
- Red Española de Terapias Avanzadas (TERAV), Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS RD21/0017/0024), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Red de Inmunoterapia del Cáncer “REINCA” (RED2022-134831-T), Madrid, Spain
| | - Senentxu Lanceros-Mendez
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, Leioa, Spain
- Red Española de Terapias Avanzadas (TERAV), Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS RD21/0017/0024), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Basque Foundation for Science, Ikerbasque, Bilbao, Spain
| | - Unai Silvan
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, Leioa, Spain
- Red Española de Terapias Avanzadas (TERAV), Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS RD21/0017/0024), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Basque Foundation for Science, Ikerbasque, Bilbao, Spain
| |
Collapse
|
4
|
Zhang YQ, Geng Q, Li C, Wang HC, Ren C, Zhang YF, Bai JS, Pan HB, Cui X, Yao MX, Chen W. Application of piezoelectric materials in the field of bone: a bibliometric analysis. Front Bioeng Biotechnol 2023; 11:1210637. [PMID: 37600300 PMCID: PMC10436523 DOI: 10.3389/fbioe.2023.1210637] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 07/20/2023] [Indexed: 08/22/2023] Open
Abstract
In the past 4 decades, many articles have reported on the effects of the piezoelectric effect on bone formation and the research progress of piezoelectric biomaterials in orthopedics. The purpose of this study is to comprehensively evaluate all existing research and latest developments in the field of bone piezoelectricity, and to explore potential research directions in this area. To assess the overall trend in this field over the past 40 years, this study comprehensively collected literature reviews in this field using a literature retrieval program, applied bibliometric methods and visual analysis using CiteSpace and R language, and identified and investigated publications based on publication year (1984-2022), type of literature, language, country, institution, author, journal, keywords, and citation counts. The results show that the most productive countries in this field are China, the United States, and Italy. The journal with the most publications in the field of bone piezoelectricity is the International Journal of Oral & Maxillofacial Implants, followed by Implant Dentistry. The most productive authors are Lanceros-Méndez S, followed by Sohn D.S. Further research on the results obtained leads to the conclusion that the research direction of this field mainly includes piezoelectric surgery, piezoelectric bone tissue engineering scaffold, manufacturing artificial cochleae for hearing loss patients, among which the piezoelectric bone tissue engineering scaffold is the main research direction in this field. The piezoelectric materials involved in this direction mainly include polyhydroxybutyrate valerate, PVDF, and BaTiO3.
Collapse
Affiliation(s)
- Yu-Qin Zhang
- Department of Orthopaedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Key Laboratory of Biomechanics of Hebei Province, Shijiazhuang, Hebei, China
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, Shijiazhuang, Hebei, China
| | - Qian Geng
- Department of Orthopaedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Chao Li
- Department of Orthopaedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Key Laboratory of Biomechanics of Hebei Province, Shijiazhuang, Hebei, China
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, Shijiazhuang, Hebei, China
| | - Hai-Cheng Wang
- Department of Orthopaedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Key Laboratory of Biomechanics of Hebei Province, Shijiazhuang, Hebei, China
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, Shijiazhuang, Hebei, China
| | - Chuan Ren
- Department of Orthopaedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Key Laboratory of Biomechanics of Hebei Province, Shijiazhuang, Hebei, China
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, Shijiazhuang, Hebei, China
| | - Yi-Fan Zhang
- Department of Orthopaedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Key Laboratory of Biomechanics of Hebei Province, Shijiazhuang, Hebei, China
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, Shijiazhuang, Hebei, China
| | - Jun-Sheng Bai
- Department of Orthopaedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Key Laboratory of Biomechanics of Hebei Province, Shijiazhuang, Hebei, China
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, Shijiazhuang, Hebei, China
| | - Hao-Bo Pan
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xu Cui
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Meng-Xuan Yao
- Department of Orthopaedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Key Laboratory of Biomechanics of Hebei Province, Shijiazhuang, Hebei, China
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, Shijiazhuang, Hebei, China
| | - Wei Chen
- Department of Orthopaedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Key Laboratory of Biomechanics of Hebei Province, Shijiazhuang, Hebei, China
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, Shijiazhuang, Hebei, China
| |
Collapse
|
5
|
Ribeiro S, Marques-Almeida T, Cardoso VF, Ribeiro C, Lanceros-Méndez S. Modulation of myoblast differentiation by electroactive scaffold morphology and biochemical stimuli. BIOMATERIALS ADVANCES 2023; 151:213438. [PMID: 37121084 DOI: 10.1016/j.bioadv.2023.213438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/24/2023] [Accepted: 04/19/2023] [Indexed: 05/02/2023]
Abstract
The physico-chemical properties of the scaffold materials used for tissue regeneration strategies have a direct impact on cell shape, adhesion, proliferation, phenotypic and differentiation. Herewith, biophysical and biochemical cues have been widely used to design and develop biomaterial systems for specific tissue engineering strategies. In this context, the patterning of piezoelectric polymers that can provide electroactive stimuli represents a suitable strategy for skeletal muscle tissue engineering applications once it has been demonstrated that mechanoelectrical stimuli promote C2C12 myoblast differentiation. In this sense, this works reports on how C2C12 myoblast cells detect and react to physical and biochemical stimuli based on micropatterned poly(vinylidene fluoride-co-trifluoroethylene) (P(VDF-TrFE)) electroactive scaffolds produced by soft lithography in the form of arrays of lines and hexagons (anisotropic and isotropic morphology, respectively) combined with differentiation medium. The scaffolds were evaluated for the proliferation and differentiation of C2C12 myoblast cell line and it is demonstrated that anisotropic microstructures promote muscle differentiation which is further reinforced with the introduction of biochemical stimulus. However, when the physical stimulus is not adequate to the tissue, e.g. isotropic microstructure, the biochemical stimulus has the opposite effect, hindering the differentiation process. Therefore, the proper morphological design of the scaffold combined with biochemical stimulus allows to enhance skeletal muscle differentiation and allows the development of advanced strategies for effective muscle tissue engineering.
Collapse
Affiliation(s)
- Sylvie Ribeiro
- Physics Center of Minho and Porto Universities (CF-UM-UP), University of Minho, 4710-057 Braga, Portugal; LaPMET - Laboratory of Physics for Materials and Emergent Technologies, University of Minho, 4710-057 Braga, Portugal; IB-S - Institute of Science and Innovation for Sustainability, University of Minho, 4710-057 Braga, Portugal.
| | - Teresa Marques-Almeida
- Physics Center of Minho and Porto Universities (CF-UM-UP), University of Minho, 4710-057 Braga, Portugal; LaPMET - Laboratory of Physics for Materials and Emergent Technologies, University of Minho, 4710-057 Braga, Portugal
| | - Vanessa F Cardoso
- Center for MicroElectromechanical Systems (CMEMS-UMinho), University of Minho, 4800-058 Guimarães, Portugal; LABBELS-Associate Laboratory in Biotechnology and Bioengineering and Microelectromechanical Systems, Universidade do Minho, Braga/Guimarães, Portugal
| | - Clarisse Ribeiro
- Physics Center of Minho and Porto Universities (CF-UM-UP), University of Minho, 4710-057 Braga, Portugal; LaPMET - Laboratory of Physics for Materials and Emergent Technologies, University of Minho, 4710-057 Braga, Portugal; IB-S - Institute of Science and Innovation for Sustainability, University of Minho, 4710-057 Braga, Portugal
| | - Senentxu Lanceros-Méndez
- Physics Center of Minho and Porto Universities (CF-UM-UP), University of Minho, 4710-057 Braga, Portugal; LaPMET - Laboratory of Physics for Materials and Emergent Technologies, University of Minho, 4710-057 Braga, Portugal; BCMaterials, Basque Centre for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain; IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
| |
Collapse
|
6
|
Choi B, Park S, Lee M, Jung S, Lee H, Bang G, Kim J, Hwang H, Yoo KH, Han D, Lee ST, Koh WG, Hong J. High protein-containing new food by cell powder meat. NPJ Sci Food 2023; 7:13. [PMID: 37041157 PMCID: PMC10090064 DOI: 10.1038/s41538-023-00191-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 03/20/2023] [Indexed: 04/13/2023] Open
Abstract
Demand for a new protein source to replace meat is increasing to solve various issues such as limited resources and food shortages. Diverse protein sources are being developed, but alternative proteins such as plants or insects need to improve people's perceptions and organoleptic properties. Therefore, cell-based meat research is intensively conducted, and most studies are aimed at scale-up and cost-down via the research of scaffolds and culture media. Here, we proposed a new food by cell powder meat (CPM), which has a high protein content and a meaty flavor. The powder was manufactured 76% more cost-effectively with less serum than the conventional culture medium and without 3D scaffold. Due to its comprehensive characteristics, the potential applicability of CPM in the cell-based meat industry could be expected.
Collapse
Affiliation(s)
- Bumgyu Choi
- Department of Chemical & Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Sohyeon Park
- Department of Chemical & Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Milae Lee
- Department of Chemical & Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Sungwon Jung
- Department of Chemical & Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Hyun Lee
- Department of Animal Life Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Geul Bang
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Daejeon, 28119, Republic of Korea
| | - Jiyu Kim
- Department of Chemical & Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Heeyoun Hwang
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Daejeon, 28119, Republic of Korea
| | - Ki Hyun Yoo
- SIMPLE Planet Inc., 48 Achasan-ro 17-gil, Seongdong-gu, Seoul, 04799, Republic of Korea
| | - Dongoh Han
- SIMPLE Planet Inc., 48 Achasan-ro 17-gil, Seongdong-gu, Seoul, 04799, Republic of Korea
| | - Seung Tae Lee
- Department of Animal Life Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Department of Applied Animal Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Won-Gun Koh
- Department of Chemical & Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jinkee Hong
- Department of Chemical & Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| |
Collapse
|
7
|
Wang Z, Yao C, Huang L, Liang J, Zhang X, Shi J, Wei W, Zhou J, Zhang Y, Wu G. Enhanced external counterpulsation improves dysfunction of forearm muscle caused by radial artery occlusion. Front Cardiovasc Med 2023; 10:1115494. [PMID: 36937941 PMCID: PMC10022471 DOI: 10.3389/fcvm.2023.1115494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 02/14/2023] [Indexed: 03/06/2023] Open
Abstract
Objective This study aimed to investigate the therapeutic effect of enhanced external counterpulsation (EECP) on radial artery occlusion (RAO) through the oscillatory shear (OS) and pulsatile shear (PS) models of human umbilical vein endothelial cells (HUVECs) and RAO dog models. Methods We used high-throughput sequencing data GSE92506 in GEO database to conduct time-series analysis of functional molecules on OS intervened HUVECs, and then compared the different molecules and their functions between PS and OS. Additionally, we studied the effect of EECP on the radial artery hemodynamics in Labrador dogs through multi-channel physiological monitor. Finally, we studied the therapeutic effect of EECP on RAO at the histological level through Hematoxylin-Eosin staining, Masson staining, ATPase staining and immunofluorescence in nine Labrador dogs. Results With the extension of OS intervention, the cell cycle decreased, blood vessel endothelial cell proliferation and angiogenesis responses of HUVECs were down-regulated. By contrast, the inflammation and oxidative stress responses and the related pathways of anaerobic metabolism of HUVECs were up-regulated. Additionally, we found that compared with OS, PS can significantly up-regulate muscle synthesis, angiogenesis, and NO production related molecules. Meanwhile, PS can significantly down-regulate inflammation and oxidative stress related molecules. The invasive arterial pressure monitoring showed that 30Kpa EECP treatment could significantly increase the radial artery peak pressure (p = 0.030, 95%CI, 7.236-82.524). Masson staining showed that RAO significantly increased muscle interstitial fibrosis (p = 0.002, 95%CI, 0.748-2.128), and EECP treatment can reduce this change (p = 0.011, 95%CI, -1.676 to -0.296). ATPase staining showed that RAO significantly increased the area of type II muscle fibers (p = 0.004, 95%CI, 7.181-25.326), and EECP treatment could reduce this change (p = 0.001, 95%CI, -29.213 to -11.069). In addition, immunofluorescence showed that EECP increased angiogenesis in muscle tissue (p = 0.035, 95%CI, 0.024-0.528). Conclusion EECP improves interstitial fibrosis and hypoxia, and increases angiogenesis of muscle tissue around radial artery induced by RAO.
Collapse
Affiliation(s)
- Zhenyu Wang
- Department of Cardiology, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Chun Yao
- Department of Cardiology, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Lihan Huang
- Department of Cardiology, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Jianwen Liang
- Department of Cardiology, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Xiaocong Zhang
- Department of Cardiology, Foshan Fosun Chancheng Hospital, Foshan, Guangdong, China
| | - Jian Shi
- Department of Cardiology, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Wenbin Wei
- Department of Cardiology, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Jing Zhou
- Department of Cardiology, Affiliated Hospital of Yan’an University, Yan’an, Shaanxi, China
| | - Yahui Zhang
- Department of Cardiology, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Shandong, China
- Yahui Zhang,
| | - Guifu Wu
- Department of Cardiology, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
- Guangdong Innovative Engineering and Technology Research Center for Assisted Circulation, Sun Yat-sen University, Shenzhen, Guangdong, China
- NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, Guangdong, China
- *Correspondence: Guifu Wu,
| |
Collapse
|