1
|
Ma J, Dong X, Sun Y, Shi Q. Broad-spectrum affinity chromatography of SARS-CoV-2 and Omicron vaccines from ligand screening to purification. J Chromatogr A 2025; 1743:465685. [PMID: 39842145 DOI: 10.1016/j.chroma.2025.465685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/04/2025] [Accepted: 01/14/2025] [Indexed: 01/24/2025]
Abstract
Emerging variants of SARS-CoV-2 pose great technological and regulatory challenges to vaccine manufacturing, especially in downstream processing. To address this dilemma, the development of broad-spectrum affinity chromatography for the purification of wild-type SARS-CoV-2 and its variants is crucial. We propose a comprehensive strategy to achieve this goal via the identification of high-affinity peptides by affinity selection of phage display and next-generation sequencing (NGS) and the evaluation of chromatographic performance. Two peptides targeting the angiotensin-converting enzyme 2 (ACE2)-binding motif on the receptor-binding domain (RBD), HFVKTPARWAWG (SP-HFV) and HYRTSHWHHLLG (SP-HYR), were obtained from the most abundant sequences of the enriched phage library. They exhibited nanomolar affinity for the RBD and trimeric spike protein (Trimer S), and had broad-spectrum affinity for all the RBDs from the variants. Molecular dynamics simulations revealed the different binding regions of SP-HFV and SP-HYR in the ACE2-binding motif and key residues contributing to binding. After SP-HYR was coupled onto agarose matrices, chromatographic results showed that the RBD and Trimer S from the wild-type and Omicron variant could be adsorbed at pH 6.0-6.5 and eluted by increasing the salt concentration, exhibiting broad-spectrum and mild-elution characteristics of affinity chromatography. Finally, the affinity chromatography was applied for the purification of inactivated SARS-CoV-2 and Omicron vaccines, affording high yields (84.5-93.0 %) and purities (81.3-98.0 %), and great resistance to harsh cleaning-in-place in 20 cycles. This work clearly demonstrated the commercial potential of broad-spectrum affinity chromatography for vaccine purification to address the rapid variation of pathogenic viruses.
Collapse
Affiliation(s)
- Jing Ma
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Xiaoyan Dong
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Yan Sun
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China.
| | - Qinghong Shi
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China.
| |
Collapse
|
2
|
Zhang W, Li S, Wang Y, Liu S, Liu L, Deng Z, Mo S, Chen M, Li Z, Wang R, Zhou X, Xu L, Yu L, Liu Z, Li H, Liang J, Wang C. Arginine-Rich Peptides Regulate the Pathogenic Galectin-10 Crystallization and Mitigate Crystallopathy-Associated Inflammation. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 39894983 DOI: 10.1021/acsami.4c18411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Protein self-assembly into a crystal in vivo triggers acute or chronic organ injury that can lead to intractable diseases lacking specific treatment options. In this study, we report the discovery of ionic arginine-rich peptides to disrupt the pathogenic galectin-10 (gal-10) crystallization, where the aberrant deposition of gal-10 crystals in airways causes the activation of IL-1β-dependent inflammation and the stimulation of epithelial cells to produce TNF-α. Gal-10 crystals show susceptibility to pH changes and charged residue substitutions at the protein packing interfaces, manifesting the role of charge-charge attractions across protein-protein interaction interfaces in governing gal-10 crystallization. To dissolve the gal-10 crystal, the ionic peptides R9 and R12Y8 were identified to eliminate the interprotein charge-charge interactions. The efficacy of R12Y8 in mitigating the gal-10 crystallopathy in vivo was assessed in a crystal-induced lung inflammation mice model. The mice intratracheally administrated by R12Y8 exhibited a downregulated release of proinflammatory cytokines and reduced infiltration of inflammatory cells in the lungs. Our study demonstrates that the pathogenic gal-10 crystallization is readily eliminated by R-rich peptides, which may display translational potentials for the treatment of gal-10 crystallopathy.
Collapse
Affiliation(s)
- Wenbo Zhang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, P. R. China
| | - Shuyuan Li
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, P. R. China
| | - Yang Wang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, P. R. China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Institute of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, P. R. China
| | - Shuli Liu
- Department of Clinical Laboratory, Peking University Civil Aviation School of Clinical Medicine, Beijing 100123, P. R. China
| | - Lei Liu
- Department of Cardiology, Boston Children's Hospital, 320 Longwood Avenue, Boston, Massachusetts 02115, United States
- Department of Pediatrics, Harvard Medical School, 320 Longwood Avenue, Boston, Massachusetts 02115, United States
| | - Zhun Deng
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, P. R. China
| | - Shanshan Mo
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, P. R. China
| | - Mingrui Chen
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, P. R. China
| | - Zhenyan Li
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, P. R. China
| | - Ruonan Wang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, P. R. China
| | - Xin Zhou
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, P. R. China
| | - Longxin Xu
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, P. R. China
| | - Lanlan Yu
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, P. R. China
| | - Zhenlin Liu
- Department of Medical Engineering, Peking University Third Hospital, Beijing 100191, P. R. China
| | - Hongwei Li
- Beijing Nuclear Magnetic Resonance Center, Peking University, Beijing 100871, P. R. China
| | - Junbo Liang
- Center for Bioinformatics, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, P. R. China
| | - Chenxuan Wang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, P. R. China
| |
Collapse
|
3
|
Balaban Hanoglu S, Harmanci D, Evran S, Timur S. Detection strategies of infectious diseases via peptide-based electrochemical biosensors. Bioelectrochemistry 2024; 160:108784. [PMID: 39094447 DOI: 10.1016/j.bioelechem.2024.108784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/21/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024]
Abstract
Infectious diseases have threatened human life for as long as humankind has existed. One of the most crucial aspects of fighting against these infections is diagnosis to prevent disease spread. However, traditional diagnostic methods prove insufficient and time-consuming in the face of a pandemic. Therefore, studies focusing on detecting viruses causing these diseases have increased, with a particular emphasis on developing rapid, accurate, specific, user-friendly, and portable electrochemical biosensor systems. Peptides are used integral components in biosensor fabrication for several reasons, including various and adaptable synthesis protocols, long-term stability, and specificity. Here, we discuss peptide-based electrochemical biosensor systems that have been developed over the last decade for the detection of infectious diseases. In contrast to other reports on peptide-based biosensors, we have emphasized the following points i) the synthesis methods of peptides for biosensor applications, ii) biosensor fabrication approaches of peptide-based electrochemical biosensor systems, iii) the comparison of electrochemical biosensors with other peptide-based biosensor systems and the advantages and limitations of electrochemical biosensors, iv) the pros and cons of peptides compared to other biorecognition molecules in the detection of infectious diseases, v) different perspectives for future studies with the shortcomings of the systems developed in the past decade.
Collapse
Affiliation(s)
- Simge Balaban Hanoglu
- Department of Biochemistry, Faculty of Science, Ege University, Bornova, Izmir 35100, Turkey.
| | - Duygu Harmanci
- Central Research Test and Analysis Laboratory, Application and Research Center, Ege University, Bornova, Izmir 35100, Turkey
| | - Serap Evran
- Department of Biochemistry, Faculty of Science, Ege University, Bornova, Izmir 35100, Turkey
| | - Suna Timur
- Department of Biochemistry, Faculty of Science, Ege University, Bornova, Izmir 35100, Turkey; Central Research Test and Analysis Laboratory, Application and Research Center, Ege University, Bornova, Izmir 35100, Turkey.
| |
Collapse
|
4
|
Ma J, Huang Y, Jia G, Dong X, Shi Q, Sun Y. Discovery of broad-spectrum high-affinity peptide ligands of spike protein for the vaccine purification of SARS-CoV-2 and Omicron variants. Int J Biol Macromol 2024; 283:137059. [PMID: 39500432 DOI: 10.1016/j.ijbiomac.2024.137059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/23/2024] [Accepted: 10/28/2024] [Indexed: 11/14/2024]
Abstract
To combat with emerging SARS-CoV-2 variants of concern (VOCs), we report the identification of a set of unique HWK-motif peptide ligands for the receptor-binding domain (RBD) of the SARS-CoV-2 spike (S) protein from a phage-displayed peptide library. These HWK-motif peptides exhibited nanomolar affinity for RBD. Among them, the peptide, HWKAVNWLKPWT (SP-HWK), had not only the highest affinities for RBD and trimer S protein, but also broad-spectrum affinities for RBDs from VOCs. Molecular dynamics simulations and competitive ELISA revealed a conserved pocket between the cryptic and the outer faces of RBD for SP-HWK binding, distinct from the human angiotensin-converting enzyme 2 receptor binding site. By coupling SP-HWK to agarose gel, the as-prepared affinity gel could efficiently capture RBD and trimer S from the ancestral strain and the Omicron variant, and the bound targets could be recovered by mild elution at pH 6.0. More importantly, the affinity gel presented excellent and stable chromatographic performance in the purification of inactivated SARS-CoV-2 and Omicron vaccines, affording high yields and purities, and strong HCP reduction. The results demonstrated the potential of SP-HWK as a broad-spectrum peptide ligand for developing a universal platform for the vaccine purification of SARS-CoV-2 and VOCs.
Collapse
Affiliation(s)
- Jing Ma
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Yongdong Huang
- State Key Laboratory of Biochemical Engineering and Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, China
| | | | - Xiaoyan Dong
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Qinghong Shi
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China.
| | - Yan Sun
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China.
| |
Collapse
|
5
|
Hu M, Dong X, Shi Q, Sun Y. Identification of a broad-spectrum high-affinity peptide ligand for the purification of spike proteins. J Chromatogr A 2024; 1723:464912. [PMID: 38643740 DOI: 10.1016/j.chroma.2024.464912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/07/2024] [Accepted: 04/11/2024] [Indexed: 04/23/2024]
Abstract
Since the outbreak of coronavirus disease 2019, the global demand for vaccines has increased rapidly to prevent infection and protect high-risk populations. However, identifying viral mutations poses an additional challenge for chromatographic purification of vaccines and subunit vaccines. In this study, a new affinity peptide model, X1VX2GLNX3WX4RYSK, was established, and a library of 612 peptides was generated for ligand screening. Based on a multistep strategy of ligand screening, 18 candidate peptides were obtained. The top ranking peptide, LP14 (YVYGLNIWLRYSK), and two other representative peptides, LP02 and LP06, with lower rankings were compared via molecular dynamics simulation. The results revealed that peptide binding to the receptor binding domain (RBD) was driven by hydrophobic interactions and the key residues involved in the binding were identified. Surface plasmon resonance analysis further confirmed that LP14 had the highest affinity for the wild RBD (Kd=0.520 μmol/L), and viral mutation had little influence on the affinity of LP14, demonstrating its great potential as a broad-spectrum ligand for RBD purification. Finally, chromatographic performance of LP14-coupled gel-packed column verified that both wild and omicron RBDs could be purified and were eluted by 0.1 mol/L Gly-HCl buffer (pH 3.0). This research identified a broad-spectrum peptide for RBD purification based on rational design and demonstrated its potential application in the purification of RBDs from complex feedstock.
Collapse
Affiliation(s)
- Mengke Hu
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Xiaoyan Dong
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Qinghong Shi
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China.
| | - Yan Sun
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China.
| |
Collapse
|
6
|
Ma J, Tian Z, Shi Q, Dong X, Sun Y. Affinity chromatography for virus-like particle manufacturing: Challenges, solutions, and perspectives. J Chromatogr A 2024; 1721:464851. [PMID: 38574547 DOI: 10.1016/j.chroma.2024.464851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/06/2024]
Abstract
The increasing medical application of virus-like particles (VLPs), notably vaccines and viral vectors, has increased the demand for commercial VLP production. However, VLP manufacturing has not yet reached the efficiency level achieved for recombinant protein therapeutics, especially in downstream processing. This review provides a comprehensive analysis of the challenges associated with affinity chromatography for VLP purification with respect to the diversity and complexity of VLPs and the associated upstream and downstream processes. The use of engineered affinity ligands and matrices for affinity chromatography is first discussed. Although several representative affinity ligands are currently available for VLP purification, most of them have difficulty in balancing ligand universality, ligand selectivity and mild operation conditions. Then, phage display technology and computer-assisted design are discussed as efficient methods for the rapid discovery of high-affinity peptide ligands. Finally, the VLP purification by affinity chromatography is analyzed. The process is significantly influenced by virus size and variation, ligand type and chromatographic mode. To address the updated regulatory requirements and epidemic outbreaks, technical innovations in affinity chromatography and process intensification and standardization in VLP purification should be promoted to achieve rapid process development and highly efficient VLP manufacturing, and emphasis is given to the discovery of universal ligands, applications of gigaporous matrices and platform technology. It is expected that the information in this review can provide a better understanding of the affinity chromatography methods available for VLP purification and offer useful guidance for the development of affinity chromatography for VLP manufacturing in the decades to come.
Collapse
Affiliation(s)
- Jing Ma
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Zengquan Tian
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Qinghong Shi
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China.
| | - Xiaoyan Dong
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Yan Sun
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China.
| |
Collapse
|
7
|
Marković V, Shaik JB, Ożga K, Ciesiołkiewicz A, Lizandra Perez J, Rudzińska-Szostak E, Berlicki Ł. Peptide foldamer-based inhibitors of the SARS-CoV-2 S protein-human ACE2 interaction. J Enzyme Inhib Med Chem 2023; 38:2244693. [PMID: 37605435 PMCID: PMC10446788 DOI: 10.1080/14756366.2023.2244693] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/07/2023] [Accepted: 07/31/2023] [Indexed: 08/23/2023] Open
Abstract
The entry of the SARS-CoV-2 virus into a human host cell begins with the interaction between the viral spike protein (S protein) and human angiotensin-converting enzyme 2 (hACE2). Therefore, a possible strategy for the treatment of this infection is based on inhibiting the interaction of the two abovementioned proteins. Compounds that bind to the SARS-CoV-2 S protein at the interface with the alpha-1/alpha-2 helices of ACE2 PD Subdomain I are of particular interest. We present a stepwise optimisation of helical peptide foldamers containing trans-2-aminocylopentanecarboxylic acid residues as the folding-inducing unit. Four rounds of optimisation led to the discovery of an 18-amino-acid peptide with high affinity for the SARS-CoV-2 S protein (Kd = 650 nM) that inhibits this protein-protein interaction with IC50 = 1.3 µM. Circular dichroism and nuclear magnetic resonance studies indicated the helical conformation of this peptide in solution.
Collapse
Affiliation(s)
- Violeta Marković
- Department of Bioorganic Chemistry, Wrocław University of Science and Technology, Wrocław, Poland
| | - Jeelan Basha Shaik
- Department of Bioorganic Chemistry, Wrocław University of Science and Technology, Wrocław, Poland
| | - Katarzyna Ożga
- Department of Bioorganic Chemistry, Wrocław University of Science and Technology, Wrocław, Poland
| | - Agnieszka Ciesiołkiewicz
- Department of Bioorganic Chemistry, Wrocław University of Science and Technology, Wrocław, Poland
| | - Juan Lizandra Perez
- Department of Bioorganic Chemistry, Wrocław University of Science and Technology, Wrocław, Poland
| | - Ewa Rudzińska-Szostak
- Department of Bioorganic Chemistry, Wrocław University of Science and Technology, Wrocław, Poland
| | - Łukasz Berlicki
- Department of Bioorganic Chemistry, Wrocław University of Science and Technology, Wrocław, Poland
| |
Collapse
|
8
|
Mihalič F, Benz C, Kassa E, Lindqvist R, Simonetti L, Inturi R, Aronsson H, Andersson E, Chi CN, Davey NE, Överby AK, Jemth P, Ivarsson Y. Identification of motif-based interactions between SARS-CoV-2 protein domains and human peptide ligands pinpoint antiviral targets. Nat Commun 2023; 14:5636. [PMID: 37704626 PMCID: PMC10499821 DOI: 10.1038/s41467-023-41312-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 08/30/2023] [Indexed: 09/15/2023] Open
Abstract
The virus life cycle depends on host-virus protein-protein interactions, which often involve a disordered protein region binding to a folded protein domain. Here, we used proteomic peptide phage display (ProP-PD) to identify peptides from the intrinsically disordered regions of the human proteome that bind to folded protein domains encoded by the SARS-CoV-2 genome. Eleven folded domains of SARS-CoV-2 proteins were found to bind 281 peptides from human proteins, and affinities of 31 interactions involving eight SARS-CoV-2 protein domains were determined (KD ∼ 7-300 μM). Key specificity residues of the peptides were established for six of the interactions. Two of the peptides, binding Nsp9 and Nsp16, respectively, inhibited viral replication. Our findings demonstrate how high-throughput peptide binding screens simultaneously identify potential host-virus interactions and peptides with antiviral properties. Furthermore, the high number of low-affinity interactions suggest that overexpression of viral proteins during infection may perturb multiple cellular pathways.
Collapse
Affiliation(s)
- Filip Mihalič
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, Husargatan 3, 751 23, Uppsala, Sweden
| | - Caroline Benz
- Department of Chemistry - BMC, Uppsala University, Box 576, Husargatan 3, 751 23, Uppsala, Sweden
| | - Eszter Kassa
- Department of Chemistry - BMC, Uppsala University, Box 576, Husargatan 3, 751 23, Uppsala, Sweden
| | - Richard Lindqvist
- Department of Clinical Microbiology, Umeå University, 90185, Umeå, Sweden
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 90187, Umeå, Sweden
| | - Leandro Simonetti
- Department of Chemistry - BMC, Uppsala University, Box 576, Husargatan 3, 751 23, Uppsala, Sweden
| | - Raviteja Inturi
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, Husargatan 3, 751 23, Uppsala, Sweden
| | - Hanna Aronsson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, Husargatan 3, 751 23, Uppsala, Sweden
| | - Eva Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, Husargatan 3, 751 23, Uppsala, Sweden
| | - Celestine N Chi
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, Husargatan 3, 751 23, Uppsala, Sweden
| | - Norman E Davey
- Division of Cancer Biology, The Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK
| | - Anna K Överby
- Department of Clinical Microbiology, Umeå University, 90185, Umeå, Sweden
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 90187, Umeå, Sweden
| | - Per Jemth
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, Husargatan 3, 751 23, Uppsala, Sweden.
| | - Ylva Ivarsson
- Department of Chemistry - BMC, Uppsala University, Box 576, Husargatan 3, 751 23, Uppsala, Sweden.
| |
Collapse
|
9
|
Gao B, Zhu S. Enhancement of SARS-CoV-2 receptor-binding domain activity by two microbial defensins. Front Microbiol 2023; 14:1195156. [PMID: 37405160 PMCID: PMC10315472 DOI: 10.3389/fmicb.2023.1195156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/16/2023] [Indexed: 07/06/2023] Open
Abstract
Peptide binders are of great interest to both basic and biomedical research due to their unique properties in manipulating protein functions in a precise spatial and temporal manner. The receptor-binding domain (RBD) of the SARS-CoV-2 Spike protein is a ligand that captures human angiotensin-converting enzyme 2 (ACE2) to initiate infection. The development of binders of RBDs has value either as antiviral leads or as versatile tools to study the functional properties of RBDs dependent on their binding positions on the RBDs. In this study, we report two microbe-derived antibacterial defensins with RBD-binding activity. These two naturally occurring binders bind wild-type RBD (WT RBD) and RBDs from various variants with moderate-to-high affinity (7.6-1,450 nM) and act as activators that enhance the ACE2-binding activity of RBDs. Using a computational approach, we mapped an allosteric pathway in WT RBD that connects its ACE2-binding sites to other distal regions. The latter is targeted by the defensins, in which a cation-π interaction could trigger the peptide-elicited allostery in RBDs. The discovery of the two positive allosteric peptides of SARS-CoV-2 RBD will promote the development of new molecular tools for investigating the biochemical mechanisms of RBD allostery.
Collapse
|
10
|
Zhou SH, Zhang RY, You ZW, Zou YK, Wen Y, Wang J, Ding D, Bian MM, Zhang ZM, Yuan H, Yang GF, Guo J. pH-Sensitive and Biodegradable Mn 3(PO 4) 2·3H 2O Nanoparticles as an Adjuvant of Protein-Based Bivalent COVID-19 Vaccine to Induce Potent and Broad-Spectrum Immunity. ACS APPLIED MATERIALS & INTERFACES 2023; 15:acsami.2c19736. [PMID: 36748861 PMCID: PMC9924082 DOI: 10.1021/acsami.2c19736] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
Developing a novel and potent adjuvant with great biocompatibility for immune response augmentation is of great significance to enhance vaccine efficacy. In this work, we prepared a long-term stable, pH-sensitive, and biodegradable Mn3(PO4)2·3H2O nanoparticle (nano-MnP) by simply mixing MnCl2/NaH2PO4/Na2HPO4 solution for the first time and employed it as an immune stimulant in the bivalent COVID-19 protein vaccine comprised of wild-type S1 (S1-WT) and Omicron S1 (S1-Omicron) proteins as antigens to elicit a broad-spectrum immunity. The biological experiments indicated that the nano-MnP could effectively activate antigen-presenting cells through the cGAS-STING pathway. Compared with the conventional Alum-adjuvanted group, the nano-MnP-adjuvanted bivalent vaccine elicited approximately 7- and 8-fold increases in IgG antibody titers and antigen-specific IFN-γ secreting T cells, respectively. Importantly, antisera of the nano-MnP-adjuvanted group could effectively cross-neutralize the SARS-CoV-2 and its five variants of concern (VOCs) including Alpha, Beta, Gamma, Delta, and Omicron, demonstrating that this bivalent vaccine based on S1-WT and S1-Omicron proteins is an effective vaccine design strategy to induce broad-spectrum immune responses. Collectively, this nano-MnP material may provide a novel and efficient adjuvant platform for various prophylactic and therapeutic vaccines and provide insights for the development of the next-generation manganese adjuvant.
Collapse
Affiliation(s)
| | | | - Zi-Wei You
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education,
International Joint Research Center for Intelligent Biosensing Technology and Health,
Hubei International Scientific and Technological Cooperation Base of Pesticide and Green
Synthesis, College of Chemistry, Central China Normal
University, Wuhan 430079, China
| | - Yong-Ke Zou
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education,
International Joint Research Center for Intelligent Biosensing Technology and Health,
Hubei International Scientific and Technological Cooperation Base of Pesticide and Green
Synthesis, College of Chemistry, Central China Normal
University, Wuhan 430079, China
| | - Yu Wen
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education,
International Joint Research Center for Intelligent Biosensing Technology and Health,
Hubei International Scientific and Technological Cooperation Base of Pesticide and Green
Synthesis, College of Chemistry, Central China Normal
University, Wuhan 430079, China
| | - Jian Wang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education,
International Joint Research Center for Intelligent Biosensing Technology and Health,
Hubei International Scientific and Technological Cooperation Base of Pesticide and Green
Synthesis, College of Chemistry, Central China Normal
University, Wuhan 430079, China
| | - Dong Ding
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education,
International Joint Research Center for Intelligent Biosensing Technology and Health,
Hubei International Scientific and Technological Cooperation Base of Pesticide and Green
Synthesis, College of Chemistry, Central China Normal
University, Wuhan 430079, China
| | - Miao-Miao Bian
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education,
International Joint Research Center for Intelligent Biosensing Technology and Health,
Hubei International Scientific and Technological Cooperation Base of Pesticide and Green
Synthesis, College of Chemistry, Central China Normal
University, Wuhan 430079, China
| | - Zhi-Ming Zhang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education,
International Joint Research Center for Intelligent Biosensing Technology and Health,
Hubei International Scientific and Technological Cooperation Base of Pesticide and Green
Synthesis, College of Chemistry, Central China Normal
University, Wuhan 430079, China
| | - Hong Yuan
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education,
International Joint Research Center for Intelligent Biosensing Technology and Health,
Hubei International Scientific and Technological Cooperation Base of Pesticide and Green
Synthesis, College of Chemistry, Central China Normal
University, Wuhan 430079, China
| | - Guang-Fu Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education,
International Joint Research Center for Intelligent Biosensing Technology and Health,
Hubei International Scientific and Technological Cooperation Base of Pesticide and Green
Synthesis, College of Chemistry, Central China Normal
University, Wuhan 430079, China
| | - Jun Guo
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education,
International Joint Research Center for Intelligent Biosensing Technology and Health,
Hubei International Scientific and Technological Cooperation Base of Pesticide and Green
Synthesis, College of Chemistry, Central China Normal
University, Wuhan 430079, China
| |
Collapse
|
11
|
Narvekar A, Puranik A, Kulkarni B, Jagtap D, Jain R, Dandekar P. FcγRIIIA affinity chromatography complements conventional functional characterization of rituximab. Biotechnol Prog 2023; 39:e3304. [PMID: 36181372 DOI: 10.1002/btpr.3304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 11/06/2022]
Abstract
Analytical and functional characterization of batches of biologics/biosimilar products are imperative towards qualifying them for pre-clinical and clinical investigations. Several orthogonal strategies are employed to characterize the functional attributes of these drugs. However, the use of conventional techniques for online monitoring of functional attributes is not feasible. Liquid chromatography is one of the crucial unit operations during the downstream processing of biopharmaceuticals. In this work, we have demonstrated the utility of FcγRIIIA affinity chromatography as an independent quantitative functional characterization tool. FcγRIIIA affinity chromatography aided in sequential elution of Rituximab glycoform mixtures, based on varying levels of galactosylation, and thereby the affinity for the receptor protein. The predominant glycans present in the three Rituximab glycoform mixture peaks were G0F, G1F, and G2F, respectively. Dissociation rate constants were derived from the chromatographic elution profiles by the peak profiling method, for the control and glucose stress conditions. The glucose stress conditions did not result in unfavorable binding kinetics of Rituximab and FcγRIIIA. The dissociation rate constants of the glycoform mixture 2, predominantly consisting of G1F, were similar to the dissociation rate constants obtained by surface plasmon resonance. Moreover, the glycosylation profiles obtained from chromatographic estimation can be corroborated with the ADCC activity. However, the ex vivo ADCC reporter assay indicated that there was an increase in the effector activity with increasing glucose stress. Thus, FcγRIIIA affinity chromatography permitted three independent assessments via a single analysis. Such approaches can be utilized as potential process analytical technology (PAT) tools in the biosimilar development process.
Collapse
Affiliation(s)
- Aditya Narvekar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India
| | - Amita Puranik
- Department of Chemical Engineering, Institute of Chemical Technology, Mumbai, India
| | - Bhalchandra Kulkarni
- Division of Structural Biology, National Institute for Research in Reproductive and Child Health, Mumbai, India
| | - Dhanashree Jagtap
- Division of Structural Biology, National Institute for Research in Reproductive and Child Health, Mumbai, India
| | - Ratnesh Jain
- Department of Chemical Engineering, Institute of Chemical Technology, Mumbai, India
| | - Prajakta Dandekar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India
| |
Collapse
|