1
|
Liu Y, Wei Z. Multichannel Lanthanide-Doped Nanoprobes for Serodiagnosis and Therapy. CHEM REC 2024; 24:e202400100. [PMID: 39235547 DOI: 10.1002/tcr.202400100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/11/2024] [Indexed: 09/06/2024]
Abstract
In this account, we will highlight recent progress in the development of multichannel lanthanide-doped (MC-Ln) nanoprobes for highly efficient serodiagnosis and therapy, with a particular focus on our own work. First, we first provide a classification of the types of MC-Ln nanoprobes based on the contained type and number of signals. The merits of different types of nanoprobes and the reason using lanthanides are elucidated. Then, we provide an overview of the current uses of MC-Ln nanoprobes in serodiagnosis and therapy, focusing on the strategic exploration to improve the diagnostic and therapeutic performance from different perspectives. Finally, we present a prospective outlook on the future development and potential issues of next-generation MC-Ln nanoprobes. We hope that this timely account will update our understanding of MC-Ln and similar nanoprobes for bioapplications and provide helpful references for the state-of-the-art tools for serodiagnosis and therapy.
Collapse
Affiliation(s)
- Yuxin Liu
- Van' t Hoff Institute for Molecular Sciences, University of Amsterdam, 1098 XH, Amsterdam, The Netherlands
- Department of Biomolecular Systems, Max-Planck Institute of Colloids and Interfaces, 14476, Potsdam, Germany
| | - Zheng Wei
- Van' t Hoff Institute for Molecular Sciences, University of Amsterdam, 1098 XH, Amsterdam, The Netherlands
| |
Collapse
|
2
|
Svačinová V, Halili A, Ostruszka R, Pluháček T, Jiráková K, Jirák D, Šišková K. Trimetallic nanocomposites developed for efficient in vivo bimodal imaging via fluorescence and magnetic resonance. J Mater Chem B 2024; 12:8153-8166. [PMID: 39072712 DOI: 10.1039/d4tb00655k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Despite several attempts, in vivo bimodal imaging still represents a challenge. Generally, it is accepted that dual-modality in imaging can improve sensitivity and spatial resolution, namely, when exploiting fluorescence (FI) and magnetic resonance imaging (MRI), respectively. Here, a newly developed combination of (i) protein-protected luminescent Au-Ag nanoclusters (LGSN) manifesting themselves by fluorescent emission at 705 nm and (ii) superparamagnetic iron oxide nanoparticles (SPION) embedded within the same protein and creating contrast in MR images, has been investigated in phantoms and applied for in vivo bimodal imaging of a mouse as a proof of principle. Unique LGSN-SPION nanocomposites were synthesized in a specific sequential one-pot green preparation procedure and characterized thoroughly using many physicochemical experimental techniques. The influence of LGSN-SPION samples on the viability of healthy cells (RPE-1) was tested using a calcein assay. Despite the presence of Ag (0.12 mg mL-1), high content of Au (above 0.75 mg mL-1), and moderate concentrations of Fe (0.24 mg mL-1), LGSN-SPION samples (containing approx. 15 mg mL-1 of albumin) were revealed as biocompatible (cell viability above 80%). Simultaneously, these concentration values of all components in the LGSN-SPION nanocomposite were used for achieving both MRI and fluorescence signals in phantoms as well as in a living mouse with sufficiently high resolution. Thus, the LGSN-SPION samples can serve as new efficient bimodal FI and MRI probes for in vivo imaging.
Collapse
Affiliation(s)
- Veronika Svačinová
- Department of Experimental Physics, Faculty of Science, Palacký University Olomouc, tř. 17. Listopadu 12, 77900 Olomouc, Czech Republic.
| | - Aminadav Halili
- Institute for Clinical and Experimental Medicine, Videnska 9, 140 21 Prague, Czech Republic
| | - Radek Ostruszka
- Department of Experimental Physics, Faculty of Science, Palacký University Olomouc, tř. 17. Listopadu 12, 77900 Olomouc, Czech Republic.
| | - Tomáš Pluháček
- Department of Analytical Chemistry, Faculty of Science, Palacký University Olomouc, tř. 17. Listopadu 12, 77900 Olomouc, Czech Republic
| | - Klára Jiráková
- Institute for Clinical and Experimental Medicine, Videnska 9, 140 21 Prague, Czech Republic
- Department of Histology and Embryology, The Third Faculty of Medicine, Charles University, Ruská 87, 100 00 Prague, Czech Republic
| | - Daniel Jirák
- Institute for Clinical and Experimental Medicine, Videnska 9, 140 21 Prague, Czech Republic
- Faculty of Health Studies, Technical University of Liberec, Studentska 1402/2, 46117 Liberec, Czech Republic
| | - Karolína Šišková
- Department of Experimental Physics, Faculty of Science, Palacký University Olomouc, tř. 17. Listopadu 12, 77900 Olomouc, Czech Republic.
| |
Collapse
|
3
|
Dong Y, Ren W, Sun Y, Duan X, Liu C. Aggregation-Augmented Magnetism of Lanthanide-Doped Nanoparticles and Enabling Magnetic Levitation-Based Exosome Sensing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2407013. [PMID: 38936410 DOI: 10.1002/adma.202407013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/25/2024] [Indexed: 06/29/2024]
Abstract
Due to the presence of unpaired electron orbitals in most lanthanide ions, lanthanide-doped nanoparticles (LnNPs) exhibit paramagnetism. However, as to biosensing applications, the magnetism of LnNPs is so weak that can hardly be employed in target separation. Herein, it is discovered that the magnetism of the LnNPs is highly associated with their concentration in a confined space, enabling aggregation-augmented magnetism to make them susceptive to a conventional magnet. Accordingly, a magnetic levitation (Maglev) sensing system is designed, in which the target exosomes can specifically introduce paramagnetic LnNPs to the microbeads' surface, allowing aggregation-augmented magnetism and further leverage the microbeads' levitation height in the Maglev device to indicate the target exosomes' content. It is demonstrated that this Maglev system can precisely distinguish healthy people's blood samples from those of breast cancer patients. This is the first work to report that LnNPs hold great promise in magnetic separation-based biological sample sorting, and the LnNP-permitted Maglev sensing system is proven to be promising for establishing a new generation of biosensing devices.
Collapse
Affiliation(s)
- Yuanyuan Dong
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, No. 620, West Chang'an Avenue, Xi'an, 710119, P. R. China
| | - Wei Ren
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, No. 620, West Chang'an Avenue, Xi'an, 710119, P. R. China
| | - Yuanyuan Sun
- Department of Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, 450052, P. R. China
| | - Xinrui Duan
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, No. 620, West Chang'an Avenue, Xi'an, 710119, P. R. China
| | - Chenghui Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, No. 620, West Chang'an Avenue, Xi'an, 710119, P. R. China
| |
Collapse
|
4
|
Shapoval O, Větvička D, Patsula V, Engstová H, Kočková O, Konefał M, Kabešová M, Horák D. Temoporfin-Conjugated Upconversion Nanoparticles for NIR-Induced Photodynamic Therapy: Studies with Pancreatic Adenocarcinoma Cells In Vitro and In Vivo. Pharmaceutics 2023; 15:2694. [PMID: 38140035 PMCID: PMC10748036 DOI: 10.3390/pharmaceutics15122694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
Upconverting nanoparticles are interesting materials that have the potential for use in many applications ranging from solar energy harvesting to biosensing, light-triggered drug delivery, and photodynamic therapy (PDT). One of the main requirements for the particles is their surface modification, in our case using poly(methyl vinyl ether-alt-maleic acid) (PMVEMA) and temoporfin (THPC) photosensitizer to ensure the colloidal and chemical stability of the particles in aqueous media and the formation of singlet oxygen after NIR irradiation, respectively. Codoping of Fe2+, Yb3+, and Er3+ ions in the NaYF4 host induced upconversion emission of particles in the red region, which is dominant for achieving direct excitation of THPC. Novel monodisperse PMVEMA-coated upconversion NaYF4:Yb3+,Er3+,Fe2+ nanoparticles (UCNPs) with chemically bonded THPC were found to efficiently transfer energy and generate singlet oxygen. The cytotoxicity of the UCNPs was determined in the human pancreatic adenocarcinoma cell lines Capan-2, PANC-01, and PA-TU-8902. In vitro data demonstrated enhanced uptake of UCNP@PMVEMA-THPC particles by rat INS-1E insulinoma cells, followed by significant cell destruction after excitation with a 980 nm laser. Intratumoral administration of these nanoconjugates into a mouse model of human pancreatic adenocarcinoma caused extensive necrosis at the tumor site, followed by tumor suppression after NIR-induced PDT. In vitro and in vivo results thus suggest that this nanoconjugate is a promising candidate for NIR-induced PDT of cancer.
Collapse
Affiliation(s)
- Oleksandr Shapoval
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 160 00 Prague, Czech Republic
| | - David Větvička
- Institute of Biophysics and Informatics, First Faculty of Medicine, Charles University, Salmovská 1, 120 00 Prague, Czech Republic
| | - Vitalii Patsula
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 160 00 Prague, Czech Republic
| | - Hana Engstová
- Institute of Physiology, Czech Academy of Sciences, 142 20 Prague, Czech Republic
| | - Olga Kočková
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 160 00 Prague, Czech Republic
| | - Magdalena Konefał
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 160 00 Prague, Czech Republic
| | - Martina Kabešová
- Institute of Biophysics and Informatics, First Faculty of Medicine, Charles University, Salmovská 1, 120 00 Prague, Czech Republic
| | - Daniel Horák
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 160 00 Prague, Czech Republic
| |
Collapse
|