1
|
Dong Y, Li J, Dai Y, Zhang X, Jiang X, Wang T, Zhao B, Liu W, Sun H, Du P, Qin L, Jiao Z. A novel nanocarrier based on natural polyphenols enhancing gemcitabine sensitization ability for improved pancreatic cancer therapy efficiency. Mater Today Bio 2025; 30:101463. [PMID: 39866791 PMCID: PMC11764724 DOI: 10.1016/j.mtbio.2025.101463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/04/2025] [Accepted: 01/05/2025] [Indexed: 01/28/2025] Open
Abstract
Pancreatic cancer (PC) is a highly lethal malignancy with rapid progression and poor prognosis. Despite the widespread use of gemcitabine (Gem)-based chemotherapy as the first-line treatment for PC, its efficacy is often compromised by significant drug resistance. 1,2,3,4,6-Pentagaloyl glucose (PGG), a natural polyphenol, has demonstrated potential in sensitizing PC cells to Gem. However, its clinical application is limited by poor water solubility and bioavailability. In this study, we developed a novel PGG-based nanocarrier (FP) using a straightforward, one-step self-assembly method with Pluronic F127 and PGG. Our results showed that FP induced DNA damage and immunogenic cell death (ICD) in both in vitro cell experiments and patient-derived organoid models, exhibiting potent anti-tumor effects. Furthermore, in mouse KPC and PDX models, FP, when combined with Gem, showed enhanced Gem sensitization compared to pure PGG, largely due to increased DNA damage and ICD induction. These findings demonstrate the potential of FP to improve the stability and utilization of PGG as effective Gem sensitizers in the treatment of pancreatic cancer, providing a promising pathway for clinical application and translational research.
Collapse
Affiliation(s)
- Yuman Dong
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, 730030, China
- Biobank of Tumors from Plateau of Gansu Province, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Jieru Li
- The Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, 730030, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730030, China
| | - Yiwei Dai
- The Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, 730030, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730030, China
| | - Xinyu Zhang
- The Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, 730030, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730030, China
| | - Xiangyan Jiang
- The Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, 730030, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730030, China
| | - Tao Wang
- The Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, 730030, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730030, China
| | - Bin Zhao
- The Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, 730030, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730030, China
| | - Wenbo Liu
- The Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, 730030, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730030, China
| | - Haonan Sun
- The Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, 730030, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730030, China
| | - Pengcheng Du
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Long Qin
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, 730030, China
- Biobank of Tumors from Plateau of Gansu Province, Lanzhou University Second Hospital, Lanzhou, 730030, China
- The Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Zuoyi Jiao
- Biobank of Tumors from Plateau of Gansu Province, Lanzhou University Second Hospital, Lanzhou, 730030, China
- The Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, 730030, China
| |
Collapse
|
2
|
Zhang C, Fan J, Wu L. Application of nanomaterials in precision treatment of lung cancer. iScience 2025; 28:111704. [PMID: 39886464 PMCID: PMC11780121 DOI: 10.1016/j.isci.2024.111704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2025] Open
Abstract
Lung cancer remains one of the most prevalent and lethal malignancies worldwide, characterized by high mortality rates due to its aggressive nature, metastatic potential, and drug resistance. Despite advancements in conventional therapies, their efficacy is often limited by systemic toxicity, poor tumor specificity, and the emergence of resistance mechanisms. Nanomedicine has emerged as a promising approach to address these challenges, leveraging the unique physicochemical properties of nanomaterials to enhance drug delivery, reduce off-target effects, and enable combination therapies. This review provides a comprehensive overview of the applications of nanomaterials in lung cancer treatment, focusing on advancements in chemotherapy, phototherapy, and immunotherapy. Key strategies include the development of stimuli-responsive nanoparticles, active targeting mechanisms, and multifunctional platforms for co-delivery of therapeutic agents. Notable successes, such as liposomal formulations and polymeric nanoparticles, highlight the potential to overcome biological barriers and improve therapeutic outcomes. However, significant challenges remain, including limited tumor penetration, immunogenicity, scalability in manufacturing, and regulatory complexities. Addressing these limitations through innovative design, advanced manufacturing technologies, and interdisciplinary collaboration will be critical to translating nanomedicine from bench to bedside. Overall, nanomedicine represents a transformative frontier in lung cancer therapy, offering the potential to improve patient outcomes and quality of life.
Collapse
Affiliation(s)
- Chengcheng Zhang
- Department of Thoracic Surgery, Shanghai General Hospital Shanghai Jiao Tong University School of Medicine, No. 100 Haining Road, Hongkou District, Shanghai 200080, China
| | - Jiang Fan
- Department of Thoracic Surgery, Shanghai General Hospital Shanghai Jiao Tong University School of Medicine, No. 100 Haining Road, Hongkou District, Shanghai 200080, China
| | - Liang Wu
- Department of Thoracic Surgery, Shanghai General Hospital Shanghai Jiao Tong University School of Medicine, No. 100 Haining Road, Hongkou District, Shanghai 200080, China
| |
Collapse
|
3
|
Wu X, Xin Y, Zhang H, Quan L, Ao Q. Biopolymer-Based Nanomedicine for Cancer Therapy: Opportunities and Challenges. Int J Nanomedicine 2024; 19:7415-7471. [PMID: 39071502 PMCID: PMC11278852 DOI: 10.2147/ijn.s460047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/18/2024] [Indexed: 07/30/2024] Open
Abstract
Cancer, as the foremost challenge among human diseases, has plagued medical professionals for many years. While there have been numerous treatment approaches in clinical practice, they often cause additional harm to patients. The emergence of nanotechnology has brought new directions for cancer treatment, which can deliver anticancer drugs specifically to tumor areas. This article first introduces the application scenarios of nanotherapies and treatment strategies of nanomedicine. Then, the noteworthy characteristics exhibited by biopolymer materials were described, which make biopolymers stand out in polymeric nanomedicine delivery. Next, we focus on summarizing the state-of-art studies of five categories of proteins (Albumin, Gelatin, Silk fibroin, Zein, Ferritin), nine varieties of polysaccharides (Chitosan, Starch, Hyaluronic acid, Dextran, cellulose, Fucoidan, Carrageenan, Lignin, Pectin) and liposomes in the field of anticancer drug delivery. Finally, we also provide a summary of the advantages and limitations of these biopolymers, discuss the prevailing impediments to their application, and discuss in detail the prospective research directions. This review not only helps readers understand the current development status of nano anticancer drug delivery systems based on biopolymers, but also is helpful for readers to understand the properties of various biopolymers and find suitable solutions in this field through comparative reading.
Collapse
Affiliation(s)
- Xixi Wu
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial, & Institute of Regulatory Science for Medical Device, & National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, People’s Republic of China
| | - Yuan Xin
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial, & Institute of Regulatory Science for Medical Device, & National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, People’s Republic of China
| | - Hengtong Zhang
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial, & Institute of Regulatory Science for Medical Device, & National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, People’s Republic of China
| | - Liang Quan
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial, & Institute of Regulatory Science for Medical Device, & National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, People’s Republic of China
| | - Qiang Ao
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial, & Institute of Regulatory Science for Medical Device, & National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, People’s Republic of China
| |
Collapse
|
4
|
Zang Z, Li Y, Chou S, Tian J, Si X, Wang Y, Tan H, Gao N, Shu C, Li D, Chen W, Chen Y, Wang L, He Y, Li B. Polyphenol nanoparticles based on bioresponse for the delivery of anthocyanins. Food Res Int 2024; 184:114222. [PMID: 38609214 DOI: 10.1016/j.foodres.2024.114222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/07/2024] [Accepted: 03/11/2024] [Indexed: 04/14/2024]
Abstract
Anthocyanin (AN) has good antioxidant and anti-inflammatory bioactivities, but its poor biocompatibility and low stability limit the application of AN in the food industry. In this study, core-shell structured carriers were constructed by noncovalent interaction using tannic acid (TA) and poloxamer 188 (F68) to improve the biocompatibility, stability and smart response of AN. Under different treatment conditions, TA-F68 and AN were mainly bound by hydrophobic interaction. The PDI is less than 0.1, and the particle size of nanoparticles (NPs) is uniform and concentrated. The retention of the complex was 15.50 % higher than that of AN alone after 9 d of light treatment. After heat treatment for 180 min, the retention rate after loading was 13.87 % higher than that of AN alone. The carrier reduce the damage of AN by the digestive environment, and intelligently and sustainedly release AN when the esterase is highly expressed. In vitro studies demonstrated that the nanocarriers had good biocompatibility and significantly inhibited the overproduction of reactive oxygen species induced by oxidative stress. In addition, AN-TA-F68 has great potential for free radical scavenging at sites of inflammation. In conclusion, the constructed nano-delivery system provides a potential application for oral ingestion of bioactive substances for intervention in ulcerative colitis.
Collapse
Affiliation(s)
- Zhihuan Zang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Yuan Li
- China Agricultural university. Beijing 311800, China
| | - Shurui Chou
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Jinlong Tian
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Xu Si
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Yuehua Wang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Hui Tan
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Ningxuan Gao
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Chi Shu
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Dongnan Li
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Wei Chen
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Yi Chen
- Nanchang University, State Key Laboratory of Food Science and Technology, Nanchang, Jiangxi 330031, China
| | - Liang Wang
- Zhejiang Lanmei Technology Co., Ltd. Zhuji, Zhejiang 311800, China
| | - Ying He
- Zhejiang Lanmei Technology Co., Ltd. Zhuji, Zhejiang 311800, China
| | - Bin Li
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| |
Collapse
|
5
|
Liu Y, Shi Y, Zhang M, Han F, Liao W, Duan X. Natural polyphenols for drug delivery and tissue engineering construction: A review. Eur J Med Chem 2024; 266:116141. [PMID: 38237341 DOI: 10.1016/j.ejmech.2024.116141] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/06/2024] [Accepted: 01/09/2024] [Indexed: 02/05/2024]
Abstract
Polyphenols, natural compounds rich in phenolic structures, are gaining prominence due to their antioxidant, anti-inflammatory, antibacterial, and anticancer properties, making them valuable in biomedical applications. Through covalent and noncovalent interactions, polyphenols can bind to biomaterials, enhancing their performance and compensating for their shortcomings. Such polyphenol-based biomaterials not only increase the efficacy of polyphenols but also improve drug stability, control release kinetics, and boost the therapeutic effects of drugs. They offer the potential for targeted drug delivery, reducing off-target impacts and enhancing therapeutic outcomes. In tissue engineering, polyphenols promote cell adhesion, proliferation, and differentiation, thus aiding in the formation of functional tissues. Additionally, they offer excellent biocompatibility and mechanical strength, essential in designing scaffolds. This review explores the significant roles of polyphenols in tissue engineering and drug delivery, emphasizing their potential in advancing biomedical research and healthcare.
Collapse
Affiliation(s)
- Yu Liu
- Clinical Medical College/Affiliated Hospital of Jiujiang University, Jiangxi, China; Jiujiang Clinical Precision Medicine Research Center, Jiangxi, China; Medical College of Jiujiang University, Jiangxi, China
| | - Yuying Shi
- Clinical Medical College/Affiliated Hospital of Jiujiang University, Jiangxi, China; Jiujiang Clinical Precision Medicine Research Center, Jiangxi, China; Medical College of Jiujiang University, Jiangxi, China
| | - Mengqi Zhang
- Clinical Medical College/Affiliated Hospital of Jiujiang University, Jiangxi, China; Jiujiang Clinical Precision Medicine Research Center, Jiangxi, China; Medical College of Jiujiang University, Jiangxi, China
| | - Feng Han
- Clinical Medical College/Affiliated Hospital of Jiujiang University, Jiangxi, China; Jiujiang Clinical Precision Medicine Research Center, Jiangxi, China; Medical College of Jiujiang University, Jiangxi, China
| | - Weifang Liao
- Clinical Medical College/Affiliated Hospital of Jiujiang University, Jiangxi, China; Jiujiang Clinical Precision Medicine Research Center, Jiangxi, China; Medical College of Jiujiang University, Jiangxi, China
| | - Xunxin Duan
- Clinical Medical College/Affiliated Hospital of Jiujiang University, Jiangxi, China; Jiujiang Clinical Precision Medicine Research Center, Jiangxi, China; Medical College of Jiujiang University, Jiangxi, China.
| |
Collapse
|
6
|
Liu S, Sun Y, Ye J, Li C, Wang Q, Liu M, Cui Y, Wang C, Jin G, Fu Y, Xu J, Liang X. Targeted Delivery of Active Sites by Oxygen Vacancy-Engineered Bimetal Silicate Nanozymes for Intratumoral Aggregation-Potentiated Catalytic Therapy. ACS NANO 2024; 18:1516-1530. [PMID: 38172073 DOI: 10.1021/acsnano.3c08780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Biodegradable silicate nanoconstructs have aroused tremendous interest in cancer therapeutics due to their variable framework composition and versatile functions. Nevertheless, low intratumoral retention still limits their practical application. In this study, oxygen vacancy (OV)-enriched bimetallic silicate nanozymes with Fe-Ca dual active sites via modification of oxidized sodium alginate and gallic acid (GA) loading (OFeCaSA-V@GA) were developed for targeted aggregation-potentiated therapy. The band gap of silica markedly decreased from 2.76 to 1.81 eV by codoping of Fe3+ and Ca2+, enabling its excitation by a 650 nm laser to generate reactive oxygen species. The OV that occurred in the hydrothermal synthetic stage of OFeCaSA-V@GA can anchor the metal ions to form an atomic phase, offering a massive fabrication method of single-atom nanozymes. Density functional theory results reveal that the Ca sites can promote the adsorption of H2O2, and Fe sites can accelerate the dissociation of H2O2, thereby realizing a synergetic catalytic effect. More importantly, the targeted delivery of metal ions can induce a morphological transformation at tumor sites, leading to high retention (the highest retention rate is 36.3%) of theranostic components in tumor cells. Thus, this finding may offer an ingenious protocol for designing and engineering highly efficient and long-retention nanodrugs.
Collapse
Affiliation(s)
- Shuang Liu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China
- Guangxi Medical University Cancer Hospital, Nanning, 530021, P. R. China
| | - Yu Sun
- Heilongjiang Vocational Institute Ecological Engineering, Harbin, 150040, P. R. China
| | - Jin Ye
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China
| | - Chunsheng Li
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China
| | - Qiang Wang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China
| | - Mengting Liu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China
| | - Yujie Cui
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China
| | - Chen Wang
- Guangxi Medical University Cancer Hospital, Nanning, 530021, P. R. China
| | - Guanqiao Jin
- Guangxi Medical University Cancer Hospital, Nanning, 530021, P. R. China
| | - Yujie Fu
- College of Forestry, Beijing Forestry University, Beijing, 100083, P. R. China
| | - Jiating Xu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China
- Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Xinqiang Liang
- Guangxi Medical University Cancer Hospital, Nanning, 530021, P. R. China
| |
Collapse
|
7
|
Meng F, Zhai X, Ma J, Li A, Wang X, Bai J. Enzyme-Induced Shape-Shifting Peptide Nanocarrier Coloaded with Paclitaxel and Dipyridamole Inhibits Platelet Function and Tumor Metastasis. ACS APPLIED MATERIALS & INTERFACES 2024; 16:166-177. [PMID: 38143309 DOI: 10.1021/acsami.3c13855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2023]
Abstract
Tumor-associated platelets can bind to tumor cells and protect circulating tumor cells from NK-mediated immune surveillance. Tumor-associated platelets secrete cytokines to induce the epithelial-mesenchymal transition (EMT) in tumor cells, which promotes tumor metastasis. Combining chemotherapeutic agents with antiplatelet drugs can reduce the occurrence of metastasis, but the systemic application of chemotherapeutic agents and antiplatelet drugs is prone to causing serious side effects. Therefore, delivering drugs to the tumor microthrombus site for long-lasting inhibition is a problem that needs to be addressed. Here, we show that small molecule peptide nanoparticles containing the Cys-Arg-Glu-Lys-Ala (CREKA) peptide can deliver the platelet inhibitor dipyridamole (DIP) and the chemotherapeutic drug paclitaxel (PTX) to tumor tissues, thereby inhibiting tumor-associated platelet function while killing tumor cells. The drug-loaded nanoparticles PD/Pep1 inhibited platelet-tumor cell interactions, were effectively taken up by tumor cells, and underwent morphological transformation induced by alkaline phosphatase (ALP) to prolong the retention time of the drugs. After intravenous injection, PD/Pep1 can target tumors and inhibit tumor metastasis. Thus, this small molecule peptide nanoformulation provides a simple strategy for efficient drug delivery and shows promise as a novel cancer therapy platform.
Collapse
Affiliation(s)
- Fanhu Meng
- School of Bioscience and Technology, Weifang Medical University, Weifang 261053, China
| | - Xiaoqing Zhai
- School of Clinical Medicine, Weifang Medical University, Weifang 261053, China
| | - Jihong Ma
- School of Clinical Medicine, Weifang Medical University, Weifang 261053, China
| | - Aimei Li
- School of Bioscience and Technology, Weifang Medical University, Weifang 261053, China
| | - Xizhen Wang
- Medical Imaging Center, Affiliated Hospital of Weifang Medical University, Weifang 261053, China
| | - Jingkun Bai
- School of Bioscience and Technology, Weifang Medical University, Weifang 261053, China
| |
Collapse
|
8
|
Yan Z, Liu Y, Zhao L, Hu J, Du Y, Peng X, Liu Z. In situ stimulus-responsive self-assembled nanomaterials for drug delivery and disease treatment. MATERIALS HORIZONS 2023; 10:3197-3217. [PMID: 37376926 DOI: 10.1039/d3mh00592e] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
The individual motifs that respond to specific stimuli for the self-assembly of nanomaterials play important roles. In situ constructed nanomaterials are formed spontaneously without human intervention and have promising applications in bioscience. However, due to the complex physiological environment of the human body, designing stimulus-responsive self-assembled nanomaterials in vivo is a challenging problem for researchers. In this article, we discuss the self-assembly principles of various nanomaterials in response to the tissue microenvironment, cell membrane, and intracellular stimuli. We propose the applications and advantages of in situ self-assembly in drug delivery and disease diagnosis and treatment, with a focus on in situ self-assembly at the lesion site, especially in cancer. Additionally, we introduce the significance of introducing exogenous stimulation to construct self-assembly in vivo. Based on this foundation, we put forward the prospects and possible challenges in the field of in situ self-assembly. This review uncovers the relationship between the structure and properties of in situ self-assembled nanomaterials and provides new ideas for innovative drug molecular design and development to solve the problems in the targeted delivery and precision medicine.
Collapse
Affiliation(s)
- Ziling Yan
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan Province, P. R. China
| | - Yanfei Liu
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan Province, P. R. China
| | - Licheng Zhao
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan Province, P. R. China
| | - Jiaxin Hu
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan Province, P. R. China.
| | - Yimin Du
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan Province, P. R. China.
| | - Xingxing Peng
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan Province, P. R. China.
| | - Zhenbao Liu
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan Province, P. R. China.
- Molecular Imaging Research Center of Central South University, Changsha 410008, Hunan Province, P. R. China
| |
Collapse
|
9
|
Lu Q, Yu H, Zhao T, Zhu G, Li X. Nanoparticles with transformable physicochemical properties for overcoming biological barriers. NANOSCALE 2023; 15:13202-13223. [PMID: 37526946 DOI: 10.1039/d3nr01332d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
In recent years, tremendous progress has been made in the development of nanomedicines for advanced therapeutics, yet their unsatisfactory targeting ability hinders the further application of nanomedicines. Nanomaterials undergo a series of processes, from intravenous injection to precise delivery at target sites. Each process faces different or even contradictory requirements for nanoparticles to pass through biological barriers. To overcome biological barriers, researchers have been developing nanomedicines with transformable physicochemical properties in recent years. Physicochemical transformability enables nanomedicines to responsively switch their physicochemical properties, including size, shape, surface charge, etc., thus enabling them to cross a series of biological barriers and achieve maximum delivery efficiency. In this review, we summarize recent developments in nanomedicines with transformable physicochemical properties. First, the biological dilemmas faced by nanomedicines are analyzed. Furthermore, the design and synthesis of nanomaterials with transformable physicochemical properties in terms of size, charge, and shape are summarized. Other switchable physicochemical parameters such as mobility, roughness and mechanical properties, which have been sought after most recently, are also discussed. Finally, the prospects and challenges for nanomedicines with transformable physicochemical properties are highlighted.
Collapse
Affiliation(s)
- Qianqian Lu
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), Fudan University, Shanghai 200433, P. R. China.
| | - Hongyue Yu
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), Fudan University, Shanghai 200433, P. R. China.
| | - Tiancong Zhao
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), Fudan University, Shanghai 200433, P. R. China.
| | - Guanjia Zhu
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, P. R. China.
| | - Xiaomin Li
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), Fudan University, Shanghai 200433, P. R. China.
| |
Collapse
|
10
|
Du C, Wang C, Jiang SH, Zheng X, Li Z, Yao Y, Ding Y, Chen T, Yi H. pH/GSH dual-responsive supramolecular nanomedicine for hypoxia-activated combination therapy. Biomater Sci 2023; 11:5674-5679. [PMID: 37439102 DOI: 10.1039/d3bm00519d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Moderate oxygen (O2) supply and uneven distribution of oxygen at the tumor site usually hinder the therapeutic efficacy of hypoxia-activated prodrugs. In this report, we designed a ferrocene-containing supramolecular nanomedicine (PFC/GOD-TPZ) with the PEG corona and disulfide-bond cross-linked core to co-encapsulate 4-di-N-oxide tirapazamine (TPZ) and glucose oxidase (GOD). The PEG corona of PFC/GOD-TPZ could be weakly acidic tumor pH-responsively detached for an enhanced cellular internalization, while the disulfide-bond cross-linked core could be cleavaged by intracellular glutathione (GSH) to present a GSH-triggered drug-release behavior. Subsequently, the cascade reactions, including catalytic reactions among the released GOD, glucose, and O2 to generate H2O2 and the subsequent Fenton reaction between ferrocene and H2O2, occurred. With the depletion of O2, the non-toxic TPZ was activated and converted into the cytotoxic therapeutic agent benzotriazinyl (BTZ) radical under the exacerbated hypoxic microenvironment. Collectively, the PFC/GOD-TPZ provides a promising strategy for effective combination therapy of GOD-mediated starvation therapy, chemodynamic therapy (CDT), and hypoxia-activated chemotherapy (CT).
Collapse
Affiliation(s)
- Chang Du
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chenwei Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, P. R. China.
| | - Shu-Heng Jiang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiangqin Zheng
- Department of Gynecology Oncology, Fujian Provincial Maternity and Children's Hospital, Fujian Provincial Key Gynecology Clinical Specialty, The Affiliated Hospital of Fujian Medical University, Zhangzhou, Fujian, China.
| | - Zelong Li
- Department of Gynecology Oncology, Fujian Provincial Maternity and Children's Hospital, Fujian Provincial Key Gynecology Clinical Specialty, The Affiliated Hospital of Fujian Medical University, Zhangzhou, Fujian, China.
| | - Yong Yao
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, P. R. China.
| | - Yue Ding
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, P. R. China.
| | - Tingting Chen
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, P. R. China.
| | - Huan Yi
- Department of Gynecology Oncology, Fujian Provincial Maternity and Children's Hospital, Fujian Provincial Key Gynecology Clinical Specialty, The Affiliated Hospital of Fujian Medical University, Zhangzhou, Fujian, China.
| |
Collapse
|
11
|
Lang W, Chen LZ, Chen Y, Cao QY. A GSH-activated AIE-based polymer photosensitizer for killing cancer cells. Talanta 2023; 258:124473. [PMID: 36989616 DOI: 10.1016/j.talanta.2023.124473] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/16/2023] [Accepted: 03/18/2023] [Indexed: 03/29/2023]
Abstract
Developing efficient photosensitizers which are sensitive to therapeutic tumor signals, but non-toxic to normal cells has always been a tremendous challenge in photodynamic therapy (PDT) process. Herein, a novel copolymer P1 was developed by ring-opening metathesis polymerization (ROMP) with disulfide bond linked ferrocene-norbornene dyad NB-SS-PyFc and the aggregation-induced emission (AIE) fluorephore anchored norbornene NB-TPE, and its nanoparticles (NPs) were obtained by using the amphiphilic Pluronic F-127 as the surfactant via a nanoprecipitation method. The P1 NPs show a weak emission and a low 1O2 generation for the quenching effect from the ferrocene moiety to the AIE group. However, the addition of GSH can recover the AIE fluorephore emission and 1O2 generation for cleavage the disulfide bond. Importantly, P1 NPs have been used for image-guided cancer cells apoptosis for the GSH activated 1O2 generation.
Collapse
|
12
|
Li X, Huang Z, Liao Z, Liu A, Huo S. Transformable nanodrugs for overcoming the biological barriers in the tumor environment during drug delivery. NANOSCALE 2023; 15:8532-8547. [PMID: 37114478 DOI: 10.1039/d2nr06621a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Drug delivery systems have been studied massively with explosive growth in the last few decades. However, challenges such as biological barriers are still obstructing the delivery efficiency of nanomedicines. Reports have shown that the physicochemical properties, such as the morphologies of nanodrugs, could highly affect their biodistribution and bioavailability. Therefore, transformable nanodrugs that take advantage of different sizes and shapes allow for overcoming multiple biological barriers, providing promising prospects for drug delivery. This review aims to present an overview of the most recent developments of transformable nanodrugs in this emerging field. First, the design principles and transformation mechanisms which serve as guidelines for smart nanodrugs are summarized. Afterward, their applications in overcoming biological barriers, including the bloodstream, intratumoral pressure, cellular membrane, endosomal wrapping, and nuclear membrane, are highlighted. Finally, discussions on the current developments and future perspectives of transformable nanodrugs are given.
Collapse
Affiliation(s)
- Xuejian Li
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| | - Zhenkun Huang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| | - Zhihuan Liao
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| | - Aijie Liu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| | - Shuaidong Huo
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
13
|
Xiao R, Ye J, Li X, Wang X. Dual size/charge-switchable and multi-responsive gelatin-based nanocluster for targeted anti-tumor therapy. Int J Biol Macromol 2023; 238:124032. [PMID: 36921812 DOI: 10.1016/j.ijbiomac.2023.124032] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 03/01/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023]
Abstract
Biopolymers with excellent biocompatibility and biodegradability show great potential for designing drug nanocarriers, while it's difficult to fabricate smart vehicles with multiple switching (size, surface, shape) based on biopolymers alone. Here, we report a dual size/charge-switchable and multi-responsive doxorubicin-loaded gelatin-based nanocluster (DOX-icluster) for improved tumor penetration and targeted anti-tumor therapy. The DOX-icluster was electrostatically assembled from folic acid and dimethylmaleic anhydride modified gelatin (FA-GelDMA) and small-sized DOX-loaded NH2 modified hollow mesoporous organosilicon nanoparticles (DOX-HMON-NH2). DOX-icluster had an initial size of about 199 nm at neutral pH. After accumulation in tumor tissue, the DMA bond of FA-GelDMA was cleaved and gelatin was degraded by matrix metalloproteinase (MMP-2), thus 48 nm and positively charged DOX-HMON-NH2 was released to facilitate penetration and cell internalization. DOX-HMON-NH2 was further degraded by intracellular glutathione (GSH) with releasing 48.1 % of DOX. The cellular uptake results indicated that the fabricated icluster promoted the uptake of DOX by 4T1 cells. With enhanced penetration efficacy, the tumor spheroids volume treated with DOX-icluster was reduced to 15.1 % on day 7. This cytocompatible multi-responsive gelatin-based icluster with size-shrinking and charge-reversible characteristics may be used as a significant drug carrier for tumor therapy.
Collapse
Affiliation(s)
- Renhua Xiao
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
| | - Junhu Ye
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
| | - Xiaoyun Li
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China.
| | - Xiaoying Wang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China.
| |
Collapse
|
14
|
Li Z, Liu W, Sun C, Wei X, Liu S, Jiang Y. Gastrointestinal pH-Sensitive Pickering Emulsions Stabilized by Zein Nanoparticles Coated with Bioactive Glycyrrhizic Acid for Improving Oral Bioaccessibility of Curcumin. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 36884340 DOI: 10.1021/acsami.2c21549] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Pickering emulsions have received considerable attention for their stability and functionality. Environmentally responsive Pickering emulsions could be used as vehicles for oral administration. However, challenges still exist, such as nonbiocompatibility of emulsifier and mismatched response behavior in the gastrointestinal environment. In this study, a strategy was proposed that bioactive saponin glycyrrhizic acid (GA) was used as a pH-responsive substance to functionalize zein nanoparticles, and tannic acid (TA) was used as a primer for cross-linking GA and zein nanoparticles. The Pickering emulsions fabricated by zein/TA/GA nanoparticles (ZTGs) exhibited excellent stability at acid conditions while slowly demulsifying at neutral conditions, which can be further used as an intestine-targeted delivery system. Curcumin was encapsulated into ZTG-stabilized Pickering emulsions, and the encapsulation efficiency results suggested that the presence of GA coating remarkably facilitated the encapsulation of curcumin. An in vitro digestion study suggested that ZTGs provided protection for emulsions from pepsin hydrolysis and exhibited higher free fatty acid release as well as higher bioaccessibility of curcumin during simulated intestine digestion. This study provides an effective strategy to prepare pH-responsive Pickering emulsions for improving the oral bioaccessibility of hydrophobic nutraceuticals.
Collapse
Affiliation(s)
- Zhiqiang Li
- Guangdong Provincial Key Lab of Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Weiqi Liu
- Guangdong Provincial Key Lab of Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Chenbo Sun
- Guangdong Provincial Key Lab of Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xinyi Wei
- Guangdong Provincial Key Lab of Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Shiyuan Liu
- Guangdong Provincial Key Lab of Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yanbin Jiang
- Guangdong Provincial Key Lab of Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
- School of Chemical Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| |
Collapse
|
15
|
Tang L, Chen X, Tong Q, Ran Y, Ma L, Tan Y, Yi Z, Li X. Biocompatible, bacteria-targeting resveratrol nanoparticles fabricated by Mannich molecular condensation for accelerating infected wound healing. J Mater Chem B 2022; 10:9280-9294. [PMID: 36342467 DOI: 10.1039/d2tb01697d] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Excessive reactive oxygen species (ROS) and long-term inflammation can delay wound healing and cause tissue damage, while bacterial infection aggravates the wound environment further. It is impossible to resolve all these thorny problems simultaneously with a wound dressing that has only one function. The antioxidative and anti-inflammatory properties of resveratrol (Res) have been proven. However, the effect of Res is non-selective, and high levels of Res can inhibit cell growth and promote oxidation. Res is also difficult to dissolve and possesses insufficient antibacterial properties, so its role is limited. In this study, Res was assembled via Mannich reaction into nanoparticles and functionalized by phenylboric acid, giving rise to targeting bacteria and solving the water-insoluble dilemma of Res. In comparison with Trolox, the assembled Res NPs performed better at scavenging ABTS and DPPH free radicals. Furthermore, Res NPs that targeted bacteria also showed high biocompatibility at concentrations five times higher than pure Res. The activities of Res NPs were comparable to free Res in downregulating the expression of inflammatory cytokines, and reducing intracellular excessive ROS. The gel embedded with Res NPs accelerated the formation of granulation tissue, collagen deposition, and re-epithelialization, facilitating wound healing. The present study suggests that functionalized polyphenol-based materials are preferably suited to the development of tissue engineering biomaterials.
Collapse
Affiliation(s)
- Liwen Tang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China. .,College of Biomedical Engineering, Sichuan University, Chengdu 610064, P. R. China
| | - Xiangyu Chen
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China. .,College of Biomedical Engineering, Sichuan University, Chengdu 610064, P. R. China
| | - Qiulan Tong
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China. .,College of Biomedical Engineering, Sichuan University, Chengdu 610064, P. R. China
| | - Yaqin Ran
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China. .,College of Biomedical Engineering, Sichuan University, Chengdu 610064, P. R. China
| | - Lei Ma
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China. .,College of Biomedical Engineering, Sichuan University, Chengdu 610064, P. R. China
| | - Yunfei Tan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China. .,College of Biomedical Engineering, Sichuan University, Chengdu 610064, P. R. China
| | - Zeng Yi
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China. .,College of Biomedical Engineering, Sichuan University, Chengdu 610064, P. R. China
| | - Xudong Li
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China. .,College of Biomedical Engineering, Sichuan University, Chengdu 610064, P. R. China
| |
Collapse
|