1
|
Huang W, Liu F, Geng L, Zhao S, Ye F. Photoelectrochemical biosensing platform based on switch of photocurrent polarity of CdS/Ni-CAT nanorod arrays by Au@Cu 2O for highly selective and sensitive CEA detection. Talanta 2024; 286:127489. [PMID: 39736206 DOI: 10.1016/j.talanta.2024.127489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/24/2024] [Accepted: 12/26/2024] [Indexed: 01/01/2025]
Abstract
Sensitive and accurate determination of tumour biomarkers is extremely important for early cancer diagnosis. Herein, a photoelectrochemical biosensor platform was constructed for ultrasensitive tumour biomarker detection by utilizing Au@Cu2O to switch the photocurrent polarity of CdS/Ni-catecholates metal-organic framework (Ni-CAT) nanorod arrays grown in situ on ITO. The Ni-CAT obtains close contact with ITO and forms a Z-scheme heterojunction with CdS, which improves the photogenerated electron transfer ability. When the target CEA (a model tumour biomarker) was present, CdS/Ni-CAT conjugated with aptamer 1 and Au@Cu2O conjugated with aptamer 2 to form a sandwich-type complex with the CEA, resulting in the switch of photocurrent polarity of CdS/Ni-CAT from anode to cathode. Owing to the high photogenerated carrier separation efficiency of Au@Cu2O core-shell heterojunction, the constructed biosensor exhibited ultrasensitive for the detection of CEA with a wide linear range of 0.1 pg·mL-1-10 ng mL-1 and effectively eliminated false-positive or false-negative signals, which provides a potential alternative solution for the determination of tumour markers in bioanalysis and clinical diagnosis.
Collapse
Affiliation(s)
- Wei Huang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China; Guangxi Key Laboratory for High-value Utilization of Manganese Resources, College of Chemical and Biological Engineering, Guangxi Minzu Normal University, Chongzuo, 532200, PR China
| | - Fengping Liu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China; Guangxi Key Laboratory for High-value Utilization of Manganese Resources, College of Chemical and Biological Engineering, Guangxi Minzu Normal University, Chongzuo, 532200, PR China.
| | - Lianguo Geng
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China
| | - Shulin Zhao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China
| | - Fanggui Ye
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China.
| |
Collapse
|
2
|
Hu A, Sheidaei S, Fayazi D, Alborzi S, Nemati Tamar A, Azizi B. Encapsulation of Cu-modified SnO 2 yolk-shell in V 2O 5-amalgamated wrinkled g-C 3N 4 lamella for boosting antibiotic photodegradation. ENVIRONMENTAL RESEARCH 2024; 256:119184. [PMID: 38782344 DOI: 10.1016/j.envres.2024.119184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/08/2024] [Accepted: 05/18/2024] [Indexed: 05/25/2024]
Abstract
The remarkable application of tin oxide in various domains is indebted to its photoelectronic merits. However, significant efforts to discover its photocatalytic potential were restricted through arduous challenges, which were the amelioration of light-harvesting and -utilizing. In fact, the uncommon light absorption energy has drawn veil over the brilliance of astounding oxidation potential, which is much more than that of TiO2. Herein, our attention was focused on the taking advantages of self-template structure for simultaneously enjoying the two sides of photoelectronic justification as well as the S-step system for eminent charge dissociation. In this regard, the optimized Cu-modified SnO2 yolk-shell ((5)YS-CuSnO) spheres were engineered through the copper modulation into glycerate-assisted metal-organic structure. As a result, the exceptional light-harvesting was achieved through desirable defects and oxygen vacancy resulted from Cu-doping, and also efficient light-utilization was obtained by the multi-scattering/reflection effect resulted from multi-shell configuration. After the effectual incorporation (40 wt⁒) of (5)YS-CuSnO was encapsulated into the V2O5-decorated wrinkled g-C3N4 lamella (VO-WCN), the dual S-step VO-WCN@(5)YS-CuSnO introduced unprecedented levofloxacin (LFC) decontamination performance, which was kinetically 5.2 and 30.2-times greater than of the (5)YS-CuSnO and bare SnO2 yolk-shell. The conspicuous fulfillment of nanocomposite was manifested in the LFC mineralization, pharmaceutical effluent treatment within 360 min, and successive cycling reactions. The fusion of the extraordinary architecture of YS-CuSnO with S-Step system not only initiates the facile and practical photocatalytic exploitation, but shade light on some undeveloped side of tin oxide.
Collapse
Affiliation(s)
- Annan Hu
- Ningbo Institute of Digital Twin, Eastern Institute of Technology, Ningbo 315200, China.
| | - Sina Sheidaei
- Faculty of science, Chemistry Department, University of Guilan, Rasht, Iran.
| | - Davood Fayazi
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Shaghayegh Alborzi
- School of Chemical Engineering, Iran University of Science and Technology (IUST), Tehran, Iran
| | - Amin Nemati Tamar
- Chemical and Petroleum Engineering Department, Sharif University of Technology, Tehran, 145888-9694, Iran
| | - Bayan Azizi
- Nursing Department, College of Nursing, University of Human Development, Sulaymaniyah, Kurdistan Region of Iraq, Iraq
| |
Collapse
|
3
|
Dong C, Chen Q, Deng X, Jiang L, Tan H, Zhou Y, Chen J, Wang R. Enhanced Photocatalytic Hydrogen Evolution of In 2S 3 by Decorating In 2O 3 with Rich Oxygen Vacancies. Inorg Chem 2024; 63:11125-11134. [PMID: 38833320 DOI: 10.1021/acs.inorgchem.4c00720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
The hydrogen (H2) evolution rates of photocatalysts suffer from weak oxidation and reduction ability and low photogenerated charge carrier separation efficiency. Herein, by combining band-gap structure optimization and vacancy modulation through a one-step hydrothermal method, In2O3 containing oxygen vacancy (Ov/In2O3) is simply introduced into In2S3 to promote photocatalytic hydrogen evolution. Specifically, the change in the sulfur source ratio can induce the coexistence of Ov/In2O3 and In2S3 in a high-temperature hydrothermal process. Under light irradiation, In2S3@Ov/In2O3-0.1 nanosheets hold a remarkable average H2 evolution rate up to 4.04 mmol g-1 h-1, which is 32.14, 11.91, and 2.25-fold better than those of pristine In2S3, In2S3@Ov/In2O3-0.02, and In2S3@Ov/In2O3-0.25 nanosheets, respectively. The ultraviolet-visible (UV-vis) diffuse reflectance and photoluminescence (PL) spectra reveal that the formation of Ov/In2O3 in In2S3 optimizes the band-gap structure and accelerates the migration of the photogenerated charge carrier of In2S3@Ov/In2O3-x nanosheets, respectively. Both the enhancement of oxidation and reduction ability and photogenerated charge carrier separation ability are responsible for the remarkable improvement in photocatalytic H2 evolution performance. This work provides a new strategy to prepare a composite of metal sulfide and metal oxide through a one-step hydrothermal method.
Collapse
Affiliation(s)
- Changxue Dong
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Qiuyan Chen
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Xin Deng
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Lan Jiang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Han Tan
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Yufeng Zhou
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Jinwei Chen
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Ruilin Wang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
4
|
Hou T, Li X, Zhang X, Cai R, Wang YC, Chen A, Gu H, Su M, Li S, Li Q, Zhang L, Haigh SJ, Zhang J. Atomic Au 3Cu Palisade Interlayer in Core@Shell Nanostructures for Efficient Kirkendall Effect Mediation. NANO LETTERS 2024; 24:2719-2726. [PMID: 38377427 DOI: 10.1021/acs.nanolett.3c04337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Plasmonic Cu@semiconductor heteronanocrystals (HNCs) have many favorable properties, but the synthesis of solid structures is often hindered by the nanoscale Kirkendall effect. Herein, we present the use of an atomically thin Au3Cu palisade interlayer to reduce lattice mismatch and mediate the Kirkendall effect, enabling the successive topological synthesis of Cu@Au3Cu@Ag, Cu@Au3Cu@Ag2S, and further transformed solid Cu@Au3Cu@CdS core-shell HNCs via cation exchange. The atomically thin and intact Au3Cu palisade interlayer effectively modulates the diffusion kinetics of Cu atoms as demonstrated by experimental and theoretical investigations and simultaneously alleviates the lattice mismatch between Cu and Ag as well as Cu and CdS. The Cu@Au3Cu@CdS HNCs feature exceptional crystallinity and atomically organized heterointerfaces between the plasmonic metal and the semiconductor. This results in the efficient plasmon-induced injection of hot electrons from Cu@Au3Cu into the CdS shell, enabling the Cu@Au3Cu@CdS HNCs to achieve high activity and selectivity for the photocatalytic reduction of CO2 to CO.
Collapse
Affiliation(s)
- Tailei Hou
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Xinyuan Li
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Xiuming Zhang
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Rongsheng Cai
- School of Materials, The University of Manchester, Manchester M13 9PL, U.K
| | - Yi-Chi Wang
- Beijing National Center for Electron Microscopy and Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Akang Chen
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Hongfei Gu
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Mengyao Su
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Shouyuan Li
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Qizhen Li
- School of Materials, The University of Manchester, Manchester M13 9PL, U.K
| | - Leining Zhang
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Sarah J Haigh
- School of Materials, The University of Manchester, Manchester M13 9PL, U.K
| | - Jiatao Zhang
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
5
|
Wang CY, Chang HE, Wang CY, Kurioka T, Chen CY, Mark Chang TF, Sone M, Hsu YJ. Manipulation of interfacial charge dynamics for metal-organic frameworks toward advanced photocatalytic applications. NANOSCALE ADVANCES 2024; 6:1039-1058. [PMID: 38356624 PMCID: PMC10866133 DOI: 10.1039/d3na00837a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/15/2023] [Indexed: 02/16/2024]
Abstract
Compared to other known materials, metal-organic frameworks (MOFs) have the highest surface area and the lowest densities; as a result, MOFs are advantageous in numerous technological applications, especially in the area of photocatalysis. Photocatalysis shows tantalizing potential to fulfill global energy demands, reduce greenhouse effects, and resolve environmental contamination problems. To exploit highly active photocatalysts, it is important to determine the fate of photoexcited charge carriers and identify the most decisive charge transfer pathway. Methods to modulate charge dynamics and manipulate carrier behaviors may pave a new avenue for the intelligent design of MOF-based photocatalysts for widespread applications. By summarizing the recent developments in the modulation of interfacial charge dynamics for MOF-based photocatalysts, this minireview can deliver inspiring insights to help researchers harness the merits of MOFs and create versatile photocatalytic systems.
Collapse
Affiliation(s)
- Chien-Yi Wang
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University Hsinchu 300093 Taiwan
| | - Huai-En Chang
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University Hsinchu 300093 Taiwan
| | - Cheng-Yu Wang
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University Hsinchu 300093 Taiwan
| | - Tomoyuki Kurioka
- Institute of Innovative Research, Tokyo Institute of Technology Kanagawa 226-8503 Japan
| | - Chun-Yi Chen
- Institute of Innovative Research, Tokyo Institute of Technology Kanagawa 226-8503 Japan
| | - Tso-Fu Mark Chang
- Institute of Innovative Research, Tokyo Institute of Technology Kanagawa 226-8503 Japan
| | - Masato Sone
- Institute of Innovative Research, Tokyo Institute of Technology Kanagawa 226-8503 Japan
| | - Yung-Jung Hsu
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University Hsinchu 300093 Taiwan
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University Hsinchu 300093 Taiwan
- International Research Frontiers Initiative, Institute of Innovative Research, Tokyo Institute of Technology Kanagawa 226-8503 Japan
| |
Collapse
|
6
|
Su Q, Zuo C, Liu M, Tai X. A Review on Cu 2O-Based Composites in Photocatalysis: Synthesis, Modification, and Applications. Molecules 2023; 28:5576. [PMID: 37513448 PMCID: PMC10384216 DOI: 10.3390/molecules28145576] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Photocatalysis technology has the advantages of being green, clean, and environmentally friendly, and has been widely used in CO2 reduction, hydrolytic hydrogen production, and the degradation of pollutants in water. Cu2O has the advantages of abundant reserves, a low cost, and environmental friendliness. Based on the narrow bandgap and strong visible light absorption ability of Cu2O, Cu2O-based composite materials show infinite development potential in photocatalysis. However, in practical large-scale applications, Cu2O-based composites still pose some urgent problems that need to be solved, such as the high composite rate of photogenerated carriers, and poor photocatalytic activity. This paper introduces a series of Cu2O-based composites, based on recent reports, including pure Cu2O and Cu2O hybrid materials. The modification strategies of photocatalysts, critical physical and chemical parameters of photocatalytic reactions, and the mechanism for the synergistic improvement of photocatalytic performance are investigated and explored. In addition, the application and photocatalytic performance of Cu2O-based photocatalysts in CO2 photoreduction, hydrogen production, and water pollution treatment are discussed and evaluated. Finally, the current challenges and development prospects are pointed out, to provide guidance in applying Cu2O-based catalysts in renewable energy utilization and environmental protection.
Collapse
Affiliation(s)
- Qian Su
- College of Chemistry & Chemical and Environmental Engineering, Weifang University, Weifang 261061, China
| | - Cheng Zuo
- College of Chemistry & Chemical and Environmental Engineering, Weifang University, Weifang 261061, China
| | - Meifang Liu
- College of Chemistry & Chemical and Environmental Engineering, Weifang University, Weifang 261061, China
| | - Xishi Tai
- College of Chemistry & Chemical and Environmental Engineering, Weifang University, Weifang 261061, China
| |
Collapse
|
7
|
Qileng A, Chen S, Liang H, Chen M, Lei H, Liu W, Liu Y. Boosting ultralong chemiluminescence for the self-powered time-resolved immunosensor. Biosens Bioelectron 2023; 234:115338. [PMID: 37137191 DOI: 10.1016/j.bios.2023.115338] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/02/2023] [Accepted: 04/17/2023] [Indexed: 05/05/2023]
Abstract
The construction of an immunosensor based on ultralong chemiluminescence is challenged due to the shortage of highly efficient initiator for long and stable catalysis. Herein, the heterogeneous Au/Pt@CuO/Cu2O catalyst was used to investigate the structure-activity relationship, while Au/Pt significantly promotes the activity of CuO/Cu2O to catalyze H2O2 and thus produces ·OH and O2•- radicals in highly alkaline solutions, resulting in the strong and long chemiluminescence in the reaction with luminol (10 mL, more than 4 min with 1 μg catalyst). By using the Au/Pt@CuO/Cu2O as the label in the immunoassay, the strong and long chemiluminescence could initiate the photocurrent of the photoelectrochemical (PEC) substrate, and the luminescence time could influence the photocurrent extinction time, thus a self-powered time-resolved PEC immunosensor was developed to detect furosemide, showing a linear relationship between the extinction time and the logarithm of concentrations from 10-3 to 1 μg/L. This work not only experimentally verifies that the Pt-O-Cu bond in heterogeneous catalysts breaks the pH limitation of the Fenton reaction, but also realizes the chemiluminescence for self-powered time-resolved immunosensor, thereby expanding the portable applicability of chemiluminescence in food safety inspection, health monitoring, and biomedical detection without external light source.
Collapse
Affiliation(s)
- Aori Qileng
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China; The Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Shizhang Chen
- College of Electronic Engineering, South China Agricultural University, Guangzhou, 510642, China
| | - Hongzhi Liang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China
| | - Mengting Chen
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China
| | - Hongtao Lei
- The Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Weipeng Liu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China
| | - Yingju Liu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China; The Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
8
|
Xu W, Xiao R, An S, Li C, Ding J, Chen H, Yang HB, Feng Y. Engineering the Au-Cu 2 O Crystalline Interfaces for Structural and Catalytic Integration. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2300587. [PMID: 37035961 DOI: 10.1002/smll.202300587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 03/07/2023] [Indexed: 06/19/2023]
Abstract
Precise structural control has attracted tremendous interest in pursuit of the tailoring of physical properties. Here, this work shows that through strong ligand-mediated interfacial energy control, Au-Cu2 O dumbbell structures where both the Au nanorod (AuNR) and the partially encapsulating Cu2 O domains are highly crystalline. The synthetic advance allows physical separation of the Au and Cu2 O domains, in addition to the use of long nanorods with tunable absorption wavelength, and the crystalline Cu2 O domain with well-defined facets. The interplay of plasmon and Schottky effects boosts the photocatalytic performance in the model photodegradation of methyl orange, showing superior catalytic efficiency than the AuNR@Cu2 O core-shell structures. In addition, compared to the typical core-shell structures, the AuNR-Cu2 O dumbbells can effectively electrochemically catalyze the CO2 to C2+ products (ethanol and ethylene) via a cascade reaction pathway. The excellent dual function of both photo- and electrocatalysis can be attributed to the fine physical separation of the crystalline Au and Cu2 O domains.
Collapse
Affiliation(s)
- Wenjia Xu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
- School of Physical and Mathematical Sciences, Nanjing Tech University, Nanjing, 211816, China
| | - Ruixue Xiao
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Senyuan An
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Chao Li
- Tianjin Key Laboratory of Advanced Functional Porous Materials and Center for Electron Microscopy, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Jie Ding
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| | - Hongyu Chen
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Hong Bin Yang
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Yuhua Feng
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| |
Collapse
|
9
|
Chi L, Wang X, Chen H, Tang D, Xue F. Ultrasensitive photoelectrochemical biosensing platform based target-triggered biocatalytic precipitation reactions on a flower-like Bi 2O 2S super-structured photoanode. J Mater Chem B 2022; 10:10018-10026. [PMID: 36458849 DOI: 10.1039/d2tb02283d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Herein, we reported a novel photoelectrochemical immunoassay method based on a target-triggered on/off signal of the ultra-structured Bi2O2S (BOS) photoanode system for the sensitive testing of carcinoembryonic antigens (CEAs) in serum samples. Well-defined three-dimensional sheet-like self-assembled flower-like Bi2O2S superstructures were obtained using a time-controlled hydrothermal method. Such well-shaped multifaceted surfaces were considered to be good laser cavity mirror surfaces for multifaceted reflection and refraction of excitation light in the material. An elegant enzyme biocatalytic strategy was introduced into the constructed detection model to sensitively detect CEAs. The substrate 4-chloro-1-naphthol (4-CN) was oxidized to 4-chloro-hexadienone (4-CD) under the formation of target-triggered immune complexes against mAb1 and peroxidase-modified mAb2. Subsequently, 4-CD produced by the biocatalytic precipitation reaction was transferred to the photoanodes of Bi2O2S nanoflowers (BOS NFs) to burst their photoelectric signals, thus achieving the quantification of CEAs. Through optimization of the conditions of the immunization protocol, a good negative photocurrent response to the target CEA was found in the wide range of 0.02-50 ng mL-1 with a detection limit of 11.2 pg mL-1. Impressively, the reported biocatalytic PEC sensing strategy on superstructures is comparable, or superior, to the gold standard ELISA kit in terms of sensitivity and the target response range. This study presents a target-mediated PEC immunoassay for biocatalytic precipitation based on a self-assembled superstructure of Bi2O2S, providing a fresh scheme for the analysis of disease-related markers.
Collapse
Affiliation(s)
- Liangjie Chi
- Department of Gastrointestinal Surgery, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, No. 134 Dongjie, Fuzhou 350001, P. R. China. .,Clinical Medical Center for Digestive Diseases of Fujian Provincial Hospital, No. 134 Dongjie, Fuzhou 350001, P. R. China
| | - Xiangyu Wang
- Department of Gastrointestinal Surgery, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, No. 134 Dongjie, Fuzhou 350001, P. R. China. .,Clinical Medical Center for Digestive Diseases of Fujian Provincial Hospital, No. 134 Dongjie, Fuzhou 350001, P. R. China
| | - Hongyuan Chen
- Department of Gastrointestinal Surgery, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, No. 134 Dongjie, Fuzhou 350001, P. R. China. .,Clinical Medical Center for Digestive Diseases of Fujian Provincial Hospital, No. 134 Dongjie, Fuzhou 350001, P. R. China
| | - Dianping Tang
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China.
| | - Fangqin Xue
- Department of Gastrointestinal Surgery, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, No. 134 Dongjie, Fuzhou 350001, P. R. China. .,Clinical Medical Center for Digestive Diseases of Fujian Provincial Hospital, No. 134 Dongjie, Fuzhou 350001, P. R. China
| |
Collapse
|
10
|
Chan YB, Selvanathan V, Tey LH, Akhtaruzzaman M, Anur FH, Djearamane S, Watanabe A, Aminuzzaman M. Effect of Calcination Temperature on Structural, Morphological and Optical Properties of Copper Oxide Nanostructures Derived from Garcinia mangostana L. Leaf Extract. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3589. [PMID: 36296778 PMCID: PMC9607417 DOI: 10.3390/nano12203589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/27/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Synthesis of copper oxide (CuO) nanostructures via biological approach has gained attention to reduce the harmful effects of chemical synthesis. The CuO nanostructures were synthesized through a green approach using the Garcinia mangostana L. leaf extract and copper (II) nitrate trihydrate as a precursor at varying calcination temperatures (200-600 °C). The effect of calcination temperatures on the structural, morphological and optical properties of CuO nanostructures was studied. The red shifting of the green-synthesized CuO nanoparticles' absorption peak was observed in UV-visible spectrum, and the optical energy bandgap was found to decrease from 3.41 eV to 3.19 eV as the calcination temperatures increased. The PL analysis shown that synthesized CuO NPs calcinated at 500 °C has the maximum charge carriers separation. A peak located at 504-536 cm-1 was shown in FTIR spectrum that indicated the presence of a copper-oxygen vibration band and become sharper and more intense when increasing the calcination temperature. The XRD studies revealed that the CuO nanoparticles' crystalline size was found to increase from 12.78 nm to 28.17 nm, and dislocation density decreased from 61.26 × 1014 cm-1 to 12.60 × 1014 cm-1, while micro strain decreased from 3.40 × 10-4 to 1.26 × 10-4. From the XPS measurement, only CuO single phase without impurities was detected for the green-mediated NPs calcinated at 500 °C. The morphologies of CuO nanostructures were examined using FESEM and became more spherical in shape at elevated calcination temperature. More or less spherical nanostructure of green-mediated CuO calcinated at 500 °C were also observed using TEM. The purity of the green-synthesized CuO nanoparticles was evaluated by EDX analysis, and results showed that increasing calcination temperature increases the purity of CuO nanoparticles.
Collapse
Affiliation(s)
- Yu Bin Chan
- Department of Chemical Science, Faculty of Science, Universiti Tunku Abdul Rahman (UTAR), Kampar Campus, Jalan Universiti, Bandar Barat, Kampar 31900, Perak, Malaysia
| | - Vidhya Selvanathan
- Solar Energy Research Institute (SERI), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia
| | - Lai-Hock Tey
- Department of Chemical Science, Faculty of Science, Universiti Tunku Abdul Rahman (UTAR), Kampar Campus, Jalan Universiti, Bandar Barat, Kampar 31900, Perak, Malaysia
| | - Md. Akhtaruzzaman
- Solar Energy Research Institute (SERI), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia
| | - Farah Hannan Anur
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia
| | - Sinouvassane Djearamane
- Department of Biomedical Science, Faculty of Science, Universiti Tunku Abdul Rahman (UTAR), Kampar Campus, Jalan Universiti, Bandar Barat, Kampar 31900, Perak, Malaysia
| | - Akira Watanabe
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, Sendai 980-8577, Japan
| | - Mohammod Aminuzzaman
- Department of Chemical Science, Faculty of Science, Universiti Tunku Abdul Rahman (UTAR), Kampar Campus, Jalan Universiti, Bandar Barat, Kampar 31900, Perak, Malaysia
- Centre for Photonics and Advanced Materials Research (CPAMR), Universiti Tunku Abdul Rahman (UTAR), Sungai Long Campus, Jalan Sungai Long, Bandar Sungai Long, Kajang 43000, Selangor, Malaysia
| |
Collapse
|