1
|
Hao H, Hu J, Kuai Z, Hao F, Jiang W, Ran N, He Y, Zhang Y, Huang Y, Qi Y, Luo Q. Enzyme-mediated multifunctional self-healing lysozyme hydrogel for synergistic treatment of chronic diabetic wounds. Int J Biol Macromol 2024; 282:136719. [PMID: 39437956 DOI: 10.1016/j.ijbiomac.2024.136719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/11/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
Self-healing hydrogels have attracted significant attention in chronic diabetic wound healing due to their potential to minimize the risk of secondary infections caused by joint movement or dressing rupture. Herein, a multifunctional self-healing hydrogel mediated utilizing an enzyme-triggered cascade reaction based on dynamic imine bonds was designed. The hydrogel employs three enzymes: lysozyme (LYZ), glucose oxidase (GOx), and catalase (CAT), as building blocks. GOx catalyzes the conversion of glucose and 1-thio-β-d-glucose (β-GlcSH) into hydrogen peroxide (H2O2), gluconic acid (GA), and hydrogen sulfide (H2S). Subsequently, CAT eliminates H2O2, protecting the imine bonds from oxidative damage. The acidic environment created by GA decreases the pH and regulates the crosslinking density of imine bonds, enhancing the self-healing capability and porosity of the hydrogel. This feature enables the sustained release of the drug rosuvastatin calcium (RCa) to promote endothelial cell migration and vascular regeneration. Combined with the antioxidative and anti-inflammatory effects of released H2S gas and the antibacterial properties of lysozyme, this hydrogel exhibits promising therapeutic efficacy for the synergistic treatment of chronic diabetic wounds.
Collapse
Affiliation(s)
- Hao Hao
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Juntao Hu
- China-Japan Union Hospital of Jilin University, Jilin University, Changchun, Jilin 130033, China
| | - Ziyu Kuai
- China-Japan Union Hospital of Jilin University, Jilin University, Changchun, Jilin 130033, China
| | - Fengjie Hao
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Wantong Jiang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Nana Ran
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Yuting He
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Yanping Zhang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Yibing Huang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Yanfei Qi
- Centenary Institute of Cancer Medicine and Cell Biology, The University of Sydney, Camperdown, NSW 2050, Australia.
| | - Quan Luo
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China; Center for Supramolecular Chemical Biology, State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China.
| |
Collapse
|
2
|
Song W, Choi YH, Moon YG, Lee C, Sundaram MN, Hwang NS. Mussel-inspired sulfated hyaluronan cryogel patch with antioxidant, anti-inflammatory, and drug-loading properties for multifunctional wound adhesives. Bioact Mater 2024; 40:582-596. [PMID: 39239260 PMCID: PMC11375143 DOI: 10.1016/j.bioactmat.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 09/07/2024] Open
Abstract
Wounds, characterized by the disruption of the continuity of body tissues resulting from external trauma, manifest in diverse types and locations. Although numerous wound dressings are available for various wound scenarios, it remains challenging to find an integrative wound dressing capable of addressing diverse wound situations. We focused on utilizing sulfated hyaluronan (sHA), known for its anti-inflammatory properties and capacity to load cationic drugs. By conjugating catechol groups to sHA (sHA-CA), we achieved several advantages in wound healing: 1) Fabrication of patches through crosslinking with catechol-modified high-molecular-weight hyaluronan (HA(HMW)-CA), 2) Adhesiveness that enabled stable localization, 3) Radical scavenging that could synergize with the immunomodulation of sHA. The sHA-CA patches demonstrated therapeutic efficacy in three distinct murine wound models: diabetic wound, hepatic hemorrhage, and post-surgical adhesion. Collectively, these findings underscore the potential of the sHA-CA patch as a promising candidate for the next-generation wound dressing.
Collapse
Affiliation(s)
- Wonmoon Song
- School of Chemical and Biological Engineering, Institute for Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Young Hwan Choi
- School of Chemical and Biological Engineering, Institute for Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
- Bio-MAX/N-Bio Institute, Institute of BioEngineering, Seoul National University, Seoul, 08826, Republic of Korea
- Division of Pediatric Cardiac Surgery, Department of Surgery, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Young Gi Moon
- School of Chemical and Biological Engineering, Institute for Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Changyub Lee
- School of Chemical and Biological Engineering, Institute for Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - M Nivedhitha Sundaram
- School of Chemical and Biological Engineering, Institute for Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Nathaniel S Hwang
- School of Chemical and Biological Engineering, Institute for Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea
- Bio-MAX/N-Bio Institute, Institute of BioEngineering, Seoul National University, Seoul, 08826, Republic of Korea
- Institute of Engineering Research, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
3
|
Pande S, Pati F, Chakraborty P. Harnessing Peptide-Based Hydrogels for Enhanced Cartilage Tissue Engineering. ACS APPLIED BIO MATERIALS 2024; 7:5885-5905. [PMID: 39159490 DOI: 10.1021/acsabm.4c00879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Cartilage tissue engineering remains a formidable challenge due to its complex, avascular structure and limited regenerative capacity. Traditional approaches, such as microfracture, autografts, and stem cell delivery, often fail to restore functional tissue adequately. Recently, there has been a surge in the exploration of new materials that mimic the extracellular microenvironment necessary to guide tissue regeneration. This review investigates the potential of peptide-based hydrogels as an innovative solution for cartilage regeneration. These hydrogels, formed via supramolecular self-assembly, exhibit excellent properties, including biocompatibility, ECM mimicry, and controlled biodegradation, making them highly suitable for cartilage tissue engineering. This review explains the structure of cartilage and the principles of supramolecular and peptide hydrogels. It also delves into their specific properties relevant to cartilage regeneration. Additionally, this review presents recent examples and a comparative analysis of various peptide-based hydrogels used for cartilage regeneration. The review also addresses the translational challenges of these materials, highlighting regulatory hurdles and the complexities of clinical application. This comprehensive investigation provides valuable insights for biomedical researchers, tissue engineers, and clinical professionals aiming to enhance cartilage repair methodologies.
Collapse
Affiliation(s)
- Shreya Pande
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, Telangana, India
| | - Falguni Pati
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, Telangana, India
| | - Priyadarshi Chakraborty
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, Telangana, India
| |
Collapse
|
4
|
Yuan L, Wei H, Pan Z, Deng X, Yang L, Wang Y, Lu D, Li Z, Luo F, Li J, Tan H. A bioinspired injectable antioxidant hydrogel for prevention of postoperative adhesion. J Mater Chem B 2024; 12:6968-6980. [PMID: 38915270 DOI: 10.1039/d4tb00805g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Postoperative adhesions, a prevalent complication following abdominal surgery, affect 90% of patients undergoing abdominal surgical procedures. Currently, the primary approach to prevent postoperative adhesions involves physical isolation of the surgical site and surrounding tissues using a hydrogel; however, this method represents a rudimentary strategy. Herein, considering the impact of oxidative stress and free radicals on postoperative adhesion during wound healing, an injectable antioxidant hydrogel, named PU-OHA-D, was successfully synthesized, which is formed by the crosslinking of dopamine-modified oxidized hyaluronic acid (OHA-D) and dihydrazide-terminated polyurethane (PU-ADH) through hydrazone bonding. PU-OHA-D hydrogel possesses versatile characteristics such as rapid gel formation, injectability, self-repair capability and biodegradability. Additionally, they exhibit an excellent ability to clear free radicals and superior tissue adhesion. PU-OHA-D can be injected in situ to form a hydrogel to prevent abdominal wall-cecum adhesion. Importantly, it can effectively eliminate free radicals and inhibit oxidative stress at the wound site. Thereby, it leads to collagen physiological degradation and prevents the occurrence of postoperative adhesions. The bioinspired hydrogel demonstrates its great potential in preventing postoperative adhesion and promoting wound healing.
Collapse
Affiliation(s)
- Lei Yuan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Med-X Center for Materials, Sichuan University, Chengdu 610065, China.
| | - Hongxiu Wei
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Med-X Center for Materials, Sichuan University, Chengdu 610065, China.
| | - ZhongJing Pan
- Department of Otorhinolaryngology, Head & Neck Surgery, West China Hospital, Sichuan University, Sichuan, Chengdu 610041, China
| | - Xiaobo Deng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Med-X Center for Materials, Sichuan University, Chengdu 610065, China.
| | - Lin Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Med-X Center for Materials, Sichuan University, Chengdu 610065, China.
| | - Yanchao Wang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Dan Lu
- Department of Otorhinolaryngology, Head & Neck Surgery, West China Hospital, Sichuan University, Sichuan, Chengdu 610041, China
| | - Zhen Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Med-X Center for Materials, Sichuan University, Chengdu 610065, China.
| | - Feng Luo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Med-X Center for Materials, Sichuan University, Chengdu 610065, China.
| | - Jiehua Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Med-X Center for Materials, Sichuan University, Chengdu 610065, China.
| | - Hong Tan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Med-X Center for Materials, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
5
|
Zhang J, Song Y, Zhu L, You Y, Hu J, Xu X, Wang C, Lu J, Shen Q, Xu X, Teng C, Du Y. An injectable thermosensitive hyaluronic acid/pluronic F-127 hydrogel for deep penetration and combination therapy of frozen shoulder. Int J Biol Macromol 2024; 263:130342. [PMID: 38395289 DOI: 10.1016/j.ijbiomac.2024.130342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/31/2024] [Accepted: 02/19/2024] [Indexed: 02/25/2024]
Abstract
Frozen shoulder (FS) is a common and progressive shoulder disorder that causes glenohumeral joint stiffness, characterized by inflammation and fibrosis. The treatment options are quite limited, and the therapeutic response is hindered by the fibrous membrane formed by excessive collagen and the rapid removal by synovial fluid. To address these challenges, we designed a hyaluronic acid/Pluronic F-127 (HP)-based injectable thermosensitive hydrogel as a drug carrier loaded with dexamethasone and collagenase (HPDC). We screened for an optimal HP hydrogel that can sustain drug release for approximately 10 days both in vitro and in vivo. In the meanwhile, we found that HP hydrogel could inhibit the proliferation and diminish the adhesion capacity of rat synovial cells induced by transforming growth factor-β1. Furthermore, using an established immobilization rat model of FS, intra-articular injection of HPDC significantly improved joint range of motion compared to medication alone. Relying on sustained drug release, the accumulated collagen fibers were degraded by collagenase to promote the deep delivery of dexamethasone. These findings showed a positive combined treatment effect of HPDC, providing a novel idea for the comprehensive treatment of FS.
Collapse
Affiliation(s)
- Jucong Zhang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yanling Song
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Luwen Zhu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yuchan You
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiahao Hu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xinyi Xu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chen Wang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jingyi Lu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qiying Shen
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaoling Xu
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China.
| | - Chong Teng
- Department of Orthopedic Surgery, The Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu 32200, China.
| | - Yongzhong Du
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Collaborative Innovation Center of Yangtza River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, Zhejiang 310014, China; Innovation Center of Translational Pharmacy, Jinhua Institute of Zhejiang University, Jinhua 321299, China.
| |
Collapse
|
6
|
Liu X, Sun Y, Wang J, Kang Y, Wang Z, Cao W, Ye J, Gao C. A tough, antibacterial and antioxidant hydrogel dressing accelerates wound healing and suppresses hypertrophic scar formation in infected wounds. Bioact Mater 2024; 34:269-281. [PMID: 38261887 PMCID: PMC10794931 DOI: 10.1016/j.bioactmat.2023.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/15/2023] [Accepted: 12/21/2023] [Indexed: 01/25/2024] Open
Abstract
Wound management is an important issue that places enormous pressure on the physical and mental health of patients, especially in cases of infection, where the increased inflammatory response could lead to severe hypertrophic scars (HSs). In this study, a hydrogel dressing was developed by combining the high strength and toughness, swelling resistance, antibacterial and antioxidant capabilities. The hydrogel matrix was composed of a double network of polyvinyl alcohol (PVA) and agarose with excellent mechanical properties. Hyperbranched polylysine (HBPL), a highly effective antibacterial cationic polymer, and tannic acid (TA), a strong antioxidant molecule, were added to the hydrogel as functional components. Examination of antibacterial and antioxidant properties of the hydrogel confirmed the full play of the efficacy of HBPL and TA. In the in vivo studies of methicillin-resistant Staphylococcus aureus (MRSA) infection, the hydrogel had shown obvious promotion of wound healing, and more profoundly, significant suppression of scar formation. Due to the common raw materials and simple preparation methods, this hydrogel can be mass produced and used for accelerating wound healing while preventing HSs in infected wounds.
Collapse
Affiliation(s)
- Xiaoqing Liu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Yiming Sun
- Eye Center, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, 310009, China
| | - Jie Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Yongyuan Kang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Zhaolong Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Wangbei Cao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Juan Ye
- Eye Center, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, 310009, China
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- Center for Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing, 312099, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, 030000, China
| |
Collapse
|
7
|
Patel DK, Jung E, Priya S, Won SY, Han SS. Recent advances in biopolymer-based hydrogels and their potential biomedical applications. Carbohydr Polym 2024; 323:121408. [PMID: 37940291 DOI: 10.1016/j.carbpol.2023.121408] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 11/10/2023]
Abstract
Hydrogels are three-dimensional networks of polymer chains containing large amounts of water in their structure. Hydrogels have received significant attention in biomedical applications owing to their attractive physicochemical properties, including flexibility, softness, biodegradability, and biocompatibility. Different natural and synthetic polymers have been intensely explored in developing hydrogels for the desired applications. Biopolymers-based hydrogels have advantages over synthetic polymers regarding improved cellular activity and weak immune response. These properties can be further improved by grafting with other polymers or adding nanomaterials, and they structurally mimic the living tissue environments, which opens their broad applicability. The hydrogels can be physically or chemically cross-linked depending on the structure. The use of different biopolymers-based hydrogels in biomedical applications has been reviewed and discussed earlier. However, no report is still available to comprehensively introduce the synthesis, advantages, disadvantages, and biomedical applications of biopolymers-based hydrogels from the material point of view. Herein, we systematically overview different synthesis methods of hydrogels and provide a holistic approach to biopolymers-based hydrogels for biomedical applications, especially in bone regeneration, wound healing, drug delivery, bioimaging, and therapy. The current challenges and prospects of biopolymers-based hydrogels are highlighted rationally, giving an insight into the progress of these hydrogels and their practical applications.
Collapse
Affiliation(s)
- Dinesh K Patel
- School of Chemical Engineering, Yeungnam University, 280-Daehak-ro, Gyeongsan 38541, Republic of Korea
| | - Eunseo Jung
- School of Chemical Engineering, Yeungnam University, 280-Daehak-ro, Gyeongsan 38541, Republic of Korea
| | - Sahariya Priya
- School of Chemical Engineering, Yeungnam University, 280-Daehak-ro, Gyeongsan 38541, Republic of Korea
| | - So-Yeon Won
- School of Chemical Engineering, Yeungnam University, 280-Daehak-ro, Gyeongsan 38541, Republic of Korea
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, 280-Daehak-ro, Gyeongsan 38541, Republic of Korea.
| |
Collapse
|
8
|
Zhang W, Chen H, Zhao J, Chai P, Ma G, Dong Y, He X, Jiang Y, Wu Q, Hu Z, Wei Q. Body temperature-induced adhesive hyaluronate/gelatin-based hybrid hydrogel dressing for promoting skin regeneration. Int J Biol Macromol 2023; 253:126848. [PMID: 37699465 DOI: 10.1016/j.ijbiomac.2023.126848] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 09/14/2023]
Abstract
Skin wound management faces significant clinical challenges, including continuous bacterial infection and inflammation. Therefore, developing removable hydrogel dressings with intrinsic multifunctional properties is highly desirable. In this study, a body temperature-induced adhesive and removable hydrogel was designed to treat skin defect wounds. The HA/Gel-R-Ag hybrid gel was prepared by incorporating a silver ion-crosslinked sulfhydryl hyaluronate/gelatin-based polymeric gel network into a supramolecular rhein gel network, thereby significantly enhancing its mechanical properties. Temperature-responsive gelatin chains give the hybrid gel reversible tissue adhesiveness and detachment, thus avoiding secondary injury to wounds when changing the hydrogels. The hybrid gel exhibited excellent bactericidal ability owing to the antibacterial capacity of the silver ions and rhein. Moreover, both HA and rhein endowed the hybrid gel with immunoregulatory effects by promoting macrophage polarization from pro-inflammatory M1 phenotype to anti-inflammatory M2 phenotype. In a full-thickness skin defect mouse mode, this porous, degradable, and biocompatible HA/Gel-R-Ag hybrid gel boosted skin regeneration by inhibiting inflammation and promoting collagen deposition and angiogenesis. It is thus a simple method for widening the application range of mechanically weak rhein gels and providing a promising wound dressing material with multiple intrinsic functions for treating skin wounds.
Collapse
Affiliation(s)
- Weiwei Zhang
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Hanwen Chen
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Junkai Zhao
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Panfeng Chai
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Guanglei Ma
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Yahao Dong
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Xing He
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Yuqin Jiang
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Qing Wu
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China.
| | - Zhiguo Hu
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China.
| | - Qingcong Wei
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China.
| |
Collapse
|
9
|
Bai Y, Sun Y, Li X, Ren J, Sun C, Chen X, Dong X, Qi H. Phycocyanin/lysozyme nanocomplexes to stabilize Pickering emulsions for fucoxanthin encapsulation. Food Res Int 2023; 173:113386. [PMID: 37803725 DOI: 10.1016/j.foodres.2023.113386] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/10/2023] [Accepted: 08/16/2023] [Indexed: 10/08/2023]
Abstract
Food-grade Pickering emulsions with plant proteins have attracted increasing interest in recent years. In this work, we report a type of phycocyanin (PC) electrostatic nanocomplex fabricated following a complexation between PC and lysozyme (Lys). The aim was to investigate toward investigating the performance of phycocyanin-Lysozyme (PC-Lys) nanocomplexes in stabilizing Pickering emulsions and protecting fucoxanthin (FX) from degradation. The properties of the PC-Lys nanocomplexes were characterized by 1H nuclear magnetic resonance (NMR) spectroscopy and three-phase contact angle. Using PC-Lys nanocomplexes as emulsifiers, Pickering emulsions were successfully prepared. Pickering emulsions stabilized by PC-Lys nanocomplexes generated a tight three-dimensional network structure, which increased the memory modulus and viscoelasticity of the emulsion. Furthermore, the produced Pickering emulsions considerably increased the chemical stability and bioavailability of FX. Overall, our study showed that PC-Lys nanocomplexes have the potential for use in Pickering emulsion construction with enhanced protective effects on loaded lipophilic ingredients.
Collapse
Affiliation(s)
- Ying Bai
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood, Liaoning Provincial Aquatic Products Deep Processing Technology Research Center, Dalian 116034, China
| | - Yihan Sun
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood, Liaoning Provincial Aquatic Products Deep Processing Technology Research Center, Dalian 116034, China
| | - Xiang Li
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood, Liaoning Provincial Aquatic Products Deep Processing Technology Research Center, Dalian 116034, China
| | - Jiaying Ren
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood, Liaoning Provincial Aquatic Products Deep Processing Technology Research Center, Dalian 116034, China
| | - Chenghang Sun
- Department of Biochemical Engineering, Chaoyang Teachers College, Chaoyang 122000, China
| | - Xing Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xiuping Dong
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood, Liaoning Provincial Aquatic Products Deep Processing Technology Research Center, Dalian 116034, China
| | - Hang Qi
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood, Liaoning Provincial Aquatic Products Deep Processing Technology Research Center, Dalian 116034, China.
| |
Collapse
|
10
|
Wang SY, Tohti M, Zhang JQ, Li J, Li DQ. Acylhydrazone-derived whole pectin-based hydrogel as an injectable drug delivery system. Int J Biol Macromol 2023; 251:126276. [PMID: 37582429 DOI: 10.1016/j.ijbiomac.2023.126276] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 07/19/2023] [Accepted: 08/09/2023] [Indexed: 08/17/2023]
Abstract
Injectable hydrogel-based drug delivery systems have attracted more and more attention due to their sustained-release performance, biocompatibility, and 3D network. The present study showed whole pectin-based hydrogel as an injectable drug delivery system, which was developed from oxidized pectin (OP) and diacylhydrazine adipate-functionalized pectin (Pec-ADH) via acylhydrazone linkage. The as-prepared hydrogels were characterized by 1H NMR, FT-IR, and SEM techniques. The equilibrium swelling ratio of obtained hydrogel (i.e., sample gel 5) was up to 4306.65 % in the distilled water, which was higher than that in PBS with different pH values. Increasing the pH of the swelling media, the swelling ratio of all hydrogels decreased significantly. The results that involved the swelling properties indicated the salt- and pH-responsiveness of the as-prepared hydrogels. The drug release study presented that 5-FU can be persistently released for more than 12 h without sudden release. Moreover, the whole pectin-based hydrogel presented high cytocompatibility toward L929 cell lines, and the drug delivery system showed a high inhibitory effect on MCF-7 cell lines. All these results manifested that the acylhydrazone-derived whole pectin-based hydrogel was an excellent candidate for injectable drug delivery systems.
Collapse
Affiliation(s)
- Shu-Ya Wang
- Xinjiang Key Laboratory of Agricultural Chemistry and Biomaterials, College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumchi 830052, Xinjiang, People's Republic of China; School of Bioengineering, Dalian University of Technology, Dalian 116024, Liaoning, People's Republic of China
| | - Maryamgul Tohti
- Xinjiang Key Laboratory of Agricultural Chemistry and Biomaterials, College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumchi 830052, Xinjiang, People's Republic of China
| | - Jia-Qi Zhang
- Xinjiang Key Laboratory of Agricultural Chemistry and Biomaterials, College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumchi 830052, Xinjiang, People's Republic of China
| | - Jun Li
- Xinjiang Key Laboratory of Agricultural Chemistry and Biomaterials, College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumchi 830052, Xinjiang, People's Republic of China
| | - De-Qiang Li
- Xinjiang Key Laboratory of Agricultural Chemistry and Biomaterials, College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumchi 830052, Xinjiang, People's Republic of China.
| |
Collapse
|
11
|
Wang X, Ou Y, Wang X, Yuan L, He N, Li Z, Luo F, Li J, Tan H. A biodegradable injectable fluorescent polyurethane-oxidized dextran hydrogel for non-invasive monitoring. J Mater Chem B 2023; 11:8506-8518. [PMID: 37603338 DOI: 10.1039/d3tb01488f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Hydrogels have been extensively used in the field of biomedical engineering. In order to achieve non-invasive and real-time visualization of the in vivo status of hydrogels, we designed a fluorescent polyurethane-oxidized dextran (PU-OD) hydrogel with good injectability and self-healing properties, which was cross-linked from a tetraphenyl ethylene (TPE)-containing fluorescent polyurethane emulsion with oxidized dextran by dynamic acylhydrazone bonds. The hydrogel can be used as a visual platform for drug delivery as well as monitoring its own degradation. The network structure of the hydrogel gave it drug-loading capability, and the acylhydrazone bond enabled its pH-responsive drug release. Meanwhile, the PU-OD hydrogel could undergo fluorescence resonance transfer with doxorubicin hydrochloride, showing its potential application in monitoring drug release. In addition, fluorometric and weighing methods were performed to monitor the degradation behavior of the hydrogels in vivo and in vitro, respectively, showing that the non-invasive fluorometric method can be consistent with the invasive weighing method. This work highlights that the introduction of aggregation-induced emission molecules into polyurethanes provides a visual platform that allows for non-invasive monitoring of the material without affecting its own function, which is convenient and less damaging to the body or animals. Consequently, it possesses excellent and promising potential in biomedical materials technologies.
Collapse
Affiliation(s)
- Xiao Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Yangcen Ou
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Xiaofei Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Lei Yuan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Nan He
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Zhen Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Feng Luo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Jiehua Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Hong Tan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
12
|
Nejati S, Mongeau L. Injectable, pore-forming, self-healing, and adhesive hyaluronan hydrogels for soft tissue engineering applications. Sci Rep 2023; 13:14303. [PMID: 37652951 PMCID: PMC10471737 DOI: 10.1038/s41598-023-41468-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 08/27/2023] [Indexed: 09/02/2023] Open
Abstract
Most existing injectable hydrogels are non-porous, thereby lacking a microporous structure to promote cell ingrowth. Also, most hydrogels do not effectively adhere to the host tissue. The present study describes an injectable double network hydrogel formed by combining two hyaluronic acid (HA) derivatives, namely dopamine grafted HA (DAHA) and methacrylated HA (HAMA). These constituents instantly form a physically crosslinked network through Fe3+-dopamine coordination, and confer fast gelation, pore formation, and self-healing properties to the hydrogel. Photocroslinked upon UV exposure, HAMA forms a chemically crosslinked network, thereby improving mechanical and degradation properties. The adhesive properties of this hydrogel are attributed to the presence of dopamine groups, inspired by mussel creatures. Proper modification of HA chains was confirmed by NMR spectroscopy. The physical, mechanical, rheological, and biological properties of the new hydrogels were quantified in wet laboratory conditions. The results revealed that the DAHA/HAMA hydrogel rapidly forms a self-healing microporous adhesive scaffold with a 26.9 µm pore size, 29.4 kPa compressive modulus, and 12.8 kPa adhesion strength in under 6 s. These findings suggest that the new hydrogel is a promising candidate for in situ repair of soft tissues, particularly mechanically dynamic ones such as the vocal folds, cartilage, and dermis.
Collapse
Affiliation(s)
- Sara Nejati
- Department of Mechanical Engineering, McGill University, Montreal, Canada
| | - Luc Mongeau
- Department of Mechanical Engineering, McGill University, Montreal, Canada.
| |
Collapse
|
13
|
Zhang G, Zhen A, Chen J, Du B, Luo F, Li J, Tan H. In Vitro Effects of Waterborne Polyurethane 3D Scaffolds Containing Poly(lactic-co-glycolic acid)s of Different Lactic Acid/Glycolic Acid Ratios on the Inflammatory Response. Polymers (Basel) 2023; 15:polym15071786. [PMID: 37050400 PMCID: PMC10097270 DOI: 10.3390/polym15071786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/29/2023] [Accepted: 04/02/2023] [Indexed: 04/07/2023] Open
Abstract
The physical and chemical properties of tissue engineering scaffolds have considerable effects on the inflammatory response at the implant site in soft tissue repair. The development of inflammation-modulating polymer scaffolds for soft tissue repair is attracting increasing attention. In this study, in order to regulate the inflammatory response at the implant site, a series of waterborne polyurethane (WPU) scaffolds with different properties were synthesized using polyethylene glycol (PEG), polycaprolactone (PCL) and poly (lactic acid)–glycolic acid copolymers (PLGAs) with three lactic acid/glycolic acid (LA/GA) ratios as the soft segments. Then, scaffolds were obtained using freeze-drying. The WPU scaffolds exhibited a porous cellular structure, high porosity, proper mechanical properties for repairing nerve tissue and an adjustable degradation rate. In vitro cellular experiments showed that the degradation solution possessed high biocompatibility. The in vitro inflammatory response of C57BL/6 mouse brain microglia (immortalized) (BV2) cells demonstrated that the LA/GA ratio of the PLGA in WPU scaffolds can regulate the external inflammatory response by altering the secretion of IL-10 and TNF-α. Even the IL-10/TNF-α of PU5050 (3.64) reached 69 times that of the control group (0.053). The results of the PC12 culture on the scaffolds showed that the scaffolds had positive effects on the growth, proliferation and differentiation of nerve cells and could even promote the formation of synapses. Overall, these scaffolds, particularly the PU5050, indeed prevent BV2 cells from differentiating into a pro-inflammatory M1 phenotype, which makes them promising candidates for reducing the inflammatory response and repairing nerve tissue. Furthermore, PU5050 had the best effect on preventing the transformation of BV2 cells into the pro-inflammatory M1 phenotype.
Collapse
Affiliation(s)
- Guanyu Zhang
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Ao Zhen
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Jinlin Chen
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Bohong Du
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Feng Luo
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Jiehua Li
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Hong Tan
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
14
|
Magdziarz S, Boguń M, Frączyk J. Coating Methods of Carbon Nonwovens with Cross-Linked Hyaluronic Acid and Its Conjugates with BMP Fragments. Polymers (Basel) 2023; 15:polym15061551. [PMID: 36987331 PMCID: PMC10054264 DOI: 10.3390/polym15061551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/07/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
The cross-linking of polysaccharides is a universal approach to affect their structure and physical properties. Both physical and chemical methods are used for this purpose. Although chemical cross-linking provides good thermal and mechanical stability for the final products, the compounds used as stabilizers can affect the integrity of the cross-linked substances or have toxic properties that limit the applicability of the final products. These risks might be mitigated by using physically cross-linked gels. In the present study, we attempted to obtain hybrid materials based on carbon nonwovens with a layer of cross-linked hyaluronan and peptides that are fragments of bone morphogenetic proteins (BMPs). A variety of cross-linking procedures and cross-linking agents (1,4-butanediamine, citric acid, and BDDE) were tested to find the most optimal method to coat the hydrophobic carbon nonwovens with a hydrophilic hyaluronic acid (HA) layer. Both the use of hyaluronic acid chemically modified with BMP fragments and a physical modification approach (layer-by-layer method) were proposed. The obtained hybrid materials were tested with the spectrometric (MALDI-TOF MS) and spectroscopic methods (IR and 1H-NMR). It was found that the chemical cross-linking of polysaccharides is an effective method for the deposition of a polar active substance on the surface of a hydrophobic carbon nonwoven fabric and that the final material is highly biocompatible.
Collapse
Affiliation(s)
- Sylwia Magdziarz
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Maciej Boguń
- Łukasiewicz-Lodz Institute of Technology, Sklodowskiej-Curie 19/27, 90-570 Lodz, Poland
| | - Justyna Frączyk
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| |
Collapse
|