1
|
Zheng H, Wang J, Huang S, Xu X. Mechanically robust calcium alginate/polyacrylamide/tannic acid hydrogel with super toughness, adhesiveness and antimicrobial activity for pork freshness monitoring. Int J Biol Macromol 2025; 302:140539. [PMID: 39894126 DOI: 10.1016/j.ijbiomac.2025.140539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/20/2025] [Accepted: 01/30/2025] [Indexed: 02/04/2025]
Abstract
Food spoilage concerns millions, making early detection crucial; however, traditional hydrogels for freshness monitoring suffer mechanical defects limiting their real-time packaging use. Herein, we developed a super-tough calcium alginate/polyacrylamide/tannic acid hydrogel with mechanical robustness, adhesiveness, and antimicrobial activity for monitoring pork freshness. By varying the sodium alginate content to 0.28 mg/mL, the hydrogels outperformed the current hydrogel indicator with a breaking elongation of 4020 %, remarkable toughness of 102 MJ/m3 and excellent tearing resistance (tear energy exceeding 1500 J/m2). Moreover, the developed hydrogels displayed excellent adhesion, antioxidant activity, and >99 % antimicrobial activity against Staphylococcus aureus and Escherichia coli. When m-cresol purple or neutral red, along with their mixtures in ratios of 1:1, 1:2, and 2:3, were incorporated into the hydrogel system, hydrogel containing neutral red exhibited superior sensitivity with visual color changes for pork freshness monitoring. This hydrogel showed strong positive correlations with pH, total volatile basic nitrogen (TVB-N), total viable count (TVC) and storage time, highlighting their interdependence (P < 0.05). Additionally, ΔE displayed a positive correlation with pH, TVB-N, and TVC, confirming its effectiveness as a visual freshness indicator for pork. This work presents a high-performance hydrogel as a freshness indicator to enhance meat quality monitoring in food industry.
Collapse
Affiliation(s)
- Haoyuan Zheng
- Key Laboratory of Product Packaging and Logistics, Packaging Engineering Institute, College of Packaging Engineering, Jinan University, Qianshan Road 206, Zhuhai 519070, China
| | - Jiesheng Wang
- Key Laboratory of Product Packaging and Logistics, Packaging Engineering Institute, College of Packaging Engineering, Jinan University, Qianshan Road 206, Zhuhai 519070, China
| | - Shiqing Huang
- Key Laboratory of Product Packaging and Logistics, Packaging Engineering Institute, College of Packaging Engineering, Jinan University, Qianshan Road 206, Zhuhai 519070, China
| | - Xiaowen Xu
- Key Laboratory of Product Packaging and Logistics, Packaging Engineering Institute, College of Packaging Engineering, Jinan University, Qianshan Road 206, Zhuhai 519070, China.
| |
Collapse
|
2
|
Bao Z, Liu J, Bi Y, Zhao G. Smart Bacterial Cellulose-Methylacrylated Chitosan Composite Hydrogel: Multifunctional Characterization for Real-Time pH Monitoring. Polymers (Basel) 2025; 17:914. [PMID: 40219304 PMCID: PMC11991319 DOI: 10.3390/polym17070914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/21/2025] [Accepted: 03/27/2025] [Indexed: 04/14/2025] Open
Abstract
pH is a critical parameter that influences biochemical and environmental processes. Real-time and accurate pH detection is essential for monitoring health and the environment. Herein, a bacterial cellulose and methylacrylated chitosan (BC-MACS) composite hydrogel was prepared to achieve rapid pH detection. The integration of MACS reduced the crystallinity of pristine BC, with no adverse effects on thermal stability. SEM images validated the fibrous nature of the BC-MACS composite, indicating that MACS was successfully infiltrated into the pores of BC. By incorporating MACS into the BC matrix, the exceptional biocompatibility of BC was maintained, while simultaneously augmenting its mechanical properties. Due to the excellent swelling ability of MACS, the fabricated BC-MACS hydrogel exhibited superior swelling behavior compared to the BC hydrogel, which facilitated the absorption of the solution under test. A BC-MACS pH sensor was fabricated by introducing the pH indicator solution, and the color variation across the pH range (2-12) demonstrated a clear response to pH changes. Therefore, the BC-MACS pH sensor holds potential for use as a visual indicator in a diverse range of applications, especially for health and environmental monitoring.
Collapse
Affiliation(s)
- Zixian Bao
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China; (Z.B.)
| | - Jiezheng Liu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China; (Z.B.)
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Yujia Bi
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China; (Z.B.)
| | - Guang Zhao
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China; (Z.B.)
| |
Collapse
|
3
|
Zhu F. Starch based films and coatings for food packaging: Interactions with phenolic compounds. Food Res Int 2025; 204:115758. [PMID: 39986749 DOI: 10.1016/j.foodres.2025.115758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 01/12/2025] [Accepted: 01/14/2025] [Indexed: 02/24/2025]
Abstract
Biodegradable starch based films and coatings have been a research focus for food packaging. Phenolic compounds have many benefits for food and health applications. This review summarized the recent advances in the development of starch based films and coatings with added phenolic compounds and extracts. The impact of the added phenolic compounds and extracts on physicochemical, mechanical, barrier, antioxidant and antimicrobial properties of starch films and coatings were described. The starch films and coatings with added phenolics were applied in the packaging of both plant and animal based food products with increased shelf life. For intelligent packaging, anthocyanins were formulated into the starch films and coatings to reflect the degree of food freshness. Composite starch materials with the addition of nanoparticles, proteins and other polysaccharides were also formulated to improve the mechanical and biological functions of the films and coatings. Significant limitations in the studies were noted due to the lack of understanding of the nature of starch-phenolics interactions at the molecular level. Overall, optimal formulations of added phenolic compounds and extracts should be obtained to have targeted mechanical, barrier, and biological properties.
Collapse
Affiliation(s)
- Fan Zhu
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| |
Collapse
|
4
|
Chen Z, Sun W, Qian Q, Chen Z, Hou Y, Ouyang J. A Self-Adhesive Flexible and Stretchable Compliant Surface Sensor for Real-Time Monitoring of Starch-Based Food Processing. ACS APPLIED MATERIALS & INTERFACES 2025; 17:12755-12764. [PMID: 39945466 DOI: 10.1021/acsami.5c00295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Flexible sensors have attracted great attention because of their important applications in many areas. It is important to monitor the surface of starch-based food during food processing because it can provide key information related to the appearance, texture level, and chewiness of the food. However, there is no report on real-time monitoring of the surface of steamed bread in the literature. Here, we report a self-adhesive and stretchable compliant sensor that can be mounted to the surface of starch-based food and provides real-time signals for the steaming process. The sensors consisting of biocompatible poly(3,4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS), poly(vinyl alcohol) (PVA), tannic acid (TA), and glycerol can be fabricated by solution processing. Because it is stretchable and self-adhesive to the dough surface, it is compliant with the expansion or contraction of the dough during food processing. Its resistance varies with the shape and volume of the dough and thus can be monitored in a real-time manner. This is the first report of a surface sensor that can monitor the steaming process of starch-based food.
Collapse
Affiliation(s)
- Zinuo Chen
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117574, Singapore
| | - Wen Sun
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117574, Singapore
- NUS Research Institute, No. 16 South Huashan Road, Liangjiang New Area, Chongqing 401123, China
| | - Qi Qian
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117574, Singapore
| | - Zhijun Chen
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117574, Singapore
| | - Yuxuan Hou
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117574, Singapore
| | - Jianyong Ouyang
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117574, Singapore
- NUS Research Institute, No. 16 South Huashan Road, Liangjiang New Area, Chongqing 401123, China
| |
Collapse
|
5
|
Xiao Y, Huang Y, Qiu J, Cai H, Ni H. Smartphone-based pH titration for liquid food applications. CHEMICAL PAPERS 2024; 78:8849-8862. [DOI: 10.1007/s11696-024-03715-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 09/24/2024] [Indexed: 01/05/2025]
|
6
|
Wang B, Liu K, Wei G, He A, Kong W, Zhang X. A Review of Advanced Sensor Technologies for Aquatic Products Freshness Assessment in Cold Chain Logistics. BIOSENSORS 2024; 14:468. [PMID: 39451681 PMCID: PMC11506179 DOI: 10.3390/bios14100468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/27/2024] [Accepted: 09/27/2024] [Indexed: 10/26/2024]
Abstract
The evaluation of the upkeep and freshness of aquatic products within the cold chain is crucial due to their perishable nature, which can significantly impact both quality and safety. Conventional methods for assessing freshness in the cold chain have inherent limitations regarding specificity and accuracy, often requiring substantial time and effort. Recently, advanced sensor technologies have been developed for freshness assessment, enabling real-time and non-invasive monitoring via the detection of volatile organic compounds, biochemical markers, and physical properties. The integration of sensor technologies into cold chain logistics enhances the ability to maintain the quality and safety of aquatic products. This review examines the advancements made in multifunctional sensor devices for the freshness assessment of aquatic products in cold chain logistics, as well as the application of pattern recognition algorithms for identification and classification. It begins by outlining the categories of freshness criteria, followed by an exploration of the development of four key sensor devices: electronic noses, electronic tongues, biosensors, and flexible sensors. Furthermore, the review discusses the implementation of advanced pattern recognition algorithms in sensor devices for freshness detection and evaluation. It highlights the current status and future potential of sensor technologies for aquatic products within the cold chain, while also addressing the significant challenges that remain to be overcome.
Collapse
Affiliation(s)
- Baichuan Wang
- Beijing Laboratory of Food Quality and Safety, College of Engineering, China Agricultural University, Beijing 100083, China; (B.W.); (K.L.)
- Yantai Institute, China Agricultural University, Yantai 264670, China
| | - Kang Liu
- Beijing Laboratory of Food Quality and Safety, College of Engineering, China Agricultural University, Beijing 100083, China; (B.W.); (K.L.)
| | - Guangfen Wei
- School of Information and Electronic Engineering, Shandong Technology and Business University, Yantai 264005, China; (G.W.); or (A.H.)
| | - Aixiang He
- School of Information and Electronic Engineering, Shandong Technology and Business University, Yantai 264005, China; (G.W.); or (A.H.)
| | - Weifu Kong
- Yantai Institute, China Agricultural University, Yantai 264670, China
| | - Xiaoshuan Zhang
- Beijing Laboratory of Food Quality and Safety, College of Engineering, China Agricultural University, Beijing 100083, China; (B.W.); (K.L.)
| |
Collapse
|
7
|
Kasi V, Tien JH, Rahman MM, Rana MM, Heredia Rivera UA, Shang Z, Vidhyadhiraja A, Zhang J, Youngblood JP, Bahr DF, Rahimi R. Enhanced Corrosion Protection of Printed Circuit Board Electronics using Cold Atmospheric Plasma-Assisted SiO x Coatings. ACS APPLIED MATERIALS & INTERFACES 2024; 16:48293-48306. [PMID: 39222057 DOI: 10.1021/acsami.4c09751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The miniaturization and widespread deployment of electronic devices across diverse environments have heightened their vulnerability to corrosion, particularly affecting copper traces within printed circuit boards (PCBs). Conventional protective methods, such as conformal coatings, face challenges including the necessity for a critical thickness to ensure effective barrier properties and the requirement for multiple steps of drying and curing to eliminate solvent entrapment within polymer coatings. This study investigates cold atmospheric plasma (CAP) as an innovative technique for directly depositing ultrathin silicon oxide (SiOx) coatings onto copper surfaces to enhance corrosion protection in PCBs. A systematic investigation was undertaken to examine how the scanning speed of the CAP deposition head impacts the film quality and corrosion resistance. The research aims to determine the optimal scanning speed of the CAP deposition head that achieves complete surface coverage while promoting effective cross-linking and minimizing unreacted precursor entrapment, resulting in superior electrical barrier and mechanical properties. The CAP coating process demonstrated the capability of depositing SiOx onto copper surfaces at various thicknesses ranging from 70 to 1110 nm through a single deposition process by simply adjusting the scanning speed of the plasma head (5-75 mm/s). Evaluation of material corrosion barrier characteristics revealed that scanning speeds of 45 mm/s of the plasma deposition head provided an effective coating thickness of 140 nm, exhibiting superior corrosion resistance (30-fold) compared to that of uncoated copper. As a proof of concept, the efficacy of CAP-deposited SiOx coatings was demonstrated by protecting an LED circuit in saltwater and by coating printed circuits for potential agricultural sensor applications. These CAP-deposited coatings offer performance comparable to or superior to traditional conformal polymeric coatings. This research presents CAP-deposited SiOx coatings as a promising approach for effective and scalable corrosion protection in miniaturized electronics.
Collapse
Affiliation(s)
- Venkat Kasi
- School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jia-Huei Tien
- School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Md Mahabubur Rahman
- Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Muhammad Masud Rana
- Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Ulisses Alberto Heredia Rivera
- School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States
| | - Zhongxia Shang
- Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States
| | - Advika Vidhyadhiraja
- Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jingxuan Zhang
- School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jeffrey P Youngblood
- School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - David F Bahr
- School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Rahim Rahimi
- School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
8
|
Yang Z, Chen Q, Wei L. Active and smart biomass film with curcumin Pickering emulsion stabilized by chitosan-adsorbed laurate esterified starch for meat freshness monitoring. Int J Biol Macromol 2024; 275:133331. [PMID: 38945706 DOI: 10.1016/j.ijbiomac.2024.133331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/03/2024] [Accepted: 06/19/2024] [Indexed: 07/02/2024]
Abstract
The multifunctional active smart biomass film was prepared by incorporating chitosan-adsorbed laurate esterified starch curcumin Pickering emulsion into the starch film matrix, with nano-cellulose serving as reinforcing agents. The mechanical and functional properties of the film were studied, and the film was used to monitor the freshness of pork. The results demonstrated a relatively uniform distribution of curcumin and Pickering emulsion droplets within the film matrix. Furthermore, the thermal stability was minimally impacted by the introduction of curcumin Pickering emulsion, while the tensile strength and tensile strain of the film were increased, and both its hydrophobicity and antioxidant properties were improved. The free radical scavenging rate reached 56.01 %, with sustained high antioxidant capacity even after 8 days. Additionally, the presence of curcumin provided the film with pH indicating ability and delayed pork spoilage. Therefore, this work provides an attractive strategy for constructing green, active, and smart biomass packaging films for meat packaging applications.
Collapse
Affiliation(s)
- Zhen Yang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Qifeng Chen
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China; Shenzhen Xinyichang Technology Co., Ltd, Shenzhen 518000, China.
| | - Liting Wei
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
9
|
Gopalakrishnan S, Rana MM, Curry MA, Krishnakumar A, Rahimi R. Sticker-Type Remote Monitoring System for Early Risk Detection of Catheter Associated Urinary Tract Infections. IEEE Trans Biomed Eng 2024; 71:2070-2079. [PMID: 38335074 DOI: 10.1109/tbme.2024.3361439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
A substantial number of critically ill patients in intensive care units (ICUs) rely on indwelling urinary catheters (IDCs), demanding regular monitoring of urine bags. This process increases the workload for healthcare providers and elevates the risk of exposure to contagious diseases. Moreover, IDCs are a primary cause of catheter-associated urinary tract infections (UTIs) in ICU patients whose delayed detection can have life-threatening complications. To address this, we have developed a Sticker Type Antenna for Remote Sensing (STARS) system capable of measuring urine flow rate and conductivity as early-risk markers for UTIs, alongside tracking patients' urine bag status to facilitate medical automation for healthcare providers. STARS comprises a simple, low-cost, disposable antenna module for contactless measurements of urine volume and conductivity, and a reusable wireless module for real-time data transmission. Systematic studies on STARS revealed its stable performance within physiologically relevant ranges of urine volume (0 to 2000 ml) and conductivity (5 to 40 mS/cm) in urine bags. As a proof-of-concept, STARS was tested in artificially created healthy and infected urine specimens to validate its non-contact sensing performance in detecting the onset of UTIs in catheterized patients within a hospital-like environment. STARS represents the first application of a real-time, contactless, wireless monitoring platform for simultaneous urine bag management and early risk detection of UTIs.
Collapse
|
10
|
Chen J, Zhang J, Wang N, Xiao B, Sun X, Li J, Zhong K, Yang L, Pang X, Huang F, Chen A. Critical review and recent advances of emerging real-time and non-destructive strategies for meat spoilage monitoring. Food Chem 2024; 445:138755. [PMID: 38387318 DOI: 10.1016/j.foodchem.2024.138755] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 02/09/2024] [Accepted: 02/12/2024] [Indexed: 02/24/2024]
Abstract
Monitoring and evaluating food quality, especially meat quality, has received a growing interest to ensure human health and decrease waste of raw materials. Standard analytical approaches used for meat spoilage assessment suffer from time consumption, being labor-intensive, operation complexity, and destructiveness. To overcome shortfalls of these traditional methods and monitor spoilage microorganisms or related metabolites of meat products across the supply chain, emerging analysis devices/systems with higher sensitivity, better portability, on-line/in-line, non-destructive and cost-effective property are urgently needed. Herein, we first overview the basic concepts, causes, and critical monitoring indicators associated with meat spoilage. Then, the conventional detection methods for meat spoilage are outlined objectively in their strengths and weaknesses. In addition, we place the focus on the recent research advances of emerging non-destructive devices and systems for assessing meat spoilage. These novel strategies demonstrate their powerful potential in the real-time evaluation of meat spoilage.
Collapse
Affiliation(s)
- Jiaci Chen
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Juan Zhang
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Nan Wang
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Bin Xiao
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Xiaoyun Sun
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Jiapeng Li
- China Meat Research Center, Beijing, China.
| | - Ke Zhong
- Shandong Academy of Grape, Jinan, China.
| | - Longrui Yang
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Xiangyi Pang
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Fengchun Huang
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Ailiang Chen
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
11
|
Kadian S, Gopalakrishnan S, Selvamani V, Khan S, Meyer T, Thomas R, Rana MM, Irazoqui PP, Verma MS, Rahimi R. Smart Capsule for Targeted Detection of Inflammation Levels Inside the GI Tract. IEEE Trans Biomed Eng 2024; 71:1565-1576. [PMID: 38096093 PMCID: PMC11187759 DOI: 10.1109/tbme.2023.3343337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Effective management of Inflammatory Bowel Disease (IBD) is contingent upon frequent monitoring of inflammation levels at targeted locations within the gastrointestinal (GI) tract. This is crucial for assessing disease progression and detecting potential relapses. To address this need, a novel single-use capsule technology has been devised that enables region-specific inflammation measurement, thereby facilitating repeatable monitoring within the GI tract. The capsule integrates a pH-responsive coating for location-specific activation, a chemiluminescent paper-based myeloperoxidase (MPO) sensor for inflammation detection, and a miniaturized photodetector, complemented by embedded electronics for real-time wireless data transmission. Demonstrating linear sensitivity within the physiological MPO concentration range, the sensor is capable of effectively identifying inflammation risk in the GI fluid. Luminescence emitted by the sensor, proportional to MPO concentration, is converted into an electrical signal by the photodetector, generating a quantifiable energy output with a sensitivity of 6.14 µJ/U.ml-1. The capsule was also tested with GI fluids collected from pig models simulating various inflammation states. Despite the physiological complexities, the capsule consistently activated in the intended region and accurately detected MPO levels with less than a 5% variation between readings in GI fluid and a PBS solution. This study heralds a significant step towards minimally invasive, in situ GI inflammation monitoring, potentially revolutionizing personalized IBD management and patient-specific therapeutic strategies.
Collapse
|
12
|
Zhu Y, Tang Y, Miao P. Intramolecular Charge Transfer of Gold Nanoclusters for pH Indicating. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:1130-1136. [PMID: 38149375 DOI: 10.1021/acs.langmuir.3c03497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
The investigation of the intramolecular charge transfer (ICT) process of gold nanoclusters (AuNCs) is critical to understand the unique features of the nanomaterials, which also benefits their further applications. Herein, 6-methyl-2-thiouracil (CH3-2-TU) and polyvinylpyrrolidone (PVP)-stabilized AuNCs are prepared, and the ICT behaviors are carefully studied. Protonation or deprotonation of the ligands around AuNCs could be used to regulate the ICT state, influencing the electron distribution and band gap. Shifted fluorescence emission phenomena are thus observed, which respond to external pH stimuli. In addition, the AuNCs are developed as color-switchable indicators for the highly sensitive detection of biogenic amines. As a proof of concept, the performance of this strategy in the evaluation of food spoilage by probing pH conditions is validated with satisfactory results. The discoveries in this work offer a convenient route to regulate the optical properties of AuNCs and the design of pH-based sensing applications.
Collapse
Affiliation(s)
- Yulin Zhu
- University of Science and Technology of China, Hefei 230026, China
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Yuguo Tang
- University of Science and Technology of China, Hefei 230026, China
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Peng Miao
- University of Science and Technology of China, Hefei 230026, China
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
- Shandong Laboratory of Advanced Biomaterials and Medical Devices in Weihai, Weihai 264200, China
| |
Collapse
|
13
|
Gopalakrishnan S, Thomas R, Sedaghat S, Krishnakumar A, Khan S, Meyer T, Ajieren H, Nejati S, Wang J, Verma MS, Irazoqui P, Rahimi R. Smart capsule for monitoring inflammation profile throughout the gastrointestinal tract. BIOSENSORS & BIOELECTRONICS: X 2023; 14:100380. [PMID: 37799507 PMCID: PMC10552446 DOI: 10.1016/j.biosx.2023.100380] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Inflammatory bowel disease (IBD) has become alarmingly prevalent in the last two decades affecting 6.8 million people worldwide with a starkly high relapse rate of 40% within 1 year of remission. Existing visual endoscopy techniques rely on subjective assessment of images that are error-prone and insufficient indicators of early-stage IBD, rendering them unsuitable for frequent and quantitative monitoring of gastrointestinal health necessary for detecting regular relapses in IBD patients. To address these limitations, we have implemented a miniaturized smart capsule (2.2 cm × 11 mm) that allows monitoring reactive oxygen species (ROS) levels as a biomarker of inflammation for quantitative and frequent profiling of inflammatory lesions throughout the gastrointestinal tract. The capsule is composed of a pH and oxidation reduction potential (ORP) sensor to track the capsule's location and ROS levels throughout the gastrointestinal tract, respectively, and an optimized electronic interface for wireless sensing and data communication. The designed sensors provided a linear and stable performance within the physiologically relevant range of the GI tract (pH: 1-8 and ORP: -500 to +500 mV). Additionally, systematic design optimization of the wireless interface electronics offered an efficient sampling rate of 10 ms for long-running measurements up to 48 h for a complete evaluation of the entire gastrointestinal tract. As a proof-of-concept, the capsule the capsule's performance in detecting inflammation risks was validated by conducting tests on in vitro cell culture conditions, simulating healthy and inflamed gut-like environments. The capsule presented here achieves a new milestone in addressing the emerging need for smart ingestible electronics for better diagnosis and treatment of digestive diseases.
Collapse
Affiliation(s)
- Sarath Gopalakrishnan
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN, 47907, USA
| | - Rithu Thomas
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Sotoudeh Sedaghat
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN, 47907, USA
- School of Materials Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Akshay Krishnakumar
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN, 47907, USA
| | - Sadid Khan
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Trevor Meyer
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Hans Ajieren
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Sina Nejati
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN, 47907, USA
- School of Materials Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Jiangshan Wang
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN, 47907, USA
- Department of Agricultural and Biological Engineering, West Lafayette, IN, 47907, USA
| | - Mohit S. Verma
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN, 47907, USA
- Department of Agricultural and Biological Engineering, West Lafayette, IN, 47907, USA
- Weldon School of Biomedical Engineering, West Lafayette, IN, 47907, USA
| | - Pedro Irazoqui
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Rahim Rahimi
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN, 47907, USA
- School of Materials Engineering, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
14
|
Roth A, Krishnakumar A, McCain RR, Maruthamuthu MK, McIntosh M, Chen YX, Cox AD, Hopf Jannasch AS, Nguyen J, Seleem MN, Rahimi R. Biocompatibility and Safety Assessment of Combined Topical Ozone and Antibiotics for Treatment of Infected Wounds. ACS Biomater Sci Eng 2023. [PMID: 37235768 DOI: 10.1021/acsbiomaterials.2c01548] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Wound infections with antibiotic-resistant bacteria, particularly the Gram-negative strains, pose a substantial health risk for patients with limited treatment options. Recently topical administration of gaseous ozone and its combination with antibiotics through portable systems has been demonstrated to be a promising approach to eradicate commonly found Gram-negative strains of bacteria in wound infections. However, despite the significant impact of ozone in treating the growing number of antibiotic-resistant infections, uncontrolled and high concentrations of ozone can cause damage to the surrounding tissue. Hence, before such treatments could advance into clinical usage, it is paramount to identify appropriate levels of topical ozone that are effective in treating bacterial infections and safe for use in topical administration. To address this concern, we have conducted a series of in vivo studies to evaluate the efficacy and safety of a portable and wearable adjunct ozone and antibiotic wound therapy system. The concurrent ozone and antibiotics are applied through a wound interfaced gas permeable dressing coated with water-soluble nanofibers containing vancomycin and linezolid (traditionally used to treat Gram-positive infections) and connected to a portable ozone delivery system. The bactericidal properties of the combination therapy were evaluated on an ex vivo wound model infected with Pseudomonas aeruginosa, a common Gram-negative strain of bacteria found in many skin infections with high resistance to a wide range of currently available antibiotics. The results indicated that the optimized combination delivery of ozone (4 mg h-1) and topical antibiotic (200 μg cm-2) provided complete bacteria eradication after 6 h of treatment while having minimum cytotoxicity to human fibroblast cells. Furthermore, in vivo local and systemic toxicity studies (e.g., skin monitoring, skin histopathology, and blood analysis) on pig models showed no signs of adverse effects of ozone and antibiotic combination therapy even after 5 days of continuous administration. The confirmed efficacy and biosafety profile of the adjunct ozone and antibiotic therapy places it as a strong candidate for treating wound infection with antimicrobial-resistant bacteria and further pursuing human clinical trials.
Collapse
Affiliation(s)
- Alexander Roth
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States
- Physics and Engineering Department, Taylor University, Upland, Indiana 46989, United States
| | - Akshay Krishnakumar
- Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Robyn R McCain
- Center for Comparative Translational Research, Purdue University, West Lafayette, Indiana 47907, United States
| | - Murali Kanaan Maruthamuthu
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - MacKenzie McIntosh
- Center for Comparative Translational Research, Purdue University, West Lafayette, Indiana 47907, United States
| | - Yue Xiang Chen
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana 47907, United States
| | - Abigail D Cox
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana 47907, United States
| | - Amber S Hopf Jannasch
- Purdue Translational Pharmacology CTSI Core Facility, Purdue University, West Lafayette, Indiana 47907, United States
| | - Juliane Nguyen
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Mohamed N Seleem
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| | - Rahim Rahimi
- Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
15
|
Heredia-Rivera U, Kasi V, Krishnakumar A, Kadian S, Barui AK, He Z, Wang H, Stanciu L, Rahimi R. Cold Atmospheric Plasma-Assisted Direct Deposition of Polypyrrole-Ag Nanocomposites for Flexible Electronic Sensors. ACS APPLIED MATERIALS & INTERFACES 2023; 15:17078-17090. [PMID: 36961226 DOI: 10.1021/acsami.2c20798] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Conductive polymers and their composite materials have attracted considerable interest due to their potential applications in sensors, actuators, drug delivery systems, and energy storage devices. Despite their wide range of applications, many challenges remain primarily with respect to the complex synthesis and time-consuming manufacturing steps that are often required in the fabrication process of various devices with conductive polymers. Here, we demonstrate the novel use of cold atmospheric plasma (CAP)-assisted deposition technologies as a solvent-free and scalable approach for in situ polymerization and direct deposition of conductive polypyrrole-silver (PPy-Ag) nanocomposites onto the desired substrates under atmospheric conditions. In this study, a systematic approach with different precursor composition mixtures containing pyrrole as the monomer and AgNO3 as the photoinitiator was investigated to assess the effect of precursor composition on the final chemical, electrical, and mechanical properties of the PPy-Ag nanocomposite thin-film coatings which were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, and cyclic bending tests. The characterizations indicated the possibility of fabricating PPy-Ag nanocomposite films with tunable degrees of polymerization and Ag nanoparticle loading by simply varying the percentage of AgNO3 in precursor composition mixtures. Finally, as a proof of concept, the potential use of the PPy-Ag nanocomposite films with different Ag nanoparticle loading percentages was assessed for humidity sensing by measuring their level of change in electrical resistance in the relative humidity range of 12-60%. It is envisioned that the developed CAP-assisted deposition technology can provide a new stepping stone toward scalable additive manufacturing of various functional nanocomposite films for different low-cost and flexible electronic applications.
Collapse
Affiliation(s)
- Ulisses Heredia-Rivera
- School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States
| | - Venkat Kasi
- School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States
| | - Akshay Krishnakumar
- Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Sachin Kadian
- School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States
| | - Amit Kumar Barui
- School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States
| | - Zihao He
- School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Haiyan Wang
- School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Lia Stanciu
- School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States
| | - Rahim Rahimi
- School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|