1
|
Xu B, Ganesan M, Devi RK, Ruan X, Chen W, Lin CC, Chang HT, Lizundia E, An AK, Ravi SK. Hierarchically Promoted Light Harvesting and Management in Photothermal Solar Steam Generation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2406666. [PMID: 39676402 DOI: 10.1002/adma.202406666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 10/20/2024] [Indexed: 12/17/2024]
Abstract
Solar steam generation (SSG) presents a promising approach to addressing the global water crisis. Central to SSG is solar photothermal conversion that requires efficient light harvesting and management. Hierarchical structures with multi-scale light management are therefore crucial for SSG. At the molecular and sub-nanoscale levels, materials are fine-tuned for broadband light absorption. Advancing to the nano- and microscale, structures are tailored to enhance light harvesting through internal reflections, scattering, and diverse confinement effects. At the macroscopic level, light capture is optimized through rationally designed device geometries, configurations, and arrangements of solar absorber materials. While the performance of SSG relies on various factors including heat transport, physicochemical interactions at the water/air and material/water interfaces, salt dynamics, etc., efficient light capture and utilization holds a predominant role because sunlight is the sole energy source. This review focuses on the critical, yet often underestimated, role of hierarchical light harvesting/management at different dimensional scales in SSG. By correlating light management with the structure-property relationships, the recent advances in SSG are discussed, shedding light on the current challenges and possible future trends and opportunities in this domain.
Collapse
Affiliation(s)
- Bolin Xu
- School of Energy and Environment, City University of Hong Kong, Kowloon, 999077, Hong Kong
| | - Muthusankar Ganesan
- School of Energy and Environment, City University of Hong Kong, Kowloon, 999077, Hong Kong
| | - Ramadhass Keerthika Devi
- Institute of Organic and Polymeric Materials, Research and Development Center for Smart Textile Technology, National Taipei University of Technology, Taipei, 106344, Taiwan
- Department of Biomedical Sciences, Chang Gung University, Taoyuan, 33302, Taiwan
| | - Xiaowen Ruan
- School of Energy and Environment, City University of Hong Kong, Kowloon, 999077, Hong Kong
| | - Weicheng Chen
- School of Energy and Environment, City University of Hong Kong, Kowloon, 999077, Hong Kong
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Chun Che Lin
- Institute of Organic and Polymeric Materials, Research and Development Center for Smart Textile Technology, National Taipei University of Technology, Taipei, 106344, Taiwan
| | - Huan-Tsung Chang
- Department of Biomedical Sciences, Chang Gung University, Taoyuan, 33302, Taiwan
- Division of Breast Surgery, Department of General Surgery, Chang Gung Memorial Hospital, Linkou, Taoyuan, 33305, Taiwan
| | - Erlantz Lizundia
- Life Cycle Thinking Group, Department of Graphic Design and Engineering Projects, Faculty of Engineering in Bilbao, University of the Basque Country (UPV/EHU), Bilbao, 48013, Spain
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, Leioa, 48940, Spain
| | - Alicia Kyoungjin An
- School of Energy and Environment, City University of Hong Kong, Kowloon, 999077, Hong Kong
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Sai Kishore Ravi
- School of Energy and Environment, City University of Hong Kong, Kowloon, 999077, Hong Kong
| |
Collapse
|
2
|
Wang Y, Wei T, Wang Y, Zeng J, Wang T, Wang Q, Zhang S, Zeng M, Wang F, Dai P, Jiang X, Hu M, Zhao J, Hu Z, Zhu J, Wang X. Quasi-waffle solar distiller for durable desalination of seawater. SCIENCE ADVANCES 2024; 10:eadk1113. [PMID: 38809973 PMCID: PMC11135395 DOI: 10.1126/sciadv.adk1113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 04/24/2024] [Indexed: 05/31/2024]
Abstract
Water purification via interfacial solar steam generation exhibits promising potential. However, salt crystallization on evaporators reduces solar absorption and obstructs water supply. To address it, a waffle-shaped solar evaporator (WSE) has been designed. WSE is fabricated via a zinc-assisted pyrolysis route, combining low-cost biomass carbon sources, recyclable zinc, and die-stamping process. This route enables cost-effective production without the need of sophisticated processing. As compared to conventional plane-shaped evaporators, WSE is featured by extra sidewalls for triggering the convection with the synergistic solute and thermal Marangoni effects. Consequently, WSE achieves spontaneous salt rejection and durable evaporation stability. It has demonstrated continuous operation for more than 60 days in brine without fouling.
Collapse
Affiliation(s)
- Yanjun Wang
- National Laboratory of Solid State Microstructures (NLSSM), Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Tianqi Wei
- National Laboratory of Solid State Microstructures (NLSSM), Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
| | - Yue Wang
- National Laboratory of Solid State Microstructures (NLSSM), Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
| | - Jinjue Zeng
- National Laboratory of Solid State Microstructures (NLSSM), Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
| | - Tao Wang
- National Laboratory of Solid State Microstructures (NLSSM), Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
| | - Qi Wang
- National Laboratory of Solid State Microstructures (NLSSM), Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
| | - Shuo Zhang
- National Laboratory of Solid State Microstructures (NLSSM), Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
| | - Mengyue Zeng
- National Laboratory of Solid State Microstructures (NLSSM), Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
| | - Fengyue Wang
- National Laboratory of Solid State Microstructures (NLSSM), Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
| | - Pengcheng Dai
- State Key Laboratory of Heavy Oil Processing, Institute of New Energy, China University of Petroleum (East China), Qingdao 266580, China
| | - Xiangfen Jiang
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, College of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Ming Hu
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Jin Zhao
- State Key Laboratory of Organic Electronics and Information Displays, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Zheng Hu
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Jia Zhu
- National Laboratory of Solid State Microstructures (NLSSM), Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
| | - Xuebin Wang
- National Laboratory of Solid State Microstructures (NLSSM), Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
| |
Collapse
|
3
|
Mu X, Chen L, Qu N, Yu J, Jiang X, Xiao C, Luo X, Hasi Q. MXene/polypyrrole coated melamine-foam for efficient interfacial evaporation and photodegradation. J Colloid Interface Sci 2023; 636:291-304. [PMID: 36638569 DOI: 10.1016/j.jcis.2023.01.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/02/2023] [Accepted: 01/04/2023] [Indexed: 01/08/2023]
Abstract
The application of photothermal materials in seawater desalination, wastewater treatment have been widely studied, however, there are relatively few studies that combine photothermal effects and solar-driven photocatalysis and exhibit efficient solar-driven water evaporation performance and excellent photocatalytic ability. Form the perspective of practical application, it is of great significance to combine photothermal effect with solar-driven photocatalysis to develop environment-friendly evaporator with low cost, simple preparation process and ability of seawater desalination, wastewater treatment and photodegradation of organic dyes. In this paper, a novel multifunctional MXene/polypyrrole (PPy) coated melamine foam (MF) named as MF-MXene/PPy was successfully prepared by simple impregnation and in-situ polymerization. The MF-MXene/PPy has rich porosity (89.13 %), abundant water molecule transport channels, excellent light absorption capacity (about 94 %), low thermal conductivity (0.1047 W m-1 K-1), and exhibits excellent performance in solar desalination, wastewater purification and photodegradation of organic dyes. Under 1 kW m-2 illuminate, the solar energy conversion rate and efficiency of MF-MXene/PPy reaches up to 1.5174 kg m-2h-1 and 91.24 %. Moreover, due to the regular pore size of MF-MXene/PPy, good salinity tolerance was shown even after continuous evaporation in 20 wt% NaCl for 8 h. After continuous evaporation in 70 mL of 20 wt% NaCl for 8 h, the amount of salt collected could reach 0.2 g. In addition, MF-MXene/PPy also possessed excellent visible light degradation ability for organic dyes, and the degradation rate of methylene blue (MB), rhodamine B (RHB) and methyl orange (MO) were 92.38 %, 88.92 % and 91.75 %, respectively. As a fundamental research, this research will open a novel way to the development of new evaporator.
Collapse
Affiliation(s)
- Xiaotong Mu
- College of Chemical Engineering, Experimental Teaching Department, Northwest Minzu University, Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Northwest Xincun 1, Lanzhou 730030, PR China
| | - Lihua Chen
- College of Chemical Engineering, Experimental Teaching Department, Northwest Minzu University, Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Northwest Xincun 1, Lanzhou 730030, PR China.
| | - Nannan Qu
- College of Chemical Engineering, Experimental Teaching Department, Northwest Minzu University, Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Northwest Xincun 1, Lanzhou 730030, PR China
| | - Jiale Yu
- College of Chemical Engineering, Experimental Teaching Department, Northwest Minzu University, Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Northwest Xincun 1, Lanzhou 730030, PR China
| | - Xiaoqian Jiang
- College of Chemical Engineering, Experimental Teaching Department, Northwest Minzu University, Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Northwest Xincun 1, Lanzhou 730030, PR China
| | - Chaohu Xiao
- College of Chemical Engineering, Experimental Teaching Department, Northwest Minzu University, Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Northwest Xincun 1, Lanzhou 730030, PR China
| | - Xingping Luo
- College of Chemical Engineering, Experimental Teaching Department, Northwest Minzu University, Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Northwest Xincun 1, Lanzhou 730030, PR China
| | - Qimeige Hasi
- College of Chemical Engineering, Experimental Teaching Department, Northwest Minzu University, Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Northwest Xincun 1, Lanzhou 730030, PR China.
| |
Collapse
|