1
|
Wang H, Liu L, Pang W, Li Y, Sun Z, Zhang Z, Chen X, Song H. Stable Interlayer Zinc Plating/Stripping in the Maxwell-Wagner Effect-Enhanced Interface. ACS APPLIED MATERIALS & INTERFACES 2024; 16:46302-46311. [PMID: 39177229 DOI: 10.1021/acsami.4c09002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Zinc metal batteries have recently emerged as a promising stable and reversible anode aqueous battery. However, due to the serious dendrite problem and hydrogen evolution problem of the zinc metal anode, the practical application of the zinc metal battery is limited. Here, we propose Y2O3 as an effective coating, which inhibits hydrogen evolution and side reactions by physical isolation and simultaneously prevents dendrite growth by ensuring a uniform Zn-ion flux and fast transport channels generated by Maxwell-Wagner polarization, thus improving the stability of batteries. Meanwhile, in situ/ex situ characterizations and different simulations are conducted to investigate in detail the effect of Maxwell-Wagner polarization on the performance of Zn metal batteries. The symmetric Y2O3@Zn anode system exhibits a stable electroplating/stripping performance over 780 h and enables the Zn battery to achieve a Coulombic efficiency of up to 99.81% over 1000 cycles by reducing side reactions. The Y2O3@Zn||MnO2 full cell delivers a high energy density of 301.42 Wh kg-1 at a power density of 205.04 W kg-1. The work provides insights into the reversibility and stability of zinc anodes and provides a promising way to promote the practical application of Zn metal batteries.
Collapse
Affiliation(s)
- Hongxing Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Lantao Liu
- Petrochemical Research Institute, PetroChina Company Limited, Beijing 102206, P. R. China
| | - Weiwei Pang
- Petrochemical Research Institute, PetroChina Company Limited, Beijing 102206, P. R. China
| | - Yiming Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Ziyu Sun
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Zhigang Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Xiaohong Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Huaihe Song
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
2
|
Gao X, Tian D, Shi Z, Zhang N, Sun R, Liu J, Tsai HS, Xiang X, Feng W. An Efficient MnO 2 Photocathode with an Excellent SnO 2 Electron Transport Layer for Photo-Accelerated Zinc Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2405627. [PMID: 39139012 DOI: 10.1002/smll.202405627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/06/2024] [Indexed: 08/15/2024]
Abstract
Photo-accelerated rechargeable batteries play a crucial role in fully utilizing solar energy, but it is still a challenge to fabricate dual-functional photoelectrodes with simultaneous high solar energy harvesting and storage. This work reports an innovative photo-accelerated zinc-ion battery (PAZIB) featuring a photocathode with a SnO2@MnO2 heterojunction. The design ingeniously combines the excellent electronic conductivity of SnO2 with the high energy storage and light absorption capacities of MnO2. The capacity of the SnO2@MnO2-based PAZIB is ≈598 mAh g-1 with a high photo-conversion efficiency of 1.2% under illumination at 0.1 A g-1, which is superior to that of most reported MnO2-based ZIB. The boosting performance is attributed to the synergistic effect of enhanced photogenerated carrier separation efficiency, improved conductivity, and promoted charge transfer by the SnO2@MnO2 heterojunction, which is confirmed by systematic experiments and theoretical simulations. This work provides valuable insights into the development of dual-function photocathodes for effective solar energy utilization.
Collapse
Affiliation(s)
- Xinyu Gao
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China
| | - Dongyue Tian
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China
| | - Zhengguang Shi
- College of Physics, Harbin Institute of Technology, Harbin, 150001, China
| | - Nana Zhang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China
| | - Ruyu Sun
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China
| | - Jiaming Liu
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China
| | - Hsu-Sheng Tsai
- College of Physics, Harbin Institute of Technology, Harbin, 150001, China
| | - Xingde Xiang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China
| | - Wei Feng
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China
| |
Collapse
|
3
|
Deng C, Li Y, Huang J. Building Smarter Aqueous Batteries. SMALL METHODS 2024; 8:e2300832. [PMID: 37670546 DOI: 10.1002/smtd.202300832] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/23/2023] [Indexed: 09/07/2023]
Abstract
Amidst the global trend of advancing renewable energies toward carbon neutrality, energy storage becomes increasingly critical due to the intermittency of renewables. As an alternative to lithium-ion batteries (LIBs), aqueous batteries have received growing attention for large-scale energy storage due to their economical and safe features. Despite the fruitful achievements at the material level, the reliability and lifetime of aqueous batteries are still far from satisfactory. Alike LIBs, integrating smartness is essential for more reliable and long-life aqueous batteries via operando monitoring and automatic response to extreme abuses. In this review, recent advances in sensing techniques and multifunctional battery-sensor systems together with self-healing methods in aqueous batteries is summarized. The significant role of artificial intelligence in designing and optimizing aqueous batteries with high efficiency is also highlighted. Ultimately, it is extrapolated toward the future and present the humble perspective for building smarter aqueous batteries.
Collapse
Affiliation(s)
- Canbin Deng
- The Hong Kong University of Science and Technology (Guangzhou), Sustainable Energy and Environment Thrust and Guangzhou Municipal Key Laboratory of Materials Informatics, Nansha, Guangzhou, Guangdong, 511400, P. R. China
- Academy of Interdisciplinary Studies, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, 999077, P. R. China
- HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute, Futian, Shenzhen, Guangdong, 518045, P. R. China
| | - Yiqing Li
- The Hong Kong University of Science and Technology (Guangzhou), Sustainable Energy and Environment Thrust, Nansha, Guangzhou, Guangdong, 511400, P. R. China
| | - Jiaqiang Huang
- The Hong Kong University of Science and Technology (Guangzhou), Sustainable Energy and Environment Thrust and Guangzhou Municipal Key Laboratory of Materials Informatics, Nansha, Guangzhou, Guangdong, 511400, P. R. China
- Academy of Interdisciplinary Studies, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, 999077, P. R. China
- HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute, Futian, Shenzhen, Guangdong, 518045, P. R. China
| |
Collapse
|
4
|
Jia S, Li L, Shi Y, Wang C, Cao M, Ji Y, Zhang D. Recent development of manganese dioxide-based materials as zinc-ion battery cathode. NANOSCALE 2024; 16:1539-1576. [PMID: 38170865 DOI: 10.1039/d3nr04996e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The development of advanced cathode materials for zinc-ion batteries (ZIBs) is a critical step in building large-scale green energy conversion and storage systems in the future. Manganese dioxide is one of the most well-studied cathode materials for zinc-ion batteries due to its wide range of crystal forms, cost-effectiveness, and well-established synthesis processes. This review describes the recent research progress of manganese dioxide-based ZIBs, and the reaction mechanism, electrochemical performance, and challenges of manganese dioxide-based ZIBs materials are systematically introduced. Optimization strategies for high-performance manganese dioxide-based materials for ZIBs with different crystal forms, nanostructures, morphologies, and compositions are discussed. Finally, the current challenges and future research directions of manganese dioxide-based cathodes in ZIBs are envisaged.
Collapse
Affiliation(s)
- Shaofeng Jia
- Shaanxi Key Laboratory of Industrial Automation, School of Mechanical Engineering, Shaanxi University of Technology, Hanzhong 723001, China.
| | - Le Li
- Shaanxi Key Laboratory of Industrial Automation, School of Mechanical Engineering, Shaanxi University of Technology, Hanzhong 723001, China.
| | - Yue Shi
- Shaanxi Key Laboratory of Industrial Automation, School of Mechanical Engineering, Shaanxi University of Technology, Hanzhong 723001, China.
| | - Conghui Wang
- Shaanxi Key Laboratory of Catalysis, School of Chemistry and Environment Science, Shaanxi University of Technology, Hanzhong 723001, China.
| | - Minghui Cao
- School of Electronic and Information Engineering, Qingdao University, Qingdao 266071, China
| | - Yongqiang Ji
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing, 100871, China
| | - Dan Zhang
- Shaanxi Key Laboratory of Catalysis, School of Chemistry and Environment Science, Shaanxi University of Technology, Hanzhong 723001, China.
| |
Collapse
|
5
|
Zhang X, Jia C, Zhang J, Zhang L, Liu X. Smart Aqueous Zinc Ion Battery: Operation Principles and Design Strategy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305201. [PMID: 37949674 PMCID: PMC10787087 DOI: 10.1002/advs.202305201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/19/2023] [Indexed: 11/12/2023]
Abstract
The zinc ion battery (ZIB) as a promising energy storage device has attracted great attention due to its high safety, low cost, high capacity, and the integrated smart functions. Herein, the working principles of smart responses, smart self-charging, smart electrochromic as well as smart integration of the battery are summarized. Thus, this review enables to inspire researchers to design the novel functional battery devices for extending their application prospects. In addition, the critical factors associated with the performance of the smart ZIBs are comprehensively collected and discussed from the viewpoint of the intellectualized design. A profound understanding for correlating the design philosophy in cathode materials and electrolytes with the electrode interface is provided. To address the current challenging issues and the development of smart ZIB systems, a wide variety of emerging strategies regarding the integrated battery system is finally prospected.
Collapse
Affiliation(s)
- Xiaosheng Zhang
- School of Materials Science and Engineering, Zhengzhou Key Laboratory of Flexible Electronic Materials and Thin-Film Technologies, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Caoer Jia
- School of Materials Science and Engineering, Zhengzhou Key Laboratory of Flexible Electronic Materials and Thin-Film Technologies, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Jinyu Zhang
- School of Materials Science and Engineering, Zhengzhou Key Laboratory of Flexible Electronic Materials and Thin-Film Technologies, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Linlin Zhang
- School of Materials Science and Engineering, Zhengzhou Key Laboratory of Flexible Electronic Materials and Thin-Film Technologies, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Xuying Liu
- School of Materials Science and Engineering, Zhengzhou Key Laboratory of Flexible Electronic Materials and Thin-Film Technologies, Zhengzhou University, Zhengzhou, 450001, P. R. China
| |
Collapse
|
6
|
Wang GY, Li GX, Tang YD, Zhao Z, Yu W, Meng CZ, Guo SJ. Flexible and Antifreezing Fiber-Shaped Solid-State Zinc-Ion Batteries with an Integrated Bonding Structure. J Phys Chem Lett 2023; 14:3512-3520. [PMID: 37014293 DOI: 10.1021/acs.jpclett.2c03357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Fiber-shaped solid-state zinc-ion battery (FZIB) is a promising candidate for wearable electronic devices, but challenges remain in terms of mechanical stability and low temperature tolerance. Herein, we design and fabricate a FZIB with an integrated device structure through effective incorporation of the active electrode materials with a carbon fiber rope (CFR) and a gel polymer electrolyte. The gel polymer electrolyte incorporated with ethylene glycol (EG) and graphene oxide (GO) endows the FZIB with a high Zn stripping/plating efficiency under extreme low temperature conditions. A high power density of 1.25 mW cm-1 and large energy density of 0.1752 mWh cm-1 are obtained. In addition, a high capacity retention of 91% after 2000 continuous bending cycles is achieved. Furthermore, the discharge capacity is fairly retained at more than 22% even at the low temperature of -20 °C. Toward practical applications, the FZIB integrated into textiles to power electronic products is demonstrated.
Collapse
Affiliation(s)
- Guo-Yuan Wang
- State Key Laboratory for Reliability and Intelligence of Electrical Equipment; Hebei Key Laboratory of Smart Sensing and Human-Robot Interaction; School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Guo-Xian Li
- State Key Laboratory for Reliability and Intelligence of Electrical Equipment; Hebei Key Laboratory of Smart Sensing and Human-Robot Interaction; School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Yu-Dong Tang
- State Key Laboratory for Reliability and Intelligence of Electrical Equipment; Hebei Key Laboratory of Smart Sensing and Human-Robot Interaction; School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Zhen Zhao
- State Key Laboratory for Reliability and Intelligence of Electrical Equipment; Hebei Key Laboratory of Smart Sensing and Human-Robot Interaction; School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Wei Yu
- State Key Laboratory for Reliability and Intelligence of Electrical Equipment; Hebei Key Laboratory of Smart Sensing and Human-Robot Interaction; School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Chui-Zhou Meng
- State Key Laboratory for Reliability and Intelligence of Electrical Equipment; Hebei Key Laboratory of Smart Sensing and Human-Robot Interaction; School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Shi-Jie Guo
- State Key Laboratory for Reliability and Intelligence of Electrical Equipment; Hebei Key Laboratory of Smart Sensing and Human-Robot Interaction; School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China
| |
Collapse
|
7
|
Qian S, Wang X, Yan W. Piezoelectric fibers for flexible and wearable electronics. FRONTIERS OF OPTOELECTRONICS 2023; 16:3. [PMID: 36944822 PMCID: PMC10030726 DOI: 10.1007/s12200-023-00058-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/13/2022] [Indexed: 06/18/2023]
Abstract
Flexible and wearable electronics represent paramount technologies offering revolutionized solutions for medical diagnosis and therapy, nerve and organ interfaces, fabric computation, robot-in-medicine and metaverse. Being ubiquitous in everyday life, piezoelectric materials and devices play a vital role in flexible and wearable electronics with their intriguing functionalities, including energy harvesting, sensing and actuation, personal health care and communications. As a new emerging flexible and wearable technology, fiber-shaped piezoelectric devices offer unique advantages over conventional thin-film counterparts. In this review, we survey the recent scientific and technological breakthroughs in thermally drawn piezoelectric fibers and fiber-enabled intelligent fabrics. We highlight the fiber materials, fiber architecture, fabrication, device integration as well as functions that deliver higher forms of unique applications across smart sensing, health care, space security, actuation and energy domains. We conclude with a critical analysis of existing challenges and opportunities that will be important for the continued progress of this field.
Collapse
Affiliation(s)
- Shengtai Qian
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Xingbei Wang
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Wei Yan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China.
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore.
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore.
| |
Collapse
|