1
|
Shao Y, Wang S, Huang L, Ju S, Fan X, Li W. Adsorption and Diffusion of CH 4, N 2, and Their Mixture in MIL-101(Cr): A Molecular Simulation Study. JOURNAL OF CHEMICAL AND ENGINEERING DATA 2024; 69:4466-4482. [PMID: 39691474 PMCID: PMC11647892 DOI: 10.1021/acs.jced.4c00233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 08/03/2024] [Accepted: 08/07/2024] [Indexed: 12/19/2024]
Abstract
A comprehensive quantitative grasp of methane (CH4), nitrogen (N2), and their mixture's adsorption and diffusion in MIL-101(Cr) is crucial for wide and important applications, e.g., natural gas upgrading and coal-mine methane capturing. Previous studies often overlook the impact of gas molecular configuration and MIL-101 topology structure on adsorption, lacking quantitative assessment of primary and secondary adsorption sites. Additionally, understanding gas mixture adsorption mechanisms remains a research gap. To bridge this gap and to provide new knowledge, we utilized Monte Carlo and molecular dynamics simulations for computing essential MIL-101 properties, encompassing adsorption isotherms, density profiles, self-diffusion coefficients, radial distribution function (RDF), and CH4/N2 selectivity. Several novel and distinctive findings are revealed by the atomic-level analysis, including (1) the significance of C=C double bond of the benzene ring within MIL-101 for CH4 and N2 adsorption, with Cr and O atoms also exerting notable effects. (2) Density distribution analysis reveals CH4's preference for large and medium cages, while N2 is evenly distributed along pentagonal and triangular window edges and small tetrahedral cages. (3) Calculations of self-diffusion and diffusion activation energies suggest N2's higher mobility within MIL-101 compared to CH4. (4) In the binary mixture, the existence of CH4 can decrease the diffusion coefficient of N2. In summary, this investigation provides valuable microscopic insights into the adsorption and diffusion phenomena occurring in MIL-101, thereby contributing to a comprehensive understanding of its potential for applications, e.g., natural gas upgrading and selective capture of coal-mine methane.
Collapse
Affiliation(s)
- Yimin Shao
- Institute
for Materials and Processes, School of Engineering,
The University of Edinburgh, Edinburgh EH9 3FB, Scotland, U.K.
| | - Shanshan Wang
- College
of Chemical Engineering, International Innovation Center for Forest
Chemicals and Materials, Nanjing Forestry
University, Nanjing, Jiangsu 210037, P.R. China
| | - Liangliang Huang
- School
of Sustainable Chemical, Biological and Materials Engineering, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Shenghong Ju
- China-UK
Low Carbon College, Shanghai Jiao Tong University, Shanghai 201306, China
| | - Xianfeng Fan
- Institute
for Materials and Processes, School of Engineering,
The University of Edinburgh, Edinburgh EH9 3FB, Scotland, U.K.
| | - Wei Li
- Institute
for Materials and Processes, School of Engineering,
The University of Edinburgh, Edinburgh EH9 3FB, Scotland, U.K.
| |
Collapse
|
2
|
Wang T, Zhang Y, Zheng W, Lin E, Deng C, Geng S, Chen Y, Cheng P, Zhang Z. Fabricating a Robust Ultramicroporous Metal-Organic Framework for Purifying Natural Gas and Coal Mine Methane. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2407701. [PMID: 39422047 DOI: 10.1002/smll.202407701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/29/2024] [Indexed: 10/19/2024]
Abstract
Purifying methane (CH4) from natural gas and coal mine methane (CMM) is of great significance but challenging in the chemical industry. Herein, a robust ultramicroporous metal-organic framework (MOF) is reported, which can be synthesized on a gram scale by stirring under room temperature. Single-component adsorption isotherms of gases (CH4, ethane (C2H6), propane (C3H8), nitrogen (N2)) and breakthrough experiments indicate that the MOF can separate CH4 efficiently from CH4/C2H6/C3H8 ternary mixture, with super high purity-CH4 production of 154.7 cm3 g-1. Additionally, the MOF shows higher CH4 capacity than N2, resulting in excellent separation performance for the CH4/N2 mixture. Notably, the binding sites of gases can be precisely determined by single-crystal X-ray data, further confirmed by molecular simulation. It is found that there are multiple hydrogen bonds and C─H···π interactions between the gases and the framework. This work offers an excellent candidate material for CH4 purification with both high capacity and separation efficiency.
Collapse
Affiliation(s)
- Ting Wang
- College of Chemistry, Key Laboratory of Advanced Energy Material Chemistry (Ministry of Education), Nankai University, Tianjin, 300071, China
| | - Yu Zhang
- College of Chemistry, Key Laboratory of Advanced Energy Material Chemistry (Ministry of Education), Nankai University, Tianjin, 300071, China
| | - Wenqi Zheng
- College of Chemistry, Key Laboratory of Advanced Energy Material Chemistry (Ministry of Education), Nankai University, Tianjin, 300071, China
| | - En Lin
- College of Chemistry, Key Laboratory of Advanced Energy Material Chemistry (Ministry of Education), Nankai University, Tianjin, 300071, China
| | - Chenghua Deng
- Department of Chemistry, University of Chicago, 929 East 57th Street, Chicago, Illinois, 60637, USA
| | - Shubo Geng
- College of Chemistry, Key Laboratory of Advanced Energy Material Chemistry (Ministry of Education), Nankai University, Tianjin, 300071, China
| | - Yao Chen
- College of Chemistry, Key Laboratory of Advanced Energy Material Chemistry (Ministry of Education), Nankai University, Tianjin, 300071, China
- Frontiers Science Center for New Organic Matter, Renewable Energy Conversion and Storage Center, Nankai University, Tianjin, 300071, China
| | - Peng Cheng
- College of Chemistry, Key Laboratory of Advanced Energy Material Chemistry (Ministry of Education), Nankai University, Tianjin, 300071, China
| | - Zhenjie Zhang
- College of Chemistry, Key Laboratory of Advanced Energy Material Chemistry (Ministry of Education), Nankai University, Tianjin, 300071, China
- Frontiers Science Center for New Organic Matter, Renewable Energy Conversion and Storage Center, Nankai University, Tianjin, 300071, China
| |
Collapse
|
3
|
Li SY, Xue YY, Wang JW, Li HP, Lei J, Lv HJ, Bu X, Zhang P, Wang Y, Yuan WY, Zhai QG. Metal-organic frameworks with two different-sized aromatic ring-confined nanotraps for benchmark natural gas upgrade. Chem Sci 2024; 15:d4sc04387a. [PMID: 39381130 PMCID: PMC11457257 DOI: 10.1039/d4sc04387a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/26/2024] [Indexed: 10/10/2024] Open
Abstract
Recovery of light alkanes from natural gas is of great significance in petrochemical production. Herein, a promising strategy utilizing two types of size-complementary aromatic ring-confined nanotraps (called bi-nanotraps here) is proposed to efficiently trap ethane (C2H6) and propane (C3H8) selectively at their respective sites. Two isostructural metal-organic frameworks (MOFs, SNNU-185/186), each containing bi-nanotraps decorated with six aromatic rings, are selected to demonstrate the feasibility of this method. The smaller nanotrap acts as adsorption sites tailored for C2H6 while the larger one is optimized in size for C3H8. The separation is further facilitated by the large channels, which serve as mass transfer pathways. These advanced features give rise to multiple C-H⋯π interactions and size/shape-selective interaction sites, enabling SNNU-185/186 to achieve high C2H6 adsorption enthalpy (43.5/48.8 kJ mol-1) and a very large thermodynamic interaction difference between C2H6 and CH4. Benefiting from the bi-nanotrap effect, SNNU-185/186 exhibits benchmark experimental natural gas upgrade performance with top-level CH4 productivity (6.85/6.10 mmol g-1), ultra-high purity and first-class capture capacity for C2H6 (1.23/0.90 mmol g-1) and C3H8 (2.33/2.15 mmol g-1).
Collapse
Affiliation(s)
- Shu-Yi Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University Xi'an Shaanxi 710062 China
| | - Ying-Ying Xue
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University Xi'an Shaanxi 710062 China
| | - Jia-Wen Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University Xi'an Shaanxi 710062 China
| | - Hai-Peng Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University Xi'an Shaanxi 710062 China
| | - Jiao Lei
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University Xi'an Shaanxi 710062 China
| | - Hong-Juan Lv
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University Xi'an Shaanxi 710062 China
| | - Xianhui Bu
- Department of Chemistry and Biochemistry, California State University Long Beach California 90840 USA
| | - Peng Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University Xi'an Shaanxi 710062 China
| | - Ying Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University Xi'an Shaanxi 710062 China
| | - Wen-Yu Yuan
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University Xi'an Shaanxi 710062 China
| | - Quan-Guo Zhai
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University Xi'an Shaanxi 710062 China
| |
Collapse
|
4
|
Yang Y, Liu Y, Shen F, Hai G, Liu B, Zhang Z, Yang Q, Ren Q, Bao Z. Isoreticular Metal-Organic Frameworks with Aromatic Pores and Dimethylammonium Cations Enable Separation of Light Hydrocarbons and Xenon/Krypton. Inorg Chem 2024; 63:16807-16814. [PMID: 39189338 DOI: 10.1021/acs.inorgchem.4c02538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
The separation of C2-C3 hydrocarbons from methane in natural gas and xenon/krypton purification are crucial yet challenging industrial processes. Herein, we report two isoreticular metal-organic frameworks, ZJU-89 and ZJU-90, featuring aromatic pore environments and dimethylammonium cations, that synergistically enhance the separation of these industrially relevant gas mixtures. ZJU-90 exhibits an exceptional separation performance, achieving C3H8/CH4 and C2H6/CH4 ideal adsorbed solution theory (IAST) selectivities of 1065 and 48, respectively, at ambient conditions, outperforming most reported adsorbent materials. Remarkably, ZJU-90 enables the recovery of >99.95% purity methane from a C3H8/C2H6/CH4 mixture in a single adsorption step. The material also demonstrates the efficient separation of xenon from krypton, even at low concentrations. The superior performance stems from the aromatic rings decorating the pore walls and the free dimethylammonium cations in the channels, which provide an ideal chemical environment for the selective binding of C2H6, C3H8, and Xe through multiple C-H···π interactions and van der Waals forces, as elucidated by theoretical calculations. This work highlights the power of reticular chemistry in designing materials with synergistic pore environments for efficient separations.
Collapse
Affiliation(s)
- Yisi Yang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 310027 Hangzhou, P. R. China
- Institute of Zhejiang University-Quzhou, 324000 Quzhou, P. R. China
| | - Ying Liu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 310027 Hangzhou, P. R. China
| | - Fuxing Shen
- Institute of Zhejiang University-Quzhou, 324000 Quzhou, P. R. China
| | - Guangtong Hai
- Institute of Zhejiang University-Quzhou, 324000 Quzhou, P. R. China
| | - Baojian Liu
- Institute of Zhejiang University-Quzhou, 324000 Quzhou, P. R. China
| | - Zhiguo Zhang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 310027 Hangzhou, P. R. China
- Institute of Zhejiang University-Quzhou, 324000 Quzhou, P. R. China
| | - Qiwei Yang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 310027 Hangzhou, P. R. China
- Institute of Zhejiang University-Quzhou, 324000 Quzhou, P. R. China
| | - Qilong Ren
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 310027 Hangzhou, P. R. China
- Institute of Zhejiang University-Quzhou, 324000 Quzhou, P. R. China
| | - Zongbi Bao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 310027 Hangzhou, P. R. China
- Institute of Zhejiang University-Quzhou, 324000 Quzhou, P. R. China
| |
Collapse
|
5
|
Xie W, Fu Q, Yang LZ, Yan L, Zhang J, Zhao X. Methane Storage and Purification of Natural Gas in Metal-Organic Frameworks. CHEMSUSCHEM 2024:e202401382. [PMID: 39196965 DOI: 10.1002/cssc.202401382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 08/30/2024]
Abstract
Natural gas, primarily composed of methane (CH4), represent an excellent choice for a potentially sustainable renewable energy transition. However, the process of compressing and liquefying CH4 for transport and storage typically results in significant energy losses. In addition, in order to optimize its efficacy as a fuel, the CH4 content of natural gas needs to be increased to a level of at least 97 % to ensure its quality and efficiency in various applications. Metal-organic frameworks (MOFs) represent a novel category of porous materials that possess exceptional capability in modifying pore size and chemical environment, making them ideally suited for the storage of CH4 and the adsorption of propane (C3H8), ethane (C2H6), carbon dioxide (CO2), nitrogen (N2), and hydrogen sulfide (H2S) to facilitate the purification process of CH4 from natural gas. In this paper, we systematically summarize the mechanism by which MOF materials facilitate the storage of CH4 and the purification of CH4 from natural gas, leveraging the structural characteristics inherent to MOF materials. The focus of further research should also be directed towards the investigation of CH4 storage by flexible MOFs, the resolution of the trade-off dilemma, and the commercial application of MOFs.
Collapse
Affiliation(s)
- Wenpeng Xie
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Qiuju Fu
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Ling-Zhi Yang
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Liting Yan
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Jun Zhang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Xuebo Zhao
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| |
Collapse
|
6
|
Ercakir G, Aksu GO, Keskin S. High-throughput computational screening of MOF adsorbents for efficient propane capture from air and natural gas mixtures. J Chem Phys 2024; 160:084706. [PMID: 38415834 DOI: 10.1063/5.0189493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/29/2024] [Indexed: 02/29/2024] Open
Abstract
In this study, we used a high-throughput computational screening approach to examine the potential of metal-organic frameworks (MOFs) for capturing propane (C3H8) from different gas mixtures. We focused on Quantum MOF (QMOF) database composed of both synthesized and hypothetical MOFs and performed Grand Canonical Monte Carlo (GCMC) simulations to compute C3H8/N2/O2/Ar and C3H8/C2H6/CH4 mixture adsorption properties of MOFs. The separation of C3H8 from air mixture and the simultaneous separation of C3H8 and C2H6 from CH4 were studied for six different adsorption-based processes at various temperatures and pressures, including vacuum-swing adsorption (VSA), pressure-swing adsorption (PSA), vacuum-temperature swing adsorption (VTSA), and pressure-temperature swing adsorption (PTSA). The results of molecular simulations were used to evaluate the MOF adsorbents and the type of separation processes based on selectivity, working capacity, adsorbent performance score, and regenerability. Our results showed that VTSA is the most effective process since many MOFs offer high regenerability (>90%) combined with high C3H8 selectivity (>7 × 103) and high C2H6 + C3H8 selectivity (>100) for C3H8 capture from air and natural gas mixtures, respectively. Analysis of the top MOFs revealed that materials with narrow pores (<10 Å) and low porosities (<0.7), having aromatic ring linkers, alumina or zinc metal nodes, typically exhibit a superior C3H8 separation performance. The top MOFs were shown to outperform commercial zeolite, MFI for C3H8 capture from air, and several well-known MOFs for C3H8 capture from natural gas stream. These results will direct the experimental efforts to the most efficient C3H8 capture processes by providing key molecular insights into selecting the most useful adsorbents.
Collapse
Affiliation(s)
- Goktug Ercakir
- Department of Chemical and Biological Engineering, Koc University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
| | - Gokhan Onder Aksu
- Department of Chemical and Biological Engineering, Koc University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
| | - Seda Keskin
- Department of Chemical and Biological Engineering, Koc University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
| |
Collapse
|
7
|
Yan L, Zheng HT, Song L, Wei ZW, Jiang JJ, Su CY. Microporous Fluorinated MOF with Multiple Adsorption Sites for Efficient Recovery of C 2H 6 and C 3H 8 from Natural Gas. ACS APPLIED MATERIALS & INTERFACES 2024; 16:6579-6588. [PMID: 38275141 DOI: 10.1021/acsami.3c15109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Purifying C2H6/C3H8 from a ternary natural gas mixture through adsorption separation is an important but challenging process in the petrochemical industry. To address this challenge, the industry is exploring effective strategies for designing high-performance adsorbents. In this study, we present two metal-organic frameworks (MOFs), DMOF-TF and DMOF-(CF3)2, which have fluorinated pores obtained by substituting linker ligands in the host material. This pore engineering strategy not only provides suitable pore confinement but also enhances the adsorption capacities for C2H6/C3H8 by providing additional binding sites. Theoretical calculations and transient breakthrough experiments show that the introduction of F atoms not only improves the efficiency of natural gas separation but also provides multiple adsorption sites for C2H6/C3H8-framework interactions.
Collapse
Affiliation(s)
- Le Yan
- Institute of Green Chemistry and Molecular Engineering, MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Hui-Ting Zheng
- Institute of Green Chemistry and Molecular Engineering, MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Liang Song
- Institute of Green Chemistry and Molecular Engineering, MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Zhang-Wen Wei
- Institute of Green Chemistry and Molecular Engineering, MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Ji-Jun Jiang
- Institute of Green Chemistry and Molecular Engineering, MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Cheng-Yong Su
- Institute of Green Chemistry and Molecular Engineering, MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
8
|
Xiao C, Tian J, Chen Q, Hong M. Water-stable metal-organic frameworks (MOFs): rational construction and carbon dioxide capture. Chem Sci 2024; 15:1570-1610. [PMID: 38303941 PMCID: PMC10829030 DOI: 10.1039/d3sc06076d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/03/2024] [Indexed: 02/03/2024] Open
Abstract
Metal-organic frameworks (MOFs) are considered to be a promising porous material due to their excellent porosity and chemical tailorability. However, due to the relatively weak strength of coordination bonds, the stability (e.g., water stability) of MOFs is usually poor, which severely inhibits their practical applications. To prepare water-stable MOFs, several important strategies such as increasing the bonding strength of building units and introducing hydrophobic units have been proposed, and many MOFs with excellent water stability have been prepared. Carbon dioxide not only causes a range of climate and health problems but also is a by-product of some important chemicals (e.g., natural gas). Due to their excellent adsorption performances, MOFs are considered as a promising adsorbent that can capture carbon dioxide efficiently and energetically, and many water-stable MOFs have been used to capture carbon dioxide in various scenarios, including flue gas decarbonization, direct air capture, and purified crude natural gas. In this review, we first introduce the design and synthesis of water-stable MOFs and then describe their applications in carbon dioxide capture, and finally provide some personal comments on the challenges facing these areas.
Collapse
Affiliation(s)
- Cao Xiao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Jindou Tian
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 P. R. China
| | - Qihui Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Maochun Hong
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
9
|
Deng C, Zhao L, Gao MY, Darwish S, Song BQ, Sensharma D, Lusi M, Peng YL, Mukherjee S, Zaworotko MJ. Ultramicroporous Lonsdaleite Topology MOF with High Propane Uptake and Propane/Methane Selectivity for Propane Capture from Simulated Natural Gas. ACS MATERIALS LETTERS 2024; 6:56-65. [PMID: 38178981 PMCID: PMC10762655 DOI: 10.1021/acsmaterialslett.3c01157] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 01/06/2024]
Abstract
Propane (C3H8) is a widely used fuel gas. Metal-organic framework (MOF) physisorbents that are C3H8 selective offer the potential to significantly reduce the energy footprint for capturing C3H8 from natural gas, where C3H8 is typically present as a minor component. Here we report the C3H8 recovery performance of a previously unreported lonsdaleite, lon, topology MOF, a chiral metal-organic material, [Ni(S-IEDC)(bipy)(SCN)]n, CMOM-7. CMOM-7 was prepared from three low-cost precursors: Ni(SCN)2, S-indoline-2-carboxylic acid (S-IDECH), and 4,4'-bipyridine (bipy), and its structure was determined by single crystal X-ray crystallography. Pure gas adsorption isotherms revealed that CMOM-7 exhibited high C3H8 uptake (2.71 mmol g-1) at 0.05 bar, an indication of a higher affinity for C3H8 than both C2H6 and CH4. Dynamic column breakthrough experiments afforded high purity C3H8 capture from a gas mixture comprising C3H8/C2H6/CH4 (v/v/v = 5/10/85). Despite the dilute C3H8 stream, CMOM-7 registered a high dynamic uptake of C3H8 and a breakthrough time difference between C3H8 and C2H6 of 79.5 min g-1, superior to those of previous MOF physisorbents studied under the same flow rate. Analysis of crystallographic data and Grand Canonical Monte Carlo simulations provides insight into the two C3H8 binding sites in CMOM-7, both of which are driven by C-H···π and hydrogen bonding interactions.
Collapse
Affiliation(s)
- Chenghua Deng
- Department
of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Li Zhao
- Department
of Applied Chemistry, College of Science, China University of Petroleum-Beijing, Beijing 102249, China
| | - Mei-Yan Gao
- Department
of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Shaza Darwish
- Department
of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Bai-Qiao Song
- Department
of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Debobroto Sensharma
- Department
of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Matteo Lusi
- Department
of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Yun-Lei Peng
- Department
of Applied Chemistry, College of Science, China University of Petroleum-Beijing, Beijing 102249, China
| | - Soumya Mukherjee
- Department
of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Michael J. Zaworotko
- Department
of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| |
Collapse
|
10
|
Song Z, Zheng Y, Chen Y, Cai Y, Wei RJ, Gao J. Halogen-modified metal-organic frameworks for efficient separation of alkane from natural gas. Dalton Trans 2023; 52:15462-15466. [PMID: 37477392 DOI: 10.1039/d3dt01554h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
As a rich green energy source, natural gas is widely used in many fields such as the chemical industry, automobile energy, and daily life. However, it is very challenging to separate and recover C2H6 and C3H8 from natural gas. Metal-organic frameworks (MOFs) as an emerging type of multi-pore porous materials show huge potential in gas adsorption separation. Herein, we report pillar-layered MOFs, Ni (BDC)(DABCO)0.5 (DMOF-X), modified by halogen atoms (F, Cl, Br), and investigate their CH4/C2H6/C3H8 separation performance. The experimental results show that DMOF-Cl exhibited a extremely high adsorption capacity for C3H8 and C2H6. Under the conditions of 298 K and 100 kPa, the adsorption capacities for C3H8 and C2H6 on DMOF-Cl are as high as 6.23 and 4.94 mmol g-1, which are superior to the values for most of the porous materials that have been reported. In addition, DMOF-Cl also shows high C3H8/CH4 (5: 85, V/V) and C2H6/CH4 (10: 85, V/V) separation selectivities, with values of 130.9 and 12.5, respectively. Finally, DMOF-Cl also demonstrated great potential as an adsorbent for separating C3H8/C2H6/CH4.
Collapse
Affiliation(s)
- Zhirong Song
- Institute of Functional Porous Materials, The Key laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, College of Materials and Textiles, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Yanchun Zheng
- Institute of Functional Porous Materials, The Key laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, College of Materials and Textiles, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Yiqi Chen
- Institute of Functional Porous Materials, The Key laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, College of Materials and Textiles, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Youlie Cai
- Institute of Functional Porous Materials, The Key laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, College of Materials and Textiles, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Rong-Jia Wei
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| | - Junkuo Gao
- Institute of Functional Porous Materials, The Key laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, College of Materials and Textiles, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| |
Collapse
|
11
|
Grigoletto S, Dos Santos AG, de Lima GF, De Abreu HA. Dynamical and electronic properties of anion-pillared metal-organic frameworks for natural gas separation. Phys Chem Chem Phys 2023; 25:27532-27541. [PMID: 37801025 DOI: 10.1039/d3cp02368k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
The increasing demand for natural gas as a clean energy source has emphasized the need for efficient gas separation technologies. Metal-organic frameworks (MOFs) have emerged as a promising class of materials for gas separation, with anion-pillared MOFs (APMOFs) gaining attention for their fine-tuned pore design and shape/size selectivity. In this study, we investigate the dynamical and electronic properties of three APMOFs, SIFSIX-3-Cu, SIFSIX-2-Cu-i, and SIFSIX-2-Cu, for the separation of methane from ethane, ethene, propane, propene, and N using computational simulations. Our simulations employ Grand Canonical Monte Carlo (GCMC) and Molecular Dynamics (MD) techniques combined with Density Functional Theory (DFT) calculations. We find that that all three APMOFs exhibit promising separation capabilities for methane from propane and propene based on both thermodynamics and kinetics parameters. In addition, we use Noncovalent Interaction (NCI) analysis to investigate intermolecular interactions and find that the fluorine atoms in the MOF can polarize gas molecules and establish electrostatic interactions with hydrogen atoms in the molecule. Finally, we show that SIFSIX-2-Cu-i is a potential candidate for separating N2/CH4 due to its interpenetration.
Collapse
Affiliation(s)
- Sabrina Grigoletto
- Departamento de Química, ICEx, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil.
| | - Arthur Gomes Dos Santos
- Departamento de Química, ICEx, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil.
| | - Guilherme Ferreira de Lima
- Departamento de Química, ICEx, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil.
| | - Heitor Avelino De Abreu
- Departamento de Química, ICEx, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil.
| |
Collapse
|
12
|
Yan J, Tong S, Sun H, Guo S. Highly Efficient Separation of C1−C3 Alkanes and CO2 in Carbazole-Based Nanoporous Organic Polymers. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|